diff options
author | Tom Caputi <[email protected]> | 2016-05-12 10:51:24 -0400 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2016-07-20 10:43:30 -0700 |
commit | 0b04990a5de594659d2cf20458965277dd6efeb1 (patch) | |
tree | 74369a3236e03359f7276cb9b19687e28c7f6d59 /module/icp/algs/sha1 | |
parent | be88e733a634ad0d7f20350e1a17ede51922d3ff (diff) |
Illumos Crypto Port module added to enable native encryption in zfs
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).
Signed-off-by: Tom Caputi <[email protected]>
Signed-off-by: Tony Hutter <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #4329
Diffstat (limited to 'module/icp/algs/sha1')
-rw-r--r-- | module/icp/algs/sha1/sha1.c | 663 |
1 files changed, 663 insertions, 0 deletions
diff --git a/module/icp/algs/sha1/sha1.c b/module/icp/algs/sha1/sha1.c new file mode 100644 index 000000000..b826c54ad --- /dev/null +++ b/module/icp/algs/sha1/sha1.c @@ -0,0 +1,663 @@ +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +/* + * The basic framework for this code came from the reference + * implementation for MD5. That implementation is Copyright (C) + * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. + * + * License to copy and use this software is granted provided that it + * is identified as the "RSA Data Security, Inc. MD5 Message-Digest + * Algorithm" in all material mentioning or referencing this software + * or this function. + * + * License is also granted to make and use derivative works provided + * that such works are identified as "derived from the RSA Data + * Security, Inc. MD5 Message-Digest Algorithm" in all material + * mentioning or referencing the derived work. + * + * RSA Data Security, Inc. makes no representations concerning either + * the merchantability of this software or the suitability of this + * software for any particular purpose. It is provided "as is" + * without express or implied warranty of any kind. + * + * These notices must be retained in any copies of any part of this + * documentation and/or software. + * + * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 + * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm + * Not as fast as one would like -- further optimizations are encouraged + * and appreciated. + */ + +#include <sys/zfs_context.h> +#include <sha1/sha1.h> +#include <sha1/sha1_consts.h> + +#ifdef _LITTLE_ENDIAN +#include <sys/byteorder.h> +#define HAVE_HTONL +#endif + +#define _RESTRICT_KYWD + +static void Encode(uint8_t *, const uint32_t *, size_t); + +#if defined(__amd64) + +#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) +#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ + (in), (num)) + +void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); + +#else + +#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) + +static void SHA1Transform(SHA1_CTX *, const uint8_t *); + +#endif + + +static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; + +/* + * F, G, and H are the basic SHA1 functions. + */ +#define F(b, c, d) (((b) & (c)) | ((~b) & (d))) +#define G(b, c, d) ((b) ^ (c) ^ (d)) +#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) + +/* + * ROTATE_LEFT rotates x left n bits. + */ + +#if defined(__GNUC__) && defined(_LP64) +static __inline__ uint64_t +ROTATE_LEFT(uint64_t value, uint32_t n) +{ + uint32_t t32; + + t32 = (uint32_t)value; + return ((t32 << n) | (t32 >> (32 - n))); +} + +#else + +#define ROTATE_LEFT(x, n) \ + (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) + +#endif + + +/* + * SHA1Init() + * + * purpose: initializes the sha1 context and begins and sha1 digest operation + * input: SHA1_CTX * : the context to initializes. + * output: void + */ + +void +SHA1Init(SHA1_CTX *ctx) +{ + ctx->count[0] = ctx->count[1] = 0; + + /* + * load magic initialization constants. Tell lint + * that these constants are unsigned by using U. + */ + + ctx->state[0] = 0x67452301U; + ctx->state[1] = 0xefcdab89U; + ctx->state[2] = 0x98badcfeU; + ctx->state[3] = 0x10325476U; + ctx->state[4] = 0xc3d2e1f0U; +} + +void +SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) +{ + uint32_t i, buf_index, buf_len; + const uint8_t *input = inptr; +#if defined(__amd64) + uint32_t block_count; +#endif /* __amd64 */ + + /* check for noop */ + if (input_len == 0) + return; + + /* compute number of bytes mod 64 */ + buf_index = (ctx->count[1] >> 3) & 0x3F; + + /* update number of bits */ + if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) + ctx->count[0]++; + + ctx->count[0] += (input_len >> 29); + + buf_len = 64 - buf_index; + + /* transform as many times as possible */ + i = 0; + if (input_len >= buf_len) { + + /* + * general optimization: + * + * only do initial bcopy() and SHA1Transform() if + * buf_index != 0. if buf_index == 0, we're just + * wasting our time doing the bcopy() since there + * wasn't any data left over from a previous call to + * SHA1Update(). + */ + + if (buf_index) { + bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); + SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); + i = buf_len; + } + +#if !defined(__amd64) + for (; i + 63 < input_len; i += 64) + SHA1_TRANSFORM(ctx, &input[i]); +#else + block_count = (input_len - i) >> 6; + if (block_count > 0) { + SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); + i += block_count << 6; + } +#endif /* !__amd64 */ + + /* + * general optimization: + * + * if i and input_len are the same, return now instead + * of calling bcopy(), since the bcopy() in this case + * will be an expensive nop. + */ + + if (input_len == i) + return; + + buf_index = 0; + } + + /* buffer remaining input */ + bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); +} + +/* + * SHA1Final() + * + * purpose: ends an sha1 digest operation, finalizing the message digest and + * zeroing the context. + * input: uchar_t * : A buffer to store the digest. + * : The function actually uses void* because many + * : callers pass things other than uchar_t here. + * SHA1_CTX * : the context to finalize, save, and zero + * output: void + */ + +void +SHA1Final(void *digest, SHA1_CTX *ctx) +{ + uint8_t bitcount_be[sizeof (ctx->count)]; + uint32_t index = (ctx->count[1] >> 3) & 0x3f; + + /* store bit count, big endian */ + Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); + + /* pad out to 56 mod 64 */ + SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); + + /* append length (before padding) */ + SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); + + /* store state in digest */ + Encode(digest, ctx->state, sizeof (ctx->state)); + + /* zeroize sensitive information */ + bzero(ctx, sizeof (*ctx)); +} + + +#if !defined(__amd64) + +typedef uint32_t sha1word; + +/* + * sparc optimization: + * + * on the sparc, we can load big endian 32-bit data easily. note that + * special care must be taken to ensure the address is 32-bit aligned. + * in the interest of speed, we don't check to make sure, since + * careful programming can guarantee this for us. + */ + +#if defined(_BIG_ENDIAN) +#define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) + +#elif defined(HAVE_HTONL) +#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) + +#else +/* little endian -- will work on big endian, but slowly */ +#define LOAD_BIG_32(addr) \ + (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) +#endif /* _BIG_ENDIAN */ + +/* + * SHA1Transform() + */ +#if defined(W_ARRAY) +#define W(n) w[n] +#else /* !defined(W_ARRAY) */ +#define W(n) w_ ## n +#endif /* !defined(W_ARRAY) */ + +void /* CSTYLED */ +SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) +{ + /* CSTYLED */ + sha1word a = ctx->state[0]; + sha1word b = ctx->state[1]; + sha1word c = ctx->state[2]; + sha1word d = ctx->state[3]; + sha1word e = ctx->state[4]; + +#if defined(W_ARRAY) + sha1word w[16]; +#else /* !defined(W_ARRAY) */ + sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; + sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; +#endif /* !defined(W_ARRAY) */ + + W(0) = LOAD_BIG_32((void *)(blk + 0)); + W(1) = LOAD_BIG_32((void *)(blk + 4)); + W(2) = LOAD_BIG_32((void *)(blk + 8)); + W(3) = LOAD_BIG_32((void *)(blk + 12)); + W(4) = LOAD_BIG_32((void *)(blk + 16)); + W(5) = LOAD_BIG_32((void *)(blk + 20)); + W(6) = LOAD_BIG_32((void *)(blk + 24)); + W(7) = LOAD_BIG_32((void *)(blk + 28)); + W(8) = LOAD_BIG_32((void *)(blk + 32)); + W(9) = LOAD_BIG_32((void *)(blk + 36)); + W(10) = LOAD_BIG_32((void *)(blk + 40)); + W(11) = LOAD_BIG_32((void *)(blk + 44)); + W(12) = LOAD_BIG_32((void *)(blk + 48)); + W(13) = LOAD_BIG_32((void *)(blk + 52)); + W(14) = LOAD_BIG_32((void *)(blk + 56)); + W(15) = LOAD_BIG_32((void *)(blk + 60)); + + /* + * general optimization: + * + * even though this approach is described in the standard as + * being slower algorithmically, it is 30-40% faster than the + * "faster" version under SPARC, because this version has more + * of the constraints specified at compile-time and uses fewer + * variables (and therefore has better register utilization) + * than its "speedier" brother. (i've tried both, trust me) + * + * for either method given in the spec, there is an "assignment" + * phase where the following takes place: + * + * tmp = (main_computation); + * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; + * + * we can make the algorithm go faster by not doing this work, + * but just pretending that `d' is now `e', etc. this works + * really well and obviates the need for a temporary variable. + * however, we still explicitly perform the rotate action, + * since it is cheaper on SPARC to do it once than to have to + * do it over and over again. + */ + + /* round 1 */ + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ + b = ROTATE_LEFT(b, 30); + + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ + a = ROTATE_LEFT(a, 30); + + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ + e = ROTATE_LEFT(e, 30); + + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ + d = ROTATE_LEFT(d, 30); + + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ + c = ROTATE_LEFT(c, 30); + + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ + b = ROTATE_LEFT(b, 30); + + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ + a = ROTATE_LEFT(a, 30); + + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ + e = ROTATE_LEFT(e, 30); + + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ + d = ROTATE_LEFT(d, 30); + + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ + c = ROTATE_LEFT(c, 30); + + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ + b = ROTATE_LEFT(b, 30); + + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ + a = ROTATE_LEFT(a, 30); + + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ + e = ROTATE_LEFT(e, 30); + + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ + d = ROTATE_LEFT(d, 30); + + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ + c = ROTATE_LEFT(c, 30); + + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ + b = ROTATE_LEFT(b, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); + a = ROTATE_LEFT(a, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); + e = ROTATE_LEFT(e, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); + d = ROTATE_LEFT(d, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); + c = ROTATE_LEFT(c, 30); + + /* round 2 */ + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + /* round 3 */ + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + /* round 4 */ + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); + c = ROTATE_LEFT(c, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); + c = ROTATE_LEFT(c, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); + c = ROTATE_LEFT(c, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ + + ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + + SHA1_CONST(3); + ctx->state[1] += b; + ctx->state[2] += ROTATE_LEFT(c, 30); + ctx->state[3] += d; + ctx->state[4] += e; + + /* zeroize sensitive information */ + W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; + W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; +} +#endif /* !__amd64 */ + + +/* + * Encode() + * + * purpose: to convert a list of numbers from little endian to big endian + * input: uint8_t * : place to store the converted big endian numbers + * uint32_t * : place to get numbers to convert from + * size_t : the length of the input in bytes + * output: void + */ + +static void +Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, + size_t len) +{ + size_t i, j; + + for (i = 0, j = 0; j < len; i++, j += 4) { + output[j] = (input[i] >> 24) & 0xff; + output[j + 1] = (input[i] >> 16) & 0xff; + output[j + 2] = (input[i] >> 8) & 0xff; + output[j + 3] = input[i] & 0xff; + } +} |