diff options
author | Tom Caputi <[email protected]> | 2016-05-12 10:51:24 -0400 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2016-07-20 10:43:30 -0700 |
commit | 0b04990a5de594659d2cf20458965277dd6efeb1 (patch) | |
tree | 74369a3236e03359f7276cb9b19687e28c7f6d59 /module/icp/algs | |
parent | be88e733a634ad0d7f20350e1a17ede51922d3ff (diff) |
Illumos Crypto Port module added to enable native encryption in zfs
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).
Signed-off-by: Tom Caputi <[email protected]>
Signed-off-by: Tony Hutter <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #4329
Diffstat (limited to 'module/icp/algs')
-rw-r--r-- | module/icp/algs/aes/aes_impl.c | 1618 | ||||
-rw-r--r-- | module/icp/algs/aes/aes_modes.c | 135 | ||||
-rw-r--r-- | module/icp/algs/modes/cbc.c | 305 | ||||
-rw-r--r-- | module/icp/algs/modes/ccm.c | 920 | ||||
-rw-r--r-- | module/icp/algs/modes/ctr.c | 238 | ||||
-rw-r--r-- | module/icp/algs/modes/ecb.c | 143 | ||||
-rw-r--r-- | module/icp/algs/modes/gcm.c | 748 | ||||
-rw-r--r-- | module/icp/algs/modes/modes.c | 159 | ||||
-rw-r--r-- | module/icp/algs/sha1/sha1.c | 663 | ||||
-rw-r--r-- | module/icp/algs/sha2/sha2.c | 495 |
10 files changed, 5424 insertions, 0 deletions
diff --git a/module/icp/algs/aes/aes_impl.c b/module/icp/algs/aes/aes_impl.c new file mode 100644 index 000000000..9c53964f0 --- /dev/null +++ b/module/icp/algs/aes/aes_impl.c @@ -0,0 +1,1618 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. + */ + +#include <sys/zfs_context.h> +#include <sys/crypto/spi.h> +#include <modes/modes.h> +#include <aes/aes_impl.h> + +#ifdef __amd64 + +#ifdef _KERNEL +/* Workaround for no XMM kernel thread save/restore */ +#define KPREEMPT_DISABLE kpreempt_disable() +#define KPREEMPT_ENABLE kpreempt_enable() + +#else +#define KPREEMPT_DISABLE +#define KPREEMPT_ENABLE +#endif /* _KERNEL */ +#endif /* __amd64 */ + + +/* + * This file is derived from the file rijndael-alg-fst.c taken from the + * "optimized C code v3.0" on the "rijndael home page" + * http://www.iaik.tu-graz.ac.at/research/krypto/AES/old/~rijmen/rijndael/ + * pointed by the NIST web-site http://csrc.nist.gov/archive/aes/ + * + * The following note is from the original file: + */ + +/* + * rijndael-alg-fst.c + * + * @version 3.0 (December 2000) + * + * Optimised ANSI C code for the Rijndael cipher (now AES) + * + * @author Vincent Rijmen <[email protected]> + * @author Antoon Bosselaers <[email protected]> + * @author Paulo Barreto <[email protected]> + * + * This code is hereby placed in the public domain. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS + * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#if defined(__amd64) + +/* These functions are used to execute amd64 instructions for AMD or Intel: */ +extern int rijndael_key_setup_enc_amd64(uint32_t rk[], + const uint32_t cipherKey[], int keyBits); +extern int rijndael_key_setup_dec_amd64(uint32_t rk[], + const uint32_t cipherKey[], int keyBits); +extern void aes_encrypt_amd64(const uint32_t rk[], int Nr, + const uint32_t pt[4], uint32_t ct[4]); +extern void aes_decrypt_amd64(const uint32_t rk[], int Nr, + const uint32_t ct[4], uint32_t pt[4]); + +/* These functions are used to execute Intel-specific AES-NI instructions: */ +extern int rijndael_key_setup_enc_intel(uint32_t rk[], + const uint32_t cipherKey[], uint64_t keyBits); +extern int rijndael_key_setup_dec_intel(uint32_t rk[], + const uint32_t cipherKey[], uint64_t keyBits); +extern void aes_encrypt_intel(const uint32_t rk[], int Nr, + const uint32_t pt[4], uint32_t ct[4]); +extern void aes_decrypt_intel(const uint32_t rk[], int Nr, + const uint32_t ct[4], uint32_t pt[4]); + +static int intel_aes_instructions_present(void); + +#define AES_ENCRYPT_IMPL(a, b, c, d, e) rijndael_encrypt(a, b, c, d, e) +#define AES_DECRYPT_IMPL(a, b, c, d, e) rijndael_decrypt(a, b, c, d, e) + +#else /* Generic C implementation */ + +#define AES_ENCRYPT_IMPL(a, b, c, d, e) rijndael_encrypt(a, b, c, d) +#define AES_DECRYPT_IMPL(a, b, c, d, e) rijndael_decrypt(a, b, c, d) +#define rijndael_key_setup_enc_raw rijndael_key_setup_enc +#endif /* __amd64 */ + +#if defined(_LITTLE_ENDIAN) && !defined(__amd64) +#define AES_BYTE_SWAP +#endif + + +#if !defined(__amd64) +/* + * Constant tables + */ + +/* + * Te0[x] = S [x].[02, 01, 01, 03]; + * Te1[x] = S [x].[03, 02, 01, 01]; + * Te2[x] = S [x].[01, 03, 02, 01]; + * Te3[x] = S [x].[01, 01, 03, 02]; + * Te4[x] = S [x].[01, 01, 01, 01]; + * + * Td0[x] = Si[x].[0e, 09, 0d, 0b]; + * Td1[x] = Si[x].[0b, 0e, 09, 0d]; + * Td2[x] = Si[x].[0d, 0b, 0e, 09]; + * Td3[x] = Si[x].[09, 0d, 0b, 0e]; + * Td4[x] = Si[x].[01, 01, 01, 01]; + */ + +/* Encrypt Sbox constants (for the substitute bytes operation) */ + +static const uint32_t Te0[256] = +{ + 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU, + 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U, + 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU, + 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU, + 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U, + 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU, + 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU, + 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU, + 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU, + 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU, + 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U, + 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU, + 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU, + 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U, + 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU, + 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU, + 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU, + 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU, + 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU, + 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U, + 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU, + 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU, + 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU, + 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU, + 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U, + 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U, + 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U, + 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U, + 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU, + 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U, + 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U, + 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU, + 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU, + 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U, + 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U, + 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U, + 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU, + 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U, + 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU, + 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U, + 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU, + 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U, + 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U, + 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU, + 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U, + 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U, + 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U, + 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U, + 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U, + 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U, + 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U, + 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U, + 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU, + 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U, + 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U, + 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U, + 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U, + 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U, + 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U, + 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU, + 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U, + 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U, + 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U, + 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU +}; + + +static const uint32_t Te1[256] = +{ + 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU, + 0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U, + 0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU, + 0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U, + 0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU, + 0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U, + 0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU, + 0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U, + 0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U, + 0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU, + 0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U, + 0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U, + 0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U, + 0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU, + 0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U, + 0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U, + 0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU, + 0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U, + 0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U, + 0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U, + 0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU, + 0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU, + 0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U, + 0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU, + 0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU, + 0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U, + 0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU, + 0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U, + 0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU, + 0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U, + 0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U, + 0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U, + 0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU, + 0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U, + 0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU, + 0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U, + 0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU, + 0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U, + 0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U, + 0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU, + 0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU, + 0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU, + 0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U, + 0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U, + 0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU, + 0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U, + 0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU, + 0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U, + 0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU, + 0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U, + 0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU, + 0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU, + 0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U, + 0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU, + 0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U, + 0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU, + 0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U, + 0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U, + 0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U, + 0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU, + 0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU, + 0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U, + 0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU, + 0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U +}; + + +static const uint32_t Te2[256] = +{ + 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU, + 0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U, + 0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU, + 0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U, + 0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU, + 0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U, + 0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU, + 0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U, + 0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U, + 0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU, + 0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U, + 0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U, + 0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U, + 0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU, + 0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U, + 0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U, + 0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU, + 0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U, + 0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U, + 0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U, + 0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU, + 0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU, + 0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U, + 0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU, + 0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU, + 0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U, + 0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU, + 0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U, + 0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU, + 0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U, + 0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U, + 0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U, + 0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU, + 0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U, + 0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU, + 0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U, + 0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU, + 0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U, + 0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U, + 0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU, + 0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU, + 0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU, + 0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U, + 0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U, + 0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU, + 0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U, + 0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU, + 0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U, + 0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU, + 0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U, + 0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU, + 0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU, + 0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U, + 0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU, + 0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U, + 0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU, + 0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U, + 0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U, + 0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U, + 0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU, + 0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU, + 0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U, + 0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU, + 0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U +}; + + +static const uint32_t Te3[256] = +{ + 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U, + 0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U, + 0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U, + 0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU, + 0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU, + 0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU, + 0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U, + 0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU, + 0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU, + 0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U, + 0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U, + 0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU, + 0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU, + 0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU, + 0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU, + 0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU, + 0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U, + 0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU, + 0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU, + 0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U, + 0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U, + 0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U, + 0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U, + 0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U, + 0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU, + 0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U, + 0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU, + 0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU, + 0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U, + 0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U, + 0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U, + 0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU, + 0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U, + 0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU, + 0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU, + 0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U, + 0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U, + 0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU, + 0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U, + 0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU, + 0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U, + 0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U, + 0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U, + 0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U, + 0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU, + 0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U, + 0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU, + 0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U, + 0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU, + 0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U, + 0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU, + 0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU, + 0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU, + 0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU, + 0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U, + 0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U, + 0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U, + 0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U, + 0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U, + 0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U, + 0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU, + 0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U, + 0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU, + 0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU +}; + +static const uint32_t Te4[256] = +{ + 0x63636363U, 0x7c7c7c7cU, 0x77777777U, 0x7b7b7b7bU, + 0xf2f2f2f2U, 0x6b6b6b6bU, 0x6f6f6f6fU, 0xc5c5c5c5U, + 0x30303030U, 0x01010101U, 0x67676767U, 0x2b2b2b2bU, + 0xfefefefeU, 0xd7d7d7d7U, 0xababababU, 0x76767676U, + 0xcacacacaU, 0x82828282U, 0xc9c9c9c9U, 0x7d7d7d7dU, + 0xfafafafaU, 0x59595959U, 0x47474747U, 0xf0f0f0f0U, + 0xadadadadU, 0xd4d4d4d4U, 0xa2a2a2a2U, 0xafafafafU, + 0x9c9c9c9cU, 0xa4a4a4a4U, 0x72727272U, 0xc0c0c0c0U, + 0xb7b7b7b7U, 0xfdfdfdfdU, 0x93939393U, 0x26262626U, + 0x36363636U, 0x3f3f3f3fU, 0xf7f7f7f7U, 0xccccccccU, + 0x34343434U, 0xa5a5a5a5U, 0xe5e5e5e5U, 0xf1f1f1f1U, + 0x71717171U, 0xd8d8d8d8U, 0x31313131U, 0x15151515U, + 0x04040404U, 0xc7c7c7c7U, 0x23232323U, 0xc3c3c3c3U, + 0x18181818U, 0x96969696U, 0x05050505U, 0x9a9a9a9aU, + 0x07070707U, 0x12121212U, 0x80808080U, 0xe2e2e2e2U, + 0xebebebebU, 0x27272727U, 0xb2b2b2b2U, 0x75757575U, + 0x09090909U, 0x83838383U, 0x2c2c2c2cU, 0x1a1a1a1aU, + 0x1b1b1b1bU, 0x6e6e6e6eU, 0x5a5a5a5aU, 0xa0a0a0a0U, + 0x52525252U, 0x3b3b3b3bU, 0xd6d6d6d6U, 0xb3b3b3b3U, + 0x29292929U, 0xe3e3e3e3U, 0x2f2f2f2fU, 0x84848484U, + 0x53535353U, 0xd1d1d1d1U, 0x00000000U, 0xededededU, + 0x20202020U, 0xfcfcfcfcU, 0xb1b1b1b1U, 0x5b5b5b5bU, + 0x6a6a6a6aU, 0xcbcbcbcbU, 0xbebebebeU, 0x39393939U, + 0x4a4a4a4aU, 0x4c4c4c4cU, 0x58585858U, 0xcfcfcfcfU, + 0xd0d0d0d0U, 0xefefefefU, 0xaaaaaaaaU, 0xfbfbfbfbU, + 0x43434343U, 0x4d4d4d4dU, 0x33333333U, 0x85858585U, + 0x45454545U, 0xf9f9f9f9U, 0x02020202U, 0x7f7f7f7fU, + 0x50505050U, 0x3c3c3c3cU, 0x9f9f9f9fU, 0xa8a8a8a8U, + 0x51515151U, 0xa3a3a3a3U, 0x40404040U, 0x8f8f8f8fU, + 0x92929292U, 0x9d9d9d9dU, 0x38383838U, 0xf5f5f5f5U, + 0xbcbcbcbcU, 0xb6b6b6b6U, 0xdadadadaU, 0x21212121U, + 0x10101010U, 0xffffffffU, 0xf3f3f3f3U, 0xd2d2d2d2U, + 0xcdcdcdcdU, 0x0c0c0c0cU, 0x13131313U, 0xececececU, + 0x5f5f5f5fU, 0x97979797U, 0x44444444U, 0x17171717U, + 0xc4c4c4c4U, 0xa7a7a7a7U, 0x7e7e7e7eU, 0x3d3d3d3dU, + 0x64646464U, 0x5d5d5d5dU, 0x19191919U, 0x73737373U, + 0x60606060U, 0x81818181U, 0x4f4f4f4fU, 0xdcdcdcdcU, + 0x22222222U, 0x2a2a2a2aU, 0x90909090U, 0x88888888U, + 0x46464646U, 0xeeeeeeeeU, 0xb8b8b8b8U, 0x14141414U, + 0xdedededeU, 0x5e5e5e5eU, 0x0b0b0b0bU, 0xdbdbdbdbU, + 0xe0e0e0e0U, 0x32323232U, 0x3a3a3a3aU, 0x0a0a0a0aU, + 0x49494949U, 0x06060606U, 0x24242424U, 0x5c5c5c5cU, + 0xc2c2c2c2U, 0xd3d3d3d3U, 0xacacacacU, 0x62626262U, + 0x91919191U, 0x95959595U, 0xe4e4e4e4U, 0x79797979U, + 0xe7e7e7e7U, 0xc8c8c8c8U, 0x37373737U, 0x6d6d6d6dU, + 0x8d8d8d8dU, 0xd5d5d5d5U, 0x4e4e4e4eU, 0xa9a9a9a9U, + 0x6c6c6c6cU, 0x56565656U, 0xf4f4f4f4U, 0xeaeaeaeaU, + 0x65656565U, 0x7a7a7a7aU, 0xaeaeaeaeU, 0x08080808U, + 0xbabababaU, 0x78787878U, 0x25252525U, 0x2e2e2e2eU, + 0x1c1c1c1cU, 0xa6a6a6a6U, 0xb4b4b4b4U, 0xc6c6c6c6U, + 0xe8e8e8e8U, 0xddddddddU, 0x74747474U, 0x1f1f1f1fU, + 0x4b4b4b4bU, 0xbdbdbdbdU, 0x8b8b8b8bU, 0x8a8a8a8aU, + 0x70707070U, 0x3e3e3e3eU, 0xb5b5b5b5U, 0x66666666U, + 0x48484848U, 0x03030303U, 0xf6f6f6f6U, 0x0e0e0e0eU, + 0x61616161U, 0x35353535U, 0x57575757U, 0xb9b9b9b9U, + 0x86868686U, 0xc1c1c1c1U, 0x1d1d1d1dU, 0x9e9e9e9eU, + 0xe1e1e1e1U, 0xf8f8f8f8U, 0x98989898U, 0x11111111U, + 0x69696969U, 0xd9d9d9d9U, 0x8e8e8e8eU, 0x94949494U, + 0x9b9b9b9bU, 0x1e1e1e1eU, 0x87878787U, 0xe9e9e9e9U, + 0xcecececeU, 0x55555555U, 0x28282828U, 0xdfdfdfdfU, + 0x8c8c8c8cU, 0xa1a1a1a1U, 0x89898989U, 0x0d0d0d0dU, + 0xbfbfbfbfU, 0xe6e6e6e6U, 0x42424242U, 0x68686868U, + 0x41414141U, 0x99999999U, 0x2d2d2d2dU, 0x0f0f0f0fU, + 0xb0b0b0b0U, 0x54545454U, 0xbbbbbbbbU, 0x16161616U +}; + +/* Decrypt Sbox constants (for the substitute bytes operation) */ + +static const uint32_t Td0[256] = +{ + 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U, + 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U, + 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U, + 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU, + 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U, + 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U, + 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU, + 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U, + 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU, + 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U, + 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U, + 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U, + 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U, + 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU, + 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U, + 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU, + 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U, + 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU, + 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U, + 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U, + 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U, + 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU, + 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U, + 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU, + 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U, + 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU, + 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U, + 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU, + 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU, + 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U, + 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU, + 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U, + 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU, + 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U, + 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U, + 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U, + 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU, + 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U, + 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U, + 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU, + 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U, + 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U, + 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U, + 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U, + 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U, + 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU, + 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U, + 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U, + 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U, + 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U, + 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U, + 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU, + 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU, + 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU, + 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU, + 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U, + 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U, + 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU, + 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU, + 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U, + 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU, + 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U, + 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U, + 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U +}; + +static const uint32_t Td1[256] = +{ + 0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU, + 0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U, + 0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU, + 0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U, + 0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U, + 0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U, + 0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U, + 0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U, + 0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U, + 0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU, + 0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU, + 0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU, + 0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U, + 0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU, + 0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U, + 0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U, + 0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U, + 0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU, + 0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU, + 0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U, + 0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU, + 0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U, + 0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU, + 0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU, + 0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U, + 0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U, + 0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U, + 0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU, + 0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U, + 0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU, + 0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U, + 0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U, + 0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U, + 0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU, + 0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U, + 0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U, + 0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U, + 0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U, + 0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U, + 0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U, + 0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU, + 0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU, + 0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U, + 0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU, + 0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U, + 0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU, + 0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU, + 0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U, + 0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU, + 0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U, + 0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U, + 0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U, + 0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U, + 0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U, + 0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U, + 0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U, + 0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU, + 0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U, + 0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U, + 0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU, + 0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U, + 0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U, + 0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U, + 0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U +}; + +static const uint32_t Td2[256] = +{ + 0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U, + 0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U, + 0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U, + 0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U, + 0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU, + 0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U, + 0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U, + 0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U, + 0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U, + 0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU, + 0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U, + 0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U, + 0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU, + 0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U, + 0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U, + 0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U, + 0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U, + 0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U, + 0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U, + 0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU, + 0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U, + 0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U, + 0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U, + 0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U, + 0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U, + 0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU, + 0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU, + 0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U, + 0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU, + 0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U, + 0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU, + 0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU, + 0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU, + 0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU, + 0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U, + 0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U, + 0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U, + 0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U, + 0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U, + 0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U, + 0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U, + 0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU, + 0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU, + 0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U, + 0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U, + 0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU, + 0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU, + 0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U, + 0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U, + 0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U, + 0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U, + 0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U, + 0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U, + 0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U, + 0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU, + 0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U, + 0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U, + 0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U, + 0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U, + 0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U, + 0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U, + 0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU, + 0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U, + 0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U +}; + +static const uint32_t Td3[256] = +{ + 0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU, + 0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU, + 0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U, + 0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U, + 0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU, + 0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU, + 0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U, + 0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU, + 0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U, + 0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU, + 0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U, + 0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U, + 0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U, + 0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U, + 0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U, + 0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU, + 0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU, + 0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U, + 0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U, + 0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU, + 0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU, + 0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U, + 0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U, + 0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U, + 0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U, + 0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU, + 0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U, + 0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U, + 0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU, + 0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU, + 0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U, + 0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U, + 0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U, + 0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU, + 0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U, + 0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U, + 0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U, + 0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U, + 0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U, + 0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U, + 0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U, + 0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU, + 0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U, + 0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U, + 0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU, + 0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU, + 0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U, + 0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU, + 0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U, + 0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U, + 0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U, + 0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U, + 0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U, + 0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U, + 0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU, + 0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU, + 0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU, + 0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU, + 0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U, + 0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U, + 0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U, + 0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU, + 0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U, + 0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U +}; + +static const uint32_t Td4[256] = +{ + 0x52525252U, 0x09090909U, 0x6a6a6a6aU, 0xd5d5d5d5U, + 0x30303030U, 0x36363636U, 0xa5a5a5a5U, 0x38383838U, + 0xbfbfbfbfU, 0x40404040U, 0xa3a3a3a3U, 0x9e9e9e9eU, + 0x81818181U, 0xf3f3f3f3U, 0xd7d7d7d7U, 0xfbfbfbfbU, + 0x7c7c7c7cU, 0xe3e3e3e3U, 0x39393939U, 0x82828282U, + 0x9b9b9b9bU, 0x2f2f2f2fU, 0xffffffffU, 0x87878787U, + 0x34343434U, 0x8e8e8e8eU, 0x43434343U, 0x44444444U, + 0xc4c4c4c4U, 0xdedededeU, 0xe9e9e9e9U, 0xcbcbcbcbU, + 0x54545454U, 0x7b7b7b7bU, 0x94949494U, 0x32323232U, + 0xa6a6a6a6U, 0xc2c2c2c2U, 0x23232323U, 0x3d3d3d3dU, + 0xeeeeeeeeU, 0x4c4c4c4cU, 0x95959595U, 0x0b0b0b0bU, + 0x42424242U, 0xfafafafaU, 0xc3c3c3c3U, 0x4e4e4e4eU, + 0x08080808U, 0x2e2e2e2eU, 0xa1a1a1a1U, 0x66666666U, + 0x28282828U, 0xd9d9d9d9U, 0x24242424U, 0xb2b2b2b2U, + 0x76767676U, 0x5b5b5b5bU, 0xa2a2a2a2U, 0x49494949U, + 0x6d6d6d6dU, 0x8b8b8b8bU, 0xd1d1d1d1U, 0x25252525U, + 0x72727272U, 0xf8f8f8f8U, 0xf6f6f6f6U, 0x64646464U, + 0x86868686U, 0x68686868U, 0x98989898U, 0x16161616U, + 0xd4d4d4d4U, 0xa4a4a4a4U, 0x5c5c5c5cU, 0xccccccccU, + 0x5d5d5d5dU, 0x65656565U, 0xb6b6b6b6U, 0x92929292U, + 0x6c6c6c6cU, 0x70707070U, 0x48484848U, 0x50505050U, + 0xfdfdfdfdU, 0xededededU, 0xb9b9b9b9U, 0xdadadadaU, + 0x5e5e5e5eU, 0x15151515U, 0x46464646U, 0x57575757U, + 0xa7a7a7a7U, 0x8d8d8d8dU, 0x9d9d9d9dU, 0x84848484U, + 0x90909090U, 0xd8d8d8d8U, 0xababababU, 0x00000000U, + 0x8c8c8c8cU, 0xbcbcbcbcU, 0xd3d3d3d3U, 0x0a0a0a0aU, + 0xf7f7f7f7U, 0xe4e4e4e4U, 0x58585858U, 0x05050505U, + 0xb8b8b8b8U, 0xb3b3b3b3U, 0x45454545U, 0x06060606U, + 0xd0d0d0d0U, 0x2c2c2c2cU, 0x1e1e1e1eU, 0x8f8f8f8fU, + 0xcacacacaU, 0x3f3f3f3fU, 0x0f0f0f0fU, 0x02020202U, + 0xc1c1c1c1U, 0xafafafafU, 0xbdbdbdbdU, 0x03030303U, + 0x01010101U, 0x13131313U, 0x8a8a8a8aU, 0x6b6b6b6bU, + 0x3a3a3a3aU, 0x91919191U, 0x11111111U, 0x41414141U, + 0x4f4f4f4fU, 0x67676767U, 0xdcdcdcdcU, 0xeaeaeaeaU, + 0x97979797U, 0xf2f2f2f2U, 0xcfcfcfcfU, 0xcecececeU, + 0xf0f0f0f0U, 0xb4b4b4b4U, 0xe6e6e6e6U, 0x73737373U, + 0x96969696U, 0xacacacacU, 0x74747474U, 0x22222222U, + 0xe7e7e7e7U, 0xadadadadU, 0x35353535U, 0x85858585U, + 0xe2e2e2e2U, 0xf9f9f9f9U, 0x37373737U, 0xe8e8e8e8U, + 0x1c1c1c1cU, 0x75757575U, 0xdfdfdfdfU, 0x6e6e6e6eU, + 0x47474747U, 0xf1f1f1f1U, 0x1a1a1a1aU, 0x71717171U, + 0x1d1d1d1dU, 0x29292929U, 0xc5c5c5c5U, 0x89898989U, + 0x6f6f6f6fU, 0xb7b7b7b7U, 0x62626262U, 0x0e0e0e0eU, + 0xaaaaaaaaU, 0x18181818U, 0xbebebebeU, 0x1b1b1b1bU, + 0xfcfcfcfcU, 0x56565656U, 0x3e3e3e3eU, 0x4b4b4b4bU, + 0xc6c6c6c6U, 0xd2d2d2d2U, 0x79797979U, 0x20202020U, + 0x9a9a9a9aU, 0xdbdbdbdbU, 0xc0c0c0c0U, 0xfefefefeU, + 0x78787878U, 0xcdcdcdcdU, 0x5a5a5a5aU, 0xf4f4f4f4U, + 0x1f1f1f1fU, 0xddddddddU, 0xa8a8a8a8U, 0x33333333U, + 0x88888888U, 0x07070707U, 0xc7c7c7c7U, 0x31313131U, + 0xb1b1b1b1U, 0x12121212U, 0x10101010U, 0x59595959U, + 0x27272727U, 0x80808080U, 0xececececU, 0x5f5f5f5fU, + 0x60606060U, 0x51515151U, 0x7f7f7f7fU, 0xa9a9a9a9U, + 0x19191919U, 0xb5b5b5b5U, 0x4a4a4a4aU, 0x0d0d0d0dU, + 0x2d2d2d2dU, 0xe5e5e5e5U, 0x7a7a7a7aU, 0x9f9f9f9fU, + 0x93939393U, 0xc9c9c9c9U, 0x9c9c9c9cU, 0xefefefefU, + 0xa0a0a0a0U, 0xe0e0e0e0U, 0x3b3b3b3bU, 0x4d4d4d4dU, + 0xaeaeaeaeU, 0x2a2a2a2aU, 0xf5f5f5f5U, 0xb0b0b0b0U, + 0xc8c8c8c8U, 0xebebebebU, 0xbbbbbbbbU, 0x3c3c3c3cU, + 0x83838383U, 0x53535353U, 0x99999999U, 0x61616161U, + 0x17171717U, 0x2b2b2b2bU, 0x04040404U, 0x7e7e7e7eU, + 0xbabababaU, 0x77777777U, 0xd6d6d6d6U, 0x26262626U, + 0xe1e1e1e1U, 0x69696969U, 0x14141414U, 0x63636363U, + 0x55555555U, 0x21212121U, 0x0c0c0c0cU, 0x7d7d7d7dU +}; + +/* Rcon is Round Constant; used for encryption key expansion */ +static const uint32_t rcon[RC_LENGTH] = +{ + /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ + 0x01000000, 0x02000000, 0x04000000, 0x08000000, + 0x10000000, 0x20000000, 0x40000000, 0x80000000, + 0x1B000000, 0x36000000 +}; + + +/* + * Expand the cipher key into the encryption key schedule. + * + * Return the number of rounds for the given cipher key size. + * The size of the key schedule depends on the number of rounds + * (which can be computed from the size of the key), i.e. 4*(Nr + 1). + * + * Parameters: + * rk AES key schedule 32-bit array to be initialized + * cipherKey User key + * keyBits AES key size (128, 192, or 256 bits) + */ +static int +rijndael_key_setup_enc_raw(uint32_t rk[], const uint32_t cipherKey[], + int keyBits) +{ + int i = 0; + uint32_t temp; + + rk[0] = cipherKey[0]; + rk[1] = cipherKey[1]; + rk[2] = cipherKey[2]; + rk[3] = cipherKey[3]; + + if (keyBits == 128) { + for (;;) { + temp = rk[3]; + rk[4] = rk[0] ^ + (Te4[(temp >> 16) & 0xff] & 0xff000000) ^ + (Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^ + (Te4[temp & 0xff] & 0x0000ff00) ^ + (Te4[temp >> 24] & 0x000000ff) ^ + rcon[i]; + rk[5] = rk[1] ^ rk[4]; + rk[6] = rk[2] ^ rk[5]; + rk[7] = rk[3] ^ rk[6]; + + if (++i == 10) { + return (10); + } + rk += 4; + } + } + + rk[4] = cipherKey[4]; + rk[5] = cipherKey[5]; + + if (keyBits == 192) { + for (;;) { + temp = rk[5]; + rk[6] = rk[0] ^ + (Te4[(temp >> 16) & 0xff] & 0xff000000) ^ + (Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^ + (Te4[temp & 0xff] & 0x0000ff00) ^ + (Te4[temp >> 24] & 0x000000ff) ^ + rcon[i]; + rk[7] = rk[1] ^ rk[6]; + rk[8] = rk[2] ^ rk[7]; + rk[9] = rk[3] ^ rk[8]; + + if (++i == 8) { + return (12); + } + + rk[10] = rk[4] ^ rk[9]; + rk[11] = rk[5] ^ rk[10]; + rk += 6; + } + } + + rk[6] = cipherKey[6]; + rk[7] = cipherKey[7]; + + if (keyBits == 256) { + for (;;) { + temp = rk[7]; + rk[8] = rk[0] ^ + (Te4[(temp >> 16) & 0xff] & 0xff000000) ^ + (Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^ + (Te4[temp & 0xff] & 0x0000ff00) ^ + (Te4[temp >> 24] & 0x000000ff) ^ + rcon[i]; + rk[9] = rk[1] ^ rk[8]; + rk[10] = rk[2] ^ rk[9]; + rk[11] = rk[3] ^ rk[10]; + + if (++i == 7) { + return (14); + } + temp = rk[11]; + rk[12] = rk[4] ^ + (Te4[temp >> 24] & 0xff000000) ^ + (Te4[(temp >> 16) & 0xff] & 0x00ff0000) ^ + (Te4[(temp >> 8) & 0xff] & 0x0000ff00) ^ + (Te4[temp & 0xff] & 0x000000ff); + rk[13] = rk[5] ^ rk[12]; + rk[14] = rk[6] ^ rk[13]; + rk[15] = rk[7] ^ rk[14]; + + rk += 8; + } + } + + return (0); +} +#endif /* !__amd64 */ + +#if defined(__amd64) + +/* + * Expand the 32-bit AES cipher key array into the encryption and decryption + * key schedules. + * + * Parameters: + * key AES key schedule to be initialized + * keyarr32 User key + * keyBits AES key size (128, 192, or 256 bits) + */ +static void +aes_setupkeys(aes_key_t *key, const uint32_t *keyarr32, int keybits) +{ + if (intel_aes_instructions_present()) { + key->flags = INTEL_AES_NI_CAPABLE; + KPREEMPT_DISABLE; + key->nr = rijndael_key_setup_enc_intel(&(key->encr_ks.ks32[0]), + keyarr32, keybits); + key->nr = rijndael_key_setup_dec_intel(&(key->decr_ks.ks32[0]), + keyarr32, keybits); + KPREEMPT_ENABLE; + } else { + key->flags = 0; + key->nr = rijndael_key_setup_enc_amd64(&(key->encr_ks.ks32[0]), + keyarr32, keybits); + key->nr = rijndael_key_setup_dec_amd64(&(key->decr_ks.ks32[0]), + keyarr32, keybits); + } + + key->type = AES_32BIT_KS; +} + +/* + * Encrypt one block of data. The block is assumed to be an array + * of four uint32_t values, so copy for alignment (and byte-order + * reversal for little endian systems might be necessary on the + * input and output byte streams. + * The size of the key schedule depends on the number of rounds + * (which can be computed from the size of the key), i.e. 4*(Nr + 1). + * + * Parameters: + * rk Key schedule, of aes_ks_t (60 32-bit integers) + * Nr Number of rounds + * pt Input block (plain text) + * ct Output block (crypto text). Can overlap with pt + * flags Indicates whether we're on Intel AES-NI-capable hardware + */ +static void +rijndael_encrypt(const uint32_t rk[], int Nr, const uint32_t pt[4], + uint32_t ct[4], int flags) { + if (flags & INTEL_AES_NI_CAPABLE) { + KPREEMPT_DISABLE; + aes_encrypt_intel(rk, Nr, pt, ct); + KPREEMPT_ENABLE; + } else { + aes_encrypt_amd64(rk, Nr, pt, ct); + } +} + +/* + * Decrypt one block of data. The block is assumed to be an array + * of four uint32_t values, so copy for alignment (and byte-order + * reversal for little endian systems might be necessary on the + * input and output byte streams. + * The size of the key schedule depends on the number of rounds + * (which can be computed from the size of the key), i.e. 4*(Nr + 1). + * + * Parameters: + * rk Key schedule, of aes_ks_t (60 32-bit integers) + * Nr Number of rounds + * ct Input block (crypto text) + * pt Output block (plain text). Can overlap with pt + * flags Indicates whether we're on Intel AES-NI-capable hardware + */ +static void +rijndael_decrypt(const uint32_t rk[], int Nr, const uint32_t ct[4], + uint32_t pt[4], int flags) { + if (flags & INTEL_AES_NI_CAPABLE) { + KPREEMPT_DISABLE; + aes_decrypt_intel(rk, Nr, ct, pt); + KPREEMPT_ENABLE; + } else { + aes_decrypt_amd64(rk, Nr, ct, pt); + } +} + + +#else /* generic C implementation */ + +/* + * Expand the cipher key into the decryption key schedule. + * Return the number of rounds for the given cipher key size. + * The size of the key schedule depends on the number of rounds + * (which can be computed from the size of the key), i.e. 4*(Nr + 1). + * + * Parameters: + * rk AES key schedule 32-bit array to be initialized + * cipherKey User key + * keyBits AES key size (128, 192, or 256 bits) + */ +static int +rijndael_key_setup_dec(uint32_t rk[], const uint32_t cipherKey[], int keyBits) +{ + int Nr, i, j; + uint32_t temp; + + /* expand the cipher key: */ + Nr = rijndael_key_setup_enc_raw(rk, cipherKey, keyBits); + + /* invert the order of the round keys: */ + for (i = 0, j = 4 * Nr; i < j; i += 4, j -= 4) { + temp = rk[i]; + rk[i] = rk[j]; + rk[j] = temp; + temp = rk[i + 1]; + rk[i + 1] = rk[j + 1]; + rk[j + 1] = temp; + temp = rk[i + 2]; + rk[i + 2] = rk[j + 2]; + rk[j + 2] = temp; + temp = rk[i + 3]; + rk[i + 3] = rk[j + 3]; + rk[j + 3] = temp; + } + + /* + * apply the inverse MixColumn transform to all + * round keys but the first and the last: + */ + for (i = 1; i < Nr; i++) { + rk += 4; + rk[0] = Td0[Te4[rk[0] >> 24] & 0xff] ^ + Td1[Te4[(rk[0] >> 16) & 0xff] & 0xff] ^ + Td2[Te4[(rk[0] >> 8) & 0xff] & 0xff] ^ + Td3[Te4[rk[0] & 0xff] & 0xff]; + rk[1] = Td0[Te4[rk[1] >> 24] & 0xff] ^ + Td1[Te4[(rk[1] >> 16) & 0xff] & 0xff] ^ + Td2[Te4[(rk[1] >> 8) & 0xff] & 0xff] ^ + Td3[Te4[rk[1] & 0xff] & 0xff]; + rk[2] = Td0[Te4[rk[2] >> 24] & 0xff] ^ + Td1[Te4[(rk[2] >> 16) & 0xff] & 0xff] ^ + Td2[Te4[(rk[2] >> 8) & 0xff] & 0xff] ^ + Td3[Te4[rk[2] & 0xff] & 0xff]; + rk[3] = Td0[Te4[rk[3] >> 24] & 0xff] ^ + Td1[Te4[(rk[3] >> 16) & 0xff] & 0xff] ^ + Td2[Te4[(rk[3] >> 8) & 0xff] & 0xff] ^ + Td3[Te4[rk[3] & 0xff] & 0xff]; + } + + return (Nr); +} + + +/* + * Expand the 32-bit AES cipher key array into the encryption and decryption + * key schedules. + * + * Parameters: + * key AES key schedule to be initialized + * keyarr32 User key + * keyBits AES key size (128, 192, or 256 bits) + */ +static void +aes_setupkeys(aes_key_t *key, const uint32_t *keyarr32, int keybits) +{ + key->nr = rijndael_key_setup_enc(&(key->encr_ks.ks32[0]), keyarr32, + keybits); + key->nr = rijndael_key_setup_dec(&(key->decr_ks.ks32[0]), keyarr32, + keybits); + key->type = AES_32BIT_KS; +} + + +/* + * Encrypt one block of data. The block is assumed to be an array + * of four uint32_t values, so copy for alignment (and byte-order + * reversal for little endian systems might be necessary on the + * input and output byte streams. + * The size of the key schedule depends on the number of rounds + * (which can be computed from the size of the key), i.e. 4*(Nr + 1). + * + * Parameters: + * rk Key schedule, of aes_ks_t (60 32-bit integers) + * Nr Number of rounds + * pt Input block (plain text) + * ct Output block (crypto text). Can overlap with pt + */ +static void +rijndael_encrypt(const uint32_t rk[], int Nr, const uint32_t pt[4], + uint32_t ct[4]) +{ + uint32_t s0, s1, s2, s3, t0, t1, t2, t3; + int r; + + /* + * map byte array block to cipher state + * and add initial round key: + */ + + s0 = pt[0] ^ rk[0]; + s1 = pt[1] ^ rk[1]; + s2 = pt[2] ^ rk[2]; + s3 = pt[3] ^ rk[3]; + + /* + * Nr - 1 full rounds: + */ + + r = Nr >> 1; + + for (;;) { + t0 = Te0[s0 >> 24] ^ + Te1[(s1 >> 16) & 0xff] ^ + Te2[(s2 >> 8) & 0xff] ^ + Te3[s3 & 0xff] ^ + rk[4]; + + t1 = Te0[s1 >> 24] ^ + Te1[(s2 >> 16) & 0xff] ^ + Te2[(s3 >> 8) & 0xff] ^ + Te3[s0 & 0xff] ^ + rk[5]; + + t2 = Te0[s2 >> 24] ^ + Te1[(s3 >> 16) & 0xff] ^ + Te2[(s0 >> 8) & 0xff] ^ + Te3[s1 & 0xff] ^ + rk[6]; + + t3 = Te0[s3 >> 24] ^ + Te1[(s0 >> 16) & 0xff] ^ + Te2[(s1 >> 8) & 0xff] ^ + Te3[s2 & 0xff] ^ + rk[7]; + + rk += 8; + + if (--r == 0) { + break; + } + + s0 = Te0[t0 >> 24] ^ + Te1[(t1 >> 16) & 0xff] ^ + Te2[(t2 >> 8) & 0xff] ^ + Te3[t3 & 0xff] ^ + rk[0]; + + s1 = Te0[t1 >> 24] ^ + Te1[(t2 >> 16) & 0xff] ^ + Te2[(t3 >> 8) & 0xff] ^ + Te3[t0 & 0xff] ^ + rk[1]; + + s2 = Te0[t2 >> 24] ^ + Te1[(t3 >> 16) & 0xff] ^ + Te2[(t0 >> 8) & 0xff] ^ + Te3[t1 & 0xff] ^ + rk[2]; + + s3 = Te0[t3 >> 24] ^ + Te1[(t0 >> 16) & 0xff] ^ + Te2[(t1 >> 8) & 0xff] ^ + Te3[t2 & 0xff] ^ + rk[3]; + } + + /* + * apply last round and + * map cipher state to byte array block: + */ + + s0 = (Te4[(t0 >> 24)] & 0xff000000) ^ + (Te4[(t1 >> 16) & 0xff] & 0x00ff0000) ^ + (Te4[(t2 >> 8) & 0xff] & 0x0000ff00) ^ + (Te4[t3 & 0xff] & 0x000000ff) ^ + rk[0]; + ct[0] = s0; + + s1 = (Te4[(t1 >> 24)] & 0xff000000) ^ + (Te4[(t2 >> 16) & 0xff] & 0x00ff0000) ^ + (Te4[(t3 >> 8) & 0xff] & 0x0000ff00) ^ + (Te4[t0 & 0xff] & 0x000000ff) ^ + rk[1]; + ct[1] = s1; + + s2 = (Te4[(t2 >> 24)] & 0xff000000) ^ + (Te4[(t3 >> 16) & 0xff] & 0x00ff0000) ^ + (Te4[(t0 >> 8) & 0xff] & 0x0000ff00) ^ + (Te4[t1 & 0xff] & 0x000000ff) ^ + rk[2]; + ct[2] = s2; + + s3 = (Te4[(t3 >> 24)] & 0xff000000) ^ + (Te4[(t0 >> 16) & 0xff] & 0x00ff0000) ^ + (Te4[(t1 >> 8) & 0xff] & 0x0000ff00) ^ + (Te4[t2 & 0xff] & 0x000000ff) ^ + rk[3]; + ct[3] = s3; +} + + +/* + * Decrypt one block of data. The block is assumed to be an array + * of four uint32_t values, so copy for alignment (and byte-order + * reversal for little endian systems might be necessary on the + * input and output byte streams. + * The size of the key schedule depends on the number of rounds + * (which can be computed from the size of the key), i.e. 4*(Nr + 1). + * + * Parameters: + * rk Key schedule, of aes_ks_t (60 32-bit integers) + * Nr Number of rounds + * ct Input block (crypto text) + * pt Output block (plain text). Can overlap with pt + */ +static void +rijndael_decrypt(const uint32_t rk[], int Nr, const uint32_t ct[4], + uint32_t pt[4]) +{ + uint32_t s0, s1, s2, s3, t0, t1, t2, t3; + int r; + + /* + * map byte array block to cipher state + * and add initial round key: + */ + s0 = ct[0] ^ rk[0]; + s1 = ct[1] ^ rk[1]; + s2 = ct[2] ^ rk[2]; + s3 = ct[3] ^ rk[3]; + + /* + * Nr - 1 full rounds: + */ + + r = Nr >> 1; + + for (;;) { + t0 = Td0[s0 >> 24] ^ + Td1[(s3 >> 16) & 0xff] ^ + Td2[(s2 >> 8) & 0xff] ^ + Td3[s1 & 0xff] ^ + rk[4]; + + t1 = Td0[s1 >> 24] ^ + Td1[(s0 >> 16) & 0xff] ^ + Td2[(s3 >> 8) & 0xff] ^ + Td3[s2 & 0xff] ^ + rk[5]; + + t2 = Td0[s2 >> 24] ^ + Td1[(s1 >> 16) & 0xff] ^ + Td2[(s0 >> 8) & 0xff] ^ + Td3[s3 & 0xff] ^ + rk[6]; + + t3 = Td0[s3 >> 24] ^ + Td1[(s2 >> 16) & 0xff] ^ + Td2[(s1 >> 8) & 0xff] ^ + Td3[s0 & 0xff] ^ + rk[7]; + + rk += 8; + + if (--r == 0) { + break; + } + + s0 = Td0[t0 >> 24] ^ + Td1[(t3 >> 16) & 0xff] ^ + Td2[(t2 >> 8) & 0xff] ^ + Td3[t1 & 0xff] ^ + rk[0]; + + s1 = Td0[t1 >> 24] ^ + Td1[(t0 >> 16) & 0xff] ^ + Td2[(t3 >> 8) & 0xff] ^ + Td3[t2 & 0xff] ^ + rk[1]; + + s2 = Td0[t2 >> 24] ^ + Td1[(t1 >> 16) & 0xff] ^ + Td2[(t0 >> 8) & 0xff] ^ + Td3[t3 & 0xff] ^ + rk[2]; + + s3 = Td0[t3 >> 24] ^ + Td1[(t2 >> 16) & 0xff] ^ + Td2[(t1 >> 8) & 0xff] ^ + Td3[t0 & 0xff] ^ + rk[3]; + } + + /* + * apply last round and + * map cipher state to byte array block: + */ + + s0 = (Td4[t0 >> 24] & 0xff000000) ^ + (Td4[(t3 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t2 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[t1 & 0xff] & 0x000000ff) ^ + rk[0]; + pt[0] = s0; + + s1 = (Td4[t1 >> 24] & 0xff000000) ^ + (Td4[(t0 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t3 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[t2 & 0xff] & 0x000000ff) ^ + rk[1]; + pt[1] = s1; + + s2 = (Td4[t2 >> 24] & 0xff000000) ^ + (Td4[(t1 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t0 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[t3 & 0xff] & 0x000000ff) ^ + rk[2]; + pt[2] = s2; + + s3 = (Td4[t3 >> 24] & 0xff000000) ^ + (Td4[(t2 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t1 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[t0 & 0xff] & 0x000000ff) ^ + rk[3]; + pt[3] = s3; +} +#endif /* __amd64 */ + + +/* + * Initialize AES encryption and decryption key schedules. + * + * Parameters: + * cipherKey User key + * keyBits AES key size (128, 192, or 256 bits) + * keysched AES key schedule to be initialized, of type aes_key_t. + * Allocated by aes_alloc_keysched(). + */ +void +aes_init_keysched(const uint8_t *cipherKey, uint_t keyBits, void *keysched) +{ + aes_key_t *newbie = keysched; + uint_t keysize, i, j; + union { + uint64_t ka64[4]; + uint32_t ka32[8]; + } keyarr; + + switch (keyBits) { + case 128: + newbie->nr = 10; + break; + + case 192: + newbie->nr = 12; + break; + + case 256: + newbie->nr = 14; + break; + + default: + /* should never get here */ + return; + } + keysize = CRYPTO_BITS2BYTES(keyBits); + + /* + * For _LITTLE_ENDIAN machines (except AMD64), reverse every + * 4 bytes in the key. On _BIG_ENDIAN and AMD64, copy the key + * without reversing bytes. + * For AMD64, do not byte swap for aes_setupkeys(). + * + * SPARCv8/v9 uses a key schedule array with 64-bit elements. + * X86/AMD64 uses a key schedule array with 32-bit elements. + */ +#ifndef AES_BYTE_SWAP + if (IS_P2ALIGNED(cipherKey, sizeof (uint64_t))) { + for (i = 0, j = 0; j < keysize; i++, j += 8) { + /* LINTED: pointer alignment */ + keyarr.ka64[i] = *((uint64_t *)&cipherKey[j]); + } + } else { + bcopy(cipherKey, keyarr.ka32, keysize); + } + +#else /* byte swap */ + for (i = 0, j = 0; j < keysize; i++, j += 4) { + keyarr.ka32[i] = htonl(*(uint32_t *)(void *)&cipherKey[j]); + } +#endif + + aes_setupkeys(newbie, keyarr.ka32, keyBits); +} + + +/* + * Encrypt one block using AES. + * Align if needed and (for x86 32-bit only) byte-swap. + * + * Parameters: + * ks Key schedule, of type aes_key_t + * pt Input block (plain text) + * ct Output block (crypto text). Can overlap with pt + */ +int +aes_encrypt_block(const void *ks, const uint8_t *pt, uint8_t *ct) +{ + aes_key_t *ksch = (aes_key_t *)ks; + +#ifndef AES_BYTE_SWAP + if (IS_P2ALIGNED2(pt, ct, sizeof (uint32_t))) { + /* LINTED: pointer alignment */ + AES_ENCRYPT_IMPL(&ksch->encr_ks.ks32[0], ksch->nr, + /* LINTED: pointer alignment */ + (uint32_t *)pt, (uint32_t *)ct, ksch->flags); + } else { +#endif + uint32_t buffer[AES_BLOCK_LEN / sizeof (uint32_t)]; + + /* Copy input block into buffer */ +#ifndef AES_BYTE_SWAP + bcopy(pt, &buffer, AES_BLOCK_LEN); + +#else /* byte swap */ + buffer[0] = htonl(*(uint32_t *)(void *)&pt[0]); + buffer[1] = htonl(*(uint32_t *)(void *)&pt[4]); + buffer[2] = htonl(*(uint32_t *)(void *)&pt[8]); + buffer[3] = htonl(*(uint32_t *)(void *)&pt[12]); +#endif + + AES_ENCRYPT_IMPL(&ksch->encr_ks.ks32[0], ksch->nr, + buffer, buffer, ksch->flags); + + /* Copy result from buffer to output block */ +#ifndef AES_BYTE_SWAP + bcopy(&buffer, ct, AES_BLOCK_LEN); + } + +#else /* byte swap */ + *(uint32_t *)(void *)&ct[0] = htonl(buffer[0]); + *(uint32_t *)(void *)&ct[4] = htonl(buffer[1]); + *(uint32_t *)(void *)&ct[8] = htonl(buffer[2]); + *(uint32_t *)(void *)&ct[12] = htonl(buffer[3]); +#endif + return (CRYPTO_SUCCESS); +} + + +/* + * Decrypt one block using AES. + * Align and byte-swap if needed. + * + * Parameters: + * ks Key schedule, of type aes_key_t + * ct Input block (crypto text) + * pt Output block (plain text). Can overlap with pt + */ +int +aes_decrypt_block(const void *ks, const uint8_t *ct, uint8_t *pt) +{ + aes_key_t *ksch = (aes_key_t *)ks; + +#ifndef AES_BYTE_SWAP + if (IS_P2ALIGNED2(ct, pt, sizeof (uint32_t))) { + /* LINTED: pointer alignment */ + AES_DECRYPT_IMPL(&ksch->decr_ks.ks32[0], ksch->nr, + /* LINTED: pointer alignment */ + (uint32_t *)ct, (uint32_t *)pt, ksch->flags); + } else { +#endif + uint32_t buffer[AES_BLOCK_LEN / sizeof (uint32_t)]; + + /* Copy input block into buffer */ +#ifndef AES_BYTE_SWAP + bcopy(ct, &buffer, AES_BLOCK_LEN); + +#else /* byte swap */ + buffer[0] = htonl(*(uint32_t *)(void *)&ct[0]); + buffer[1] = htonl(*(uint32_t *)(void *)&ct[4]); + buffer[2] = htonl(*(uint32_t *)(void *)&ct[8]); + buffer[3] = htonl(*(uint32_t *)(void *)&ct[12]); +#endif + + AES_DECRYPT_IMPL(&ksch->decr_ks.ks32[0], ksch->nr, + buffer, buffer, ksch->flags); + + /* Copy result from buffer to output block */ +#ifndef AES_BYTE_SWAP + bcopy(&buffer, pt, AES_BLOCK_LEN); + } + +#else /* byte swap */ + *(uint32_t *)(void *)&pt[0] = htonl(buffer[0]); + *(uint32_t *)(void *)&pt[4] = htonl(buffer[1]); + *(uint32_t *)(void *)&pt[8] = htonl(buffer[2]); + *(uint32_t *)(void *)&pt[12] = htonl(buffer[3]); +#endif + + return (CRYPTO_SUCCESS); +} + + +/* + * Allocate key schedule for AES. + * + * Return the pointer and set size to the number of bytes allocated. + * Memory allocated must be freed by the caller when done. + * + * Parameters: + * size Size of key schedule allocated, in bytes + * kmflag Flag passed to kmem_alloc(9F); ignored in userland. + */ +/* ARGSUSED */ +void * +aes_alloc_keysched(size_t *size, int kmflag) +{ + aes_key_t *keysched; + + keysched = (aes_key_t *)kmem_alloc(sizeof (aes_key_t), kmflag); + if (keysched != NULL) { + *size = sizeof (aes_key_t); + return (keysched); + } + return (NULL); +} + + +#ifdef __amd64 + +#define INTEL_AESNI_FLAG (1 << 25) + +/* + * Return 1 if executing on Intel with AES-NI instructions, + * otherwise 0 (i.e., Intel without AES-NI or AMD64). + * Cache the result, as the CPU can't change. + */ +static int +intel_aes_instructions_present(void) +{ + static int cached_result = -1; + unsigned eax, ebx, ecx, edx; + unsigned func, subfunc; + + if (cached_result == -1) { /* first time */ + /* check for an intel cpu */ + func = 0; + subfunc = 0; + + __asm__ __volatile__( + "cpuid" + : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) + : "a"(func), "c"(subfunc)); + + if (memcmp((char *) (&ebx), "Genu", 4) == 0 && + memcmp((char *) (&edx), "ineI", 4) == 0 && + memcmp((char *) (&ecx), "ntel", 4) == 0) { + + func = 1; + subfunc = 0; + + /* check for aes-ni instruction set */ + __asm__ __volatile__( + "cpuid" + : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) + : "a"(func), "c"(subfunc)); + + cached_result = !!(ecx & INTEL_AESNI_FLAG); + } else { + cached_result = 0; + } + } + + return (cached_result); +} + +#endif /* __amd64 */ diff --git a/module/icp/algs/aes/aes_modes.c b/module/icp/algs/aes/aes_modes.c new file mode 100644 index 000000000..9e4b498ff --- /dev/null +++ b/module/icp/algs/aes/aes_modes.c @@ -0,0 +1,135 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <aes/aes_impl.h> + +/* Copy a 16-byte AES block from "in" to "out" */ +void +aes_copy_block(uint8_t *in, uint8_t *out) +{ + if (IS_P2ALIGNED2(in, out, sizeof (uint32_t))) { + /* LINTED: pointer alignment */ + *(uint32_t *)&out[0] = *(uint32_t *)&in[0]; + /* LINTED: pointer alignment */ + *(uint32_t *)&out[4] = *(uint32_t *)&in[4]; + /* LINTED: pointer alignment */ + *(uint32_t *)&out[8] = *(uint32_t *)&in[8]; + /* LINTED: pointer alignment */ + *(uint32_t *)&out[12] = *(uint32_t *)&in[12]; + } else { + AES_COPY_BLOCK(in, out); + } +} + + +/* XOR a 16-byte AES block of data into dst */ +void +aes_xor_block(uint8_t *data, uint8_t *dst) +{ + if (IS_P2ALIGNED2(dst, data, sizeof (uint32_t))) { + /* LINTED: pointer alignment */ + *(uint32_t *)&dst[0] ^= *(uint32_t *)&data[0]; + /* LINTED: pointer alignment */ + *(uint32_t *)&dst[4] ^= *(uint32_t *)&data[4]; + /* LINTED: pointer alignment */ + *(uint32_t *)&dst[8] ^= *(uint32_t *)&data[8]; + /* LINTED: pointer alignment */ + *(uint32_t *)&dst[12] ^= *(uint32_t *)&data[12]; + } else { + AES_XOR_BLOCK(data, dst); + } +} + + +/* + * Encrypt multiple blocks of data according to mode. + */ +int +aes_encrypt_contiguous_blocks(void *ctx, char *data, size_t length, + crypto_data_t *out) +{ + aes_ctx_t *aes_ctx = ctx; + int rv; + + if (aes_ctx->ac_flags & CTR_MODE) { + rv = ctr_mode_contiguous_blocks(ctx, data, length, out, + AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); + } else if (aes_ctx->ac_flags & CCM_MODE) { + rv = ccm_mode_encrypt_contiguous_blocks(ctx, data, length, + out, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, + aes_xor_block); + } else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) { + rv = gcm_mode_encrypt_contiguous_blocks(ctx, data, length, + out, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, + aes_xor_block); + } else if (aes_ctx->ac_flags & CBC_MODE) { + rv = cbc_encrypt_contiguous_blocks(ctx, + data, length, out, AES_BLOCK_LEN, aes_encrypt_block, + aes_copy_block, aes_xor_block); + } else { + rv = ecb_cipher_contiguous_blocks(ctx, data, length, out, + AES_BLOCK_LEN, aes_encrypt_block); + } + return (rv); +} + + +/* + * Decrypt multiple blocks of data according to mode. + */ +int +aes_decrypt_contiguous_blocks(void *ctx, char *data, size_t length, + crypto_data_t *out) +{ + aes_ctx_t *aes_ctx = ctx; + int rv; + + if (aes_ctx->ac_flags & CTR_MODE) { + rv = ctr_mode_contiguous_blocks(ctx, data, length, out, + AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block); + if (rv == CRYPTO_DATA_LEN_RANGE) + rv = CRYPTO_ENCRYPTED_DATA_LEN_RANGE; + } else if (aes_ctx->ac_flags & CCM_MODE) { + rv = ccm_mode_decrypt_contiguous_blocks(ctx, data, length, + out, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, + aes_xor_block); + } else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) { + rv = gcm_mode_decrypt_contiguous_blocks(ctx, data, length, + out, AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block, + aes_xor_block); + } else if (aes_ctx->ac_flags & CBC_MODE) { + rv = cbc_decrypt_contiguous_blocks(ctx, data, length, out, + AES_BLOCK_LEN, aes_decrypt_block, aes_copy_block, + aes_xor_block); + } else { + rv = ecb_cipher_contiguous_blocks(ctx, data, length, out, + AES_BLOCK_LEN, aes_decrypt_block); + if (rv == CRYPTO_DATA_LEN_RANGE) + rv = CRYPTO_ENCRYPTED_DATA_LEN_RANGE; + } + return (rv); +} diff --git a/module/icp/algs/modes/cbc.c b/module/icp/algs/modes/cbc.c new file mode 100644 index 000000000..2cc94ec72 --- /dev/null +++ b/module/icp/algs/modes/cbc.c @@ -0,0 +1,305 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <sys/crypto/common.h> +#include <sys/crypto/impl.h> + +/* + * Algorithm independent CBC functions. + */ +int +cbc_encrypt_contiguous_blocks(cbc_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*encrypt)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + + if (length + ctx->cbc_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->cbc_remainder + ctx->cbc_remainder_len, + length); + ctx->cbc_remainder_len += length; + ctx->cbc_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + lastp = (uint8_t *)ctx->cbc_iv; + if (out != NULL) + crypto_init_ptrs(out, &iov_or_mp, &offset); + + do { + /* Unprocessed data from last call. */ + if (ctx->cbc_remainder_len > 0) { + need = block_size - ctx->cbc_remainder_len; + + if (need > remainder) + return (CRYPTO_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->cbc_remainder) + [ctx->cbc_remainder_len], need); + + blockp = (uint8_t *)ctx->cbc_remainder; + } else { + blockp = datap; + } + + if (out == NULL) { + /* + * XOR the previous cipher block or IV with the + * current clear block. + */ + xor_block(lastp, blockp); + encrypt(ctx->cbc_keysched, blockp, blockp); + + ctx->cbc_lastp = blockp; + lastp = blockp; + + if (ctx->cbc_remainder_len > 0) { + bcopy(blockp, ctx->cbc_copy_to, + ctx->cbc_remainder_len); + bcopy(blockp + ctx->cbc_remainder_len, datap, + need); + } + } else { + /* + * XOR the previous cipher block or IV with the + * current clear block. + */ + xor_block(blockp, lastp); + encrypt(ctx->cbc_keysched, lastp, lastp); + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, block_size); + + /* copy block to where it belongs */ + if (out_data_1_len == block_size) { + copy_block(lastp, out_data_1); + } else { + bcopy(lastp, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(lastp + out_data_1_len, + out_data_2, + block_size - out_data_1_len); + } + } + /* update offset */ + out->cd_offset += block_size; + } + + /* Update pointer to next block of data to be processed. */ + if (ctx->cbc_remainder_len != 0) { + datap += need; + ctx->cbc_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block. */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->cbc_remainder, remainder); + ctx->cbc_remainder_len = remainder; + ctx->cbc_copy_to = datap; + goto out; + } + ctx->cbc_copy_to = NULL; + + } while (remainder > 0); + +out: + /* + * Save the last encrypted block in the context. + */ + if (ctx->cbc_lastp != NULL) { + copy_block((uint8_t *)ctx->cbc_lastp, (uint8_t *)ctx->cbc_iv); + ctx->cbc_lastp = (uint8_t *)ctx->cbc_iv; + } + + return (CRYPTO_SUCCESS); +} + +#define OTHER(a, ctx) \ + (((a) == (ctx)->cbc_lastblock) ? (ctx)->cbc_iv : (ctx)->cbc_lastblock) + +/* ARGSUSED */ +int +cbc_decrypt_contiguous_blocks(cbc_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*decrypt)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + + if (length + ctx->cbc_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->cbc_remainder + ctx->cbc_remainder_len, + length); + ctx->cbc_remainder_len += length; + ctx->cbc_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + lastp = ctx->cbc_lastp; + if (out != NULL) + crypto_init_ptrs(out, &iov_or_mp, &offset); + + do { + /* Unprocessed data from last call. */ + if (ctx->cbc_remainder_len > 0) { + need = block_size - ctx->cbc_remainder_len; + + if (need > remainder) + return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->cbc_remainder) + [ctx->cbc_remainder_len], need); + + blockp = (uint8_t *)ctx->cbc_remainder; + } else { + blockp = datap; + } + + /* LINTED: pointer alignment */ + copy_block(blockp, (uint8_t *)OTHER((uint64_t *)lastp, ctx)); + + if (out != NULL) { + decrypt(ctx->cbc_keysched, blockp, + (uint8_t *)ctx->cbc_remainder); + blockp = (uint8_t *)ctx->cbc_remainder; + } else { + decrypt(ctx->cbc_keysched, blockp, blockp); + } + + /* + * XOR the previous cipher block or IV with the + * currently decrypted block. + */ + xor_block(lastp, blockp); + + /* LINTED: pointer alignment */ + lastp = (uint8_t *)OTHER((uint64_t *)lastp, ctx); + + if (out != NULL) { + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, block_size); + + bcopy(blockp, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(blockp + out_data_1_len, out_data_2, + block_size - out_data_1_len); + } + + /* update offset */ + out->cd_offset += block_size; + + } else if (ctx->cbc_remainder_len > 0) { + /* copy temporary block to where it belongs */ + bcopy(blockp, ctx->cbc_copy_to, ctx->cbc_remainder_len); + bcopy(blockp + ctx->cbc_remainder_len, datap, need); + } + + /* Update pointer to next block of data to be processed. */ + if (ctx->cbc_remainder_len != 0) { + datap += need; + ctx->cbc_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block. */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->cbc_remainder, remainder); + ctx->cbc_remainder_len = remainder; + ctx->cbc_lastp = lastp; + ctx->cbc_copy_to = datap; + return (CRYPTO_SUCCESS); + } + ctx->cbc_copy_to = NULL; + + } while (remainder > 0); + + ctx->cbc_lastp = lastp; + return (CRYPTO_SUCCESS); +} + +int +cbc_init_ctx(cbc_ctx_t *cbc_ctx, char *param, size_t param_len, + size_t block_size, void (*copy_block)(uint8_t *, uint64_t *)) +{ + /* + * Copy IV into context. + * + * If cm_param == NULL then the IV comes from the + * cd_miscdata field in the crypto_data structure. + */ + if (param != NULL) { + ASSERT(param_len == block_size); + copy_block((uchar_t *)param, cbc_ctx->cbc_iv); + } + + cbc_ctx->cbc_lastp = (uint8_t *)&cbc_ctx->cbc_iv[0]; + cbc_ctx->cbc_flags |= CBC_MODE; + return (CRYPTO_SUCCESS); +} + +/* ARGSUSED */ +void * +cbc_alloc_ctx(int kmflag) +{ + cbc_ctx_t *cbc_ctx; + + if ((cbc_ctx = kmem_zalloc(sizeof (cbc_ctx_t), kmflag)) == NULL) + return (NULL); + + cbc_ctx->cbc_flags = CBC_MODE; + return (cbc_ctx); +} diff --git a/module/icp/algs/modes/ccm.c b/module/icp/algs/modes/ccm.c new file mode 100644 index 000000000..22aeb0a6a --- /dev/null +++ b/module/icp/algs/modes/ccm.c @@ -0,0 +1,920 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <sys/crypto/common.h> +#include <sys/crypto/impl.h> + +#if defined(__i386) || defined(__amd64) +#include <sys/byteorder.h> +#define UNALIGNED_POINTERS_PERMITTED +#endif + +/* + * Encrypt multiple blocks of data in CCM mode. Decrypt for CCM mode + * is done in another function. + */ +int +ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + uint64_t counter; + uint8_t *mac_buf; + + if (length + ctx->ccm_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len, + length); + ctx->ccm_remainder_len += length; + ctx->ccm_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + lastp = (uint8_t *)ctx->ccm_cb; + if (out != NULL) + crypto_init_ptrs(out, &iov_or_mp, &offset); + + mac_buf = (uint8_t *)ctx->ccm_mac_buf; + + do { + /* Unprocessed data from last call. */ + if (ctx->ccm_remainder_len > 0) { + need = block_size - ctx->ccm_remainder_len; + + if (need > remainder) + return (CRYPTO_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->ccm_remainder) + [ctx->ccm_remainder_len], need); + + blockp = (uint8_t *)ctx->ccm_remainder; + } else { + blockp = datap; + } + + /* + * do CBC MAC + * + * XOR the previous cipher block current clear block. + * mac_buf always contain previous cipher block. + */ + xor_block(blockp, mac_buf); + encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); + + /* ccm_cb is the counter block */ + encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, + (uint8_t *)ctx->ccm_tmp); + + lastp = (uint8_t *)ctx->ccm_tmp; + + /* + * Increment counter. Counter bits are confined + * to the bottom 64 bits of the counter block. + */ +#ifdef _LITTLE_ENDIAN + counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask); + counter = htonll(counter + 1); +#else + counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask; + counter++; +#endif /* _LITTLE_ENDIAN */ + counter &= ctx->ccm_counter_mask; + ctx->ccm_cb[1] = + (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter; + + /* + * XOR encrypted counter block with the current clear block. + */ + xor_block(blockp, lastp); + + ctx->ccm_processed_data_len += block_size; + + if (out == NULL) { + if (ctx->ccm_remainder_len > 0) { + bcopy(blockp, ctx->ccm_copy_to, + ctx->ccm_remainder_len); + bcopy(blockp + ctx->ccm_remainder_len, datap, + need); + } + } else { + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, block_size); + + /* copy block to where it belongs */ + if (out_data_1_len == block_size) { + copy_block(lastp, out_data_1); + } else { + bcopy(lastp, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(lastp + out_data_1_len, + out_data_2, + block_size - out_data_1_len); + } + } + /* update offset */ + out->cd_offset += block_size; + } + + /* Update pointer to next block of data to be processed. */ + if (ctx->ccm_remainder_len != 0) { + datap += need; + ctx->ccm_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block. */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->ccm_remainder, remainder); + ctx->ccm_remainder_len = remainder; + ctx->ccm_copy_to = datap; + goto out; + } + ctx->ccm_copy_to = NULL; + + } while (remainder > 0); + +out: + return (CRYPTO_SUCCESS); +} + +void +calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *)) +{ + uint64_t counter; + uint8_t *counterp, *mac_buf; + int i; + + mac_buf = (uint8_t *)ctx->ccm_mac_buf; + + /* first counter block start with index 0 */ + counter = 0; + ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter; + + counterp = (uint8_t *)ctx->ccm_tmp; + encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp); + + /* calculate XOR of MAC with first counter block */ + for (i = 0; i < ctx->ccm_mac_len; i++) { + ccm_mac[i] = mac_buf[i] ^ counterp[i]; + } +} + +/* ARGSUSED */ +int +ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + int i; + + if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) { + return (CRYPTO_DATA_LEN_RANGE); + } + + /* + * When we get here, the number of bytes of payload processed + * plus whatever data remains, if any, + * should be the same as the number of bytes that's being + * passed in the argument during init time. + */ + if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len) + != (ctx->ccm_data_len)) { + return (CRYPTO_DATA_LEN_RANGE); + } + + mac_buf = (uint8_t *)ctx->ccm_mac_buf; + + if (ctx->ccm_remainder_len > 0) { + + /* ccm_mac_input_buf is not used for encryption */ + macp = (uint8_t *)ctx->ccm_mac_input_buf; + bzero(macp, block_size); + + /* copy remainder to temporary buffer */ + bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len); + + /* calculate the CBC MAC */ + xor_block(macp, mac_buf); + encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); + + /* calculate the counter mode */ + lastp = (uint8_t *)ctx->ccm_tmp; + encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp); + + /* XOR with counter block */ + for (i = 0; i < ctx->ccm_remainder_len; i++) { + macp[i] ^= lastp[i]; + } + ctx->ccm_processed_data_len += ctx->ccm_remainder_len; + } + + /* Calculate the CCM MAC */ + ccm_mac_p = (uint8_t *)ctx->ccm_tmp; + calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block); + + crypto_init_ptrs(out, &iov_or_mp, &offset); + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, + ctx->ccm_remainder_len + ctx->ccm_mac_len); + + if (ctx->ccm_remainder_len > 0) { + + /* copy temporary block to where it belongs */ + if (out_data_2 == NULL) { + /* everything will fit in out_data_1 */ + bcopy(macp, out_data_1, ctx->ccm_remainder_len); + bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len, + ctx->ccm_mac_len); + } else { + + if (out_data_1_len < ctx->ccm_remainder_len) { + + size_t data_2_len_used; + + bcopy(macp, out_data_1, out_data_1_len); + + data_2_len_used = ctx->ccm_remainder_len + - out_data_1_len; + + bcopy((uint8_t *)macp + out_data_1_len, + out_data_2, data_2_len_used); + bcopy(ccm_mac_p, out_data_2 + data_2_len_used, + ctx->ccm_mac_len); + } else { + bcopy(macp, out_data_1, out_data_1_len); + if (out_data_1_len == ctx->ccm_remainder_len) { + /* mac will be in out_data_2 */ + bcopy(ccm_mac_p, out_data_2, + ctx->ccm_mac_len); + } else { + size_t len_not_used = out_data_1_len - + ctx->ccm_remainder_len; + /* + * part of mac in will be in + * out_data_1, part of the mac will be + * in out_data_2 + */ + bcopy(ccm_mac_p, + out_data_1 + ctx->ccm_remainder_len, + len_not_used); + bcopy(ccm_mac_p + len_not_used, + out_data_2, + ctx->ccm_mac_len - len_not_used); + + } + } + } + } else { + /* copy block to where it belongs */ + bcopy(ccm_mac_p, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(ccm_mac_p + out_data_1_len, out_data_2, + block_size - out_data_1_len); + } + } + out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len; + ctx->ccm_remainder_len = 0; + return (CRYPTO_SUCCESS); +} + +/* + * This will only deal with decrypting the last block of the input that + * might not be a multiple of block length. + */ +void +ccm_decrypt_incomplete_block(ccm_ctx_t *ctx, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *)) +{ + uint8_t *datap, *outp, *counterp; + int i; + + datap = (uint8_t *)ctx->ccm_remainder; + outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]); + + counterp = (uint8_t *)ctx->ccm_tmp; + encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp); + + /* XOR with counter block */ + for (i = 0; i < ctx->ccm_remainder_len; i++) { + outp[i] = datap[i] ^ counterp[i]; + } +} + +/* + * This will decrypt the cipher text. However, the plaintext won't be + * returned to the caller. It will be returned when decrypt_final() is + * called if the MAC matches + */ +/* ARGSUSED */ +int +ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *cbp; + uint64_t counter; + size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len; + uint8_t *resultp; + + + pm_len = ctx->ccm_processed_mac_len; + + if (pm_len > 0) { + uint8_t *tmp; + /* + * all ciphertext has been processed, just waiting for + * part of the value of the mac + */ + if ((pm_len + length) > ctx->ccm_mac_len) { + return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); + } + tmp = (uint8_t *)ctx->ccm_mac_input_buf; + + bcopy(datap, tmp + pm_len, length); + + ctx->ccm_processed_mac_len += length; + return (CRYPTO_SUCCESS); + } + + /* + * If we decrypt the given data, what total amount of data would + * have been decrypted? + */ + pd_len = ctx->ccm_processed_data_len; + total_decrypted_len = pd_len + length + ctx->ccm_remainder_len; + + if (total_decrypted_len > + (ctx->ccm_data_len + ctx->ccm_mac_len)) { + return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); + } + + pt_len = ctx->ccm_data_len; + + if (total_decrypted_len > pt_len) { + /* + * part of the input will be the MAC, need to isolate that + * to be dealt with later. The left-over data in + * ccm_remainder_len from last time will not be part of the + * MAC. Otherwise, it would have already been taken out + * when this call is made last time. + */ + size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len; + + mac_len = length - pt_part; + + ctx->ccm_processed_mac_len = mac_len; + bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len); + + if (pt_part + ctx->ccm_remainder_len < block_size) { + /* + * since this is last of the ciphertext, will + * just decrypt with it here + */ + bcopy(datap, &((uint8_t *)ctx->ccm_remainder) + [ctx->ccm_remainder_len], pt_part); + ctx->ccm_remainder_len += pt_part; + ccm_decrypt_incomplete_block(ctx, encrypt_block); + ctx->ccm_processed_data_len += ctx->ccm_remainder_len; + ctx->ccm_remainder_len = 0; + return (CRYPTO_SUCCESS); + } else { + /* let rest of the code handle this */ + length = pt_part; + } + } else if (length + ctx->ccm_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len, + length); + ctx->ccm_remainder_len += length; + ctx->ccm_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + do { + /* Unprocessed data from last call. */ + if (ctx->ccm_remainder_len > 0) { + need = block_size - ctx->ccm_remainder_len; + + if (need > remainder) + return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->ccm_remainder) + [ctx->ccm_remainder_len], need); + + blockp = (uint8_t *)ctx->ccm_remainder; + } else { + blockp = datap; + } + + /* Calculate the counter mode, ccm_cb is the counter block */ + cbp = (uint8_t *)ctx->ccm_tmp; + encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp); + + /* + * Increment counter. + * Counter bits are confined to the bottom 64 bits + */ +#ifdef _LITTLE_ENDIAN + counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask); + counter = htonll(counter + 1); +#else + counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask; + counter++; +#endif /* _LITTLE_ENDIAN */ + counter &= ctx->ccm_counter_mask; + ctx->ccm_cb[1] = + (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter; + + /* XOR with the ciphertext */ + xor_block(blockp, cbp); + + /* Copy the plaintext to the "holding buffer" */ + resultp = (uint8_t *)ctx->ccm_pt_buf + + ctx->ccm_processed_data_len; + copy_block(cbp, resultp); + + ctx->ccm_processed_data_len += block_size; + + ctx->ccm_lastp = blockp; + + /* Update pointer to next block of data to be processed. */ + if (ctx->ccm_remainder_len != 0) { + datap += need; + ctx->ccm_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->ccm_remainder, remainder); + ctx->ccm_remainder_len = remainder; + ctx->ccm_copy_to = datap; + if (ctx->ccm_processed_mac_len > 0) { + /* + * not expecting anymore ciphertext, just + * compute plaintext for the remaining input + */ + ccm_decrypt_incomplete_block(ctx, + encrypt_block); + ctx->ccm_processed_data_len += remainder; + ctx->ccm_remainder_len = 0; + } + goto out; + } + ctx->ccm_copy_to = NULL; + + } while (remainder > 0); + +out: + return (CRYPTO_SUCCESS); +} + +int +ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t mac_remain, pt_len; + uint8_t *pt, *mac_buf, *macp, *ccm_mac_p; + int rv; + + pt_len = ctx->ccm_data_len; + + /* Make sure output buffer can fit all of the plaintext */ + if (out->cd_length < pt_len) { + return (CRYPTO_DATA_LEN_RANGE); + } + + pt = ctx->ccm_pt_buf; + mac_remain = ctx->ccm_processed_data_len; + mac_buf = (uint8_t *)ctx->ccm_mac_buf; + + macp = (uint8_t *)ctx->ccm_tmp; + + while (mac_remain > 0) { + + if (mac_remain < block_size) { + bzero(macp, block_size); + bcopy(pt, macp, mac_remain); + mac_remain = 0; + } else { + copy_block(pt, macp); + mac_remain -= block_size; + pt += block_size; + } + + /* calculate the CBC MAC */ + xor_block(macp, mac_buf); + encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); + } + + /* Calculate the CCM MAC */ + ccm_mac_p = (uint8_t *)ctx->ccm_tmp; + calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block); + + /* compare the input CCM MAC value with what we calculated */ + if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) { + /* They don't match */ + return (CRYPTO_INVALID_MAC); + } else { + rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len); + if (rv != CRYPTO_SUCCESS) + return (rv); + out->cd_offset += pt_len; + } + return (CRYPTO_SUCCESS); +} + +int +ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init) +{ + size_t macSize, nonceSize; + uint8_t q; + uint64_t maxValue; + + /* + * Check the length of the MAC. The only valid + * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16 + */ + macSize = ccm_param->ulMACSize; + if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) { + return (CRYPTO_MECHANISM_PARAM_INVALID); + } + + /* Check the nonce length. Valid values are 7, 8, 9, 10, 11, 12, 13 */ + nonceSize = ccm_param->ulNonceSize; + if ((nonceSize < 7) || (nonceSize > 13)) { + return (CRYPTO_MECHANISM_PARAM_INVALID); + } + + /* q is the length of the field storing the length, in bytes */ + q = (uint8_t)((15 - nonceSize) & 0xFF); + + + /* + * If it is decrypt, need to make sure size of ciphertext is at least + * bigger than MAC len + */ + if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) { + return (CRYPTO_MECHANISM_PARAM_INVALID); + } + + /* + * Check to make sure the length of the payload is within the + * range of values allowed by q + */ + if (q < 8) { + maxValue = (1ULL << (q * 8)) - 1; + } else { + maxValue = ULONG_MAX; + } + + if (ccm_param->ulDataSize > maxValue) { + return (CRYPTO_MECHANISM_PARAM_INVALID); + } + return (CRYPTO_SUCCESS); +} + +/* + * Format the first block used in CBC-MAC (B0) and the initial counter + * block based on formatting functions and counter generation functions + * specified in RFC 3610 and NIST publication 800-38C, appendix A + * + * b0 is the first block used in CBC-MAC + * cb0 is the first counter block + * + * It's assumed that the arguments b0 and cb0 are preallocated AES blocks + * + */ +static void +ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize, + ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx) +{ + uint64_t payloadSize; + uint8_t t, q, have_adata = 0; + size_t limit; + int i, j, k; + uint64_t mask = 0; + uint8_t *cb; + + q = (uint8_t)((15 - nonceSize) & 0xFF); + t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF); + + /* Construct the first octet of b0 */ + if (authDataSize > 0) { + have_adata = 1; + } + b0[0] = (have_adata << 6) | (((t - 2) / 2) << 3) | (q - 1); + + /* copy the nonce value into b0 */ + bcopy(nonce, &(b0[1]), nonceSize); + + /* store the length of the payload into b0 */ + bzero(&(b0[1+nonceSize]), q); + + payloadSize = aes_ctx->ccm_data_len; + limit = 8 < q ? 8 : q; + + for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) { + b0[k] = (uint8_t)((payloadSize >> j) & 0xFF); + } + + /* format the counter block */ + + cb = (uint8_t *)aes_ctx->ccm_cb; + + cb[0] = 0x07 & (q-1); /* first byte */ + + /* copy the nonce value into the counter block */ + bcopy(nonce, &(cb[1]), nonceSize); + + bzero(&(cb[1+nonceSize]), q); + + /* Create the mask for the counter field based on the size of nonce */ + q <<= 3; + while (q-- > 0) { + mask |= (1ULL << q); + } + +#ifdef _LITTLE_ENDIAN + mask = htonll(mask); +#endif + aes_ctx->ccm_counter_mask = mask; + + /* + * During calculation, we start using counter block 1, we will + * set it up right here. + * We can just set the last byte to have the value 1, because + * even with the biggest nonce of 13, the last byte of the + * counter block will be used for the counter value. + */ + cb[15] = 0x01; +} + +/* + * Encode the length of the associated data as + * specified in RFC 3610 and NIST publication 800-38C, appendix A + */ +static void +encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len) +{ +#ifdef UNALIGNED_POINTERS_PERMITTED + uint32_t *lencoded_ptr; +#ifdef _LP64 + uint64_t *llencoded_ptr; +#endif +#endif /* UNALIGNED_POINTERS_PERMITTED */ + + if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) { + /* 0 < a < (2^16-2^8) */ + *encoded_len = 2; + encoded[0] = (auth_data_len & 0xff00) >> 8; + encoded[1] = auth_data_len & 0xff; + + } else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) && + (auth_data_len < (1ULL << 31))) { + /* (2^16-2^8) <= a < 2^32 */ + *encoded_len = 6; + encoded[0] = 0xff; + encoded[1] = 0xfe; +#ifdef UNALIGNED_POINTERS_PERMITTED + lencoded_ptr = (uint32_t *)&encoded[2]; + *lencoded_ptr = htonl(auth_data_len); +#else + encoded[2] = (auth_data_len & 0xff000000) >> 24; + encoded[3] = (auth_data_len & 0xff0000) >> 16; + encoded[4] = (auth_data_len & 0xff00) >> 8; + encoded[5] = auth_data_len & 0xff; +#endif /* UNALIGNED_POINTERS_PERMITTED */ + +#ifdef _LP64 + } else { + /* 2^32 <= a < 2^64 */ + *encoded_len = 10; + encoded[0] = 0xff; + encoded[1] = 0xff; +#ifdef UNALIGNED_POINTERS_PERMITTED + llencoded_ptr = (uint64_t *)&encoded[2]; + *llencoded_ptr = htonl(auth_data_len); +#else + encoded[2] = (auth_data_len & 0xff00000000000000) >> 56; + encoded[3] = (auth_data_len & 0xff000000000000) >> 48; + encoded[4] = (auth_data_len & 0xff0000000000) >> 40; + encoded[5] = (auth_data_len & 0xff00000000) >> 32; + encoded[6] = (auth_data_len & 0xff000000) >> 24; + encoded[7] = (auth_data_len & 0xff0000) >> 16; + encoded[8] = (auth_data_len & 0xff00) >> 8; + encoded[9] = auth_data_len & 0xff; +#endif /* UNALIGNED_POINTERS_PERMITTED */ +#endif /* _LP64 */ + } +} + +/* + * The following function should be call at encrypt or decrypt init time + * for AES CCM mode. + */ +int +ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len, + unsigned char *auth_data, size_t auth_data_len, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + uint8_t *mac_buf, *datap, *ivp, *authp; + size_t remainder, processed; + uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */ + size_t encoded_a_len = 0; + + mac_buf = (uint8_t *)&(ctx->ccm_mac_buf); + + /* + * Format the 1st block for CBC-MAC and construct the + * 1st counter block. + * + * aes_ctx->ccm_iv is used for storing the counter block + * mac_buf will store b0 at this time. + */ + ccm_format_initial_blocks(nonce, nonce_len, + auth_data_len, mac_buf, ctx); + + /* The IV for CBC MAC for AES CCM mode is always zero */ + ivp = (uint8_t *)ctx->ccm_tmp; + bzero(ivp, block_size); + + xor_block(ivp, mac_buf); + + /* encrypt the nonce */ + encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); + + /* take care of the associated data, if any */ + if (auth_data_len == 0) { + return (CRYPTO_SUCCESS); + } + + encode_adata_len(auth_data_len, encoded_a, &encoded_a_len); + + remainder = auth_data_len; + + /* 1st block: it contains encoded associated data, and some data */ + authp = (uint8_t *)ctx->ccm_tmp; + bzero(authp, block_size); + bcopy(encoded_a, authp, encoded_a_len); + processed = block_size - encoded_a_len; + if (processed > auth_data_len) { + /* in case auth_data is very small */ + processed = auth_data_len; + } + bcopy(auth_data, authp+encoded_a_len, processed); + /* xor with previous buffer */ + xor_block(authp, mac_buf); + encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); + remainder -= processed; + if (remainder == 0) { + /* a small amount of associated data, it's all done now */ + return (CRYPTO_SUCCESS); + } + + do { + if (remainder < block_size) { + /* + * There's not a block full of data, pad rest of + * buffer with zero + */ + bzero(authp, block_size); + bcopy(&(auth_data[processed]), authp, remainder); + datap = (uint8_t *)authp; + remainder = 0; + } else { + datap = (uint8_t *)(&(auth_data[processed])); + processed += block_size; + remainder -= block_size; + } + + xor_block(datap, mac_buf); + encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); + + } while (remainder > 0); + + return (CRYPTO_SUCCESS); +} + +int +ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag, + boolean_t is_encrypt_init, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + int rv; + CK_AES_CCM_PARAMS *ccm_param; + + if (param != NULL) { + ccm_param = (CK_AES_CCM_PARAMS *)param; + + if ((rv = ccm_validate_args(ccm_param, + is_encrypt_init)) != 0) { + return (rv); + } + + ccm_ctx->ccm_mac_len = ccm_param->ulMACSize; + if (is_encrypt_init) { + ccm_ctx->ccm_data_len = ccm_param->ulDataSize; + } else { + ccm_ctx->ccm_data_len = + ccm_param->ulDataSize - ccm_ctx->ccm_mac_len; + ccm_ctx->ccm_processed_mac_len = 0; + } + ccm_ctx->ccm_processed_data_len = 0; + + ccm_ctx->ccm_flags |= CCM_MODE; + } else { + rv = CRYPTO_MECHANISM_PARAM_INVALID; + goto out; + } + + if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize, + ccm_param->authData, ccm_param->ulAuthDataSize, block_size, + encrypt_block, xor_block) != 0) { + rv = CRYPTO_MECHANISM_PARAM_INVALID; + goto out; + } + if (!is_encrypt_init) { + /* allocate buffer for storing decrypted plaintext */ + ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len, + kmflag); + if (ccm_ctx->ccm_pt_buf == NULL) { + rv = CRYPTO_HOST_MEMORY; + } + } +out: + return (rv); +} + +void * +ccm_alloc_ctx(int kmflag) +{ + ccm_ctx_t *ccm_ctx; + + if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL) + return (NULL); + + ccm_ctx->ccm_flags = CCM_MODE; + return (ccm_ctx); +} diff --git a/module/icp/algs/modes/ctr.c b/module/icp/algs/modes/ctr.c new file mode 100644 index 000000000..77ba28ddd --- /dev/null +++ b/module/icp/algs/modes/ctr.c @@ -0,0 +1,238 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <sys/crypto/common.h> +#include <sys/crypto/impl.h> +#include <sys/byteorder.h> + +/* + * Encrypt and decrypt multiple blocks of data in counter mode. + */ +int +ctr_mode_contiguous_blocks(ctr_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*cipher)(const void *ks, const uint8_t *pt, uint8_t *ct), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + uint64_t lower_counter, upper_counter; + + if (length + ctx->ctr_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->ctr_remainder + ctx->ctr_remainder_len, + length); + ctx->ctr_remainder_len += length; + ctx->ctr_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + lastp = (uint8_t *)ctx->ctr_cb; + if (out != NULL) + crypto_init_ptrs(out, &iov_or_mp, &offset); + + do { + /* Unprocessed data from last call. */ + if (ctx->ctr_remainder_len > 0) { + need = block_size - ctx->ctr_remainder_len; + + if (need > remainder) + return (CRYPTO_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->ctr_remainder) + [ctx->ctr_remainder_len], need); + + blockp = (uint8_t *)ctx->ctr_remainder; + } else { + blockp = datap; + } + + /* ctr_cb is the counter block */ + cipher(ctx->ctr_keysched, (uint8_t *)ctx->ctr_cb, + (uint8_t *)ctx->ctr_tmp); + + lastp = (uint8_t *)ctx->ctr_tmp; + + /* + * Increment Counter. + */ + lower_counter = ntohll(ctx->ctr_cb[1] & ctx->ctr_lower_mask); + lower_counter = htonll(lower_counter + 1); + lower_counter &= ctx->ctr_lower_mask; + ctx->ctr_cb[1] = (ctx->ctr_cb[1] & ~(ctx->ctr_lower_mask)) | + lower_counter; + + /* wrap around */ + if (lower_counter == 0) { + upper_counter = + ntohll(ctx->ctr_cb[0] & ctx->ctr_upper_mask); + upper_counter = htonll(upper_counter + 1); + upper_counter &= ctx->ctr_upper_mask; + ctx->ctr_cb[0] = + (ctx->ctr_cb[0] & ~(ctx->ctr_upper_mask)) | + upper_counter; + } + + /* + * XOR encrypted counter block with the current clear block. + */ + xor_block(blockp, lastp); + + if (out == NULL) { + if (ctx->ctr_remainder_len > 0) { + bcopy(lastp, ctx->ctr_copy_to, + ctx->ctr_remainder_len); + bcopy(lastp + ctx->ctr_remainder_len, datap, + need); + } + } else { + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, block_size); + + /* copy block to where it belongs */ + bcopy(lastp, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(lastp + out_data_1_len, out_data_2, + block_size - out_data_1_len); + } + /* update offset */ + out->cd_offset += block_size; + } + + /* Update pointer to next block of data to be processed. */ + if (ctx->ctr_remainder_len != 0) { + datap += need; + ctx->ctr_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block. */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->ctr_remainder, remainder); + ctx->ctr_remainder_len = remainder; + ctx->ctr_copy_to = datap; + goto out; + } + ctx->ctr_copy_to = NULL; + + } while (remainder > 0); + +out: + return (CRYPTO_SUCCESS); +} + +int +ctr_mode_final(ctr_ctx_t *ctx, crypto_data_t *out, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *)) +{ + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + uint8_t *p; + int i; + + if (out->cd_length < ctx->ctr_remainder_len) + return (CRYPTO_DATA_LEN_RANGE); + + encrypt_block(ctx->ctr_keysched, (uint8_t *)ctx->ctr_cb, + (uint8_t *)ctx->ctr_tmp); + + lastp = (uint8_t *)ctx->ctr_tmp; + p = (uint8_t *)ctx->ctr_remainder; + for (i = 0; i < ctx->ctr_remainder_len; i++) { + p[i] ^= lastp[i]; + } + + crypto_init_ptrs(out, &iov_or_mp, &offset); + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, ctx->ctr_remainder_len); + + bcopy(p, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy((uint8_t *)p + out_data_1_len, + out_data_2, ctx->ctr_remainder_len - out_data_1_len); + } + out->cd_offset += ctx->ctr_remainder_len; + ctx->ctr_remainder_len = 0; + return (CRYPTO_SUCCESS); +} + +int +ctr_init_ctx(ctr_ctx_t *ctr_ctx, ulong_t count, uint8_t *cb, +void (*copy_block)(uint8_t *, uint8_t *)) +{ + uint64_t upper_mask = 0; + uint64_t lower_mask = 0; + + if (count == 0 || count > 128) { + return (CRYPTO_MECHANISM_PARAM_INVALID); + } + /* upper 64 bits of the mask */ + if (count >= 64) { + count -= 64; + upper_mask = (count == 64) ? UINT64_MAX : (1ULL << count) - 1; + lower_mask = UINT64_MAX; + } else { + /* now the lower 63 bits */ + lower_mask = (1ULL << count) - 1; + } + ctr_ctx->ctr_lower_mask = htonll(lower_mask); + ctr_ctx->ctr_upper_mask = htonll(upper_mask); + + copy_block(cb, (uchar_t *)ctr_ctx->ctr_cb); + ctr_ctx->ctr_lastp = (uint8_t *)&ctr_ctx->ctr_cb[0]; + ctr_ctx->ctr_flags |= CTR_MODE; + return (CRYPTO_SUCCESS); +} + +/* ARGSUSED */ +void * +ctr_alloc_ctx(int kmflag) +{ + ctr_ctx_t *ctr_ctx; + + if ((ctr_ctx = kmem_zalloc(sizeof (ctr_ctx_t), kmflag)) == NULL) + return (NULL); + + ctr_ctx->ctr_flags = CTR_MODE; + return (ctr_ctx); +} diff --git a/module/icp/algs/modes/ecb.c b/module/icp/algs/modes/ecb.c new file mode 100644 index 000000000..04e6c5eaa --- /dev/null +++ b/module/icp/algs/modes/ecb.c @@ -0,0 +1,143 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <sys/crypto/common.h> +#include <sys/crypto/impl.h> + +/* + * Algorithm independent ECB functions. + */ +int +ecb_cipher_contiguous_blocks(ecb_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*cipher)(const void *ks, const uint8_t *pt, uint8_t *ct)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + + if (length + ctx->ecb_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->ecb_remainder + ctx->ecb_remainder_len, + length); + ctx->ecb_remainder_len += length; + ctx->ecb_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + lastp = (uint8_t *)ctx->ecb_iv; + if (out != NULL) + crypto_init_ptrs(out, &iov_or_mp, &offset); + + do { + /* Unprocessed data from last call. */ + if (ctx->ecb_remainder_len > 0) { + need = block_size - ctx->ecb_remainder_len; + + if (need > remainder) + return (CRYPTO_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->ecb_remainder) + [ctx->ecb_remainder_len], need); + + blockp = (uint8_t *)ctx->ecb_remainder; + } else { + blockp = datap; + } + + if (out == NULL) { + cipher(ctx->ecb_keysched, blockp, blockp); + + ctx->ecb_lastp = blockp; + lastp = blockp; + + if (ctx->ecb_remainder_len > 0) { + bcopy(blockp, ctx->ecb_copy_to, + ctx->ecb_remainder_len); + bcopy(blockp + ctx->ecb_remainder_len, datap, + need); + } + } else { + cipher(ctx->ecb_keysched, blockp, lastp); + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, block_size); + + /* copy block to where it belongs */ + bcopy(lastp, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(lastp + out_data_1_len, out_data_2, + block_size - out_data_1_len); + } + /* update offset */ + out->cd_offset += block_size; + } + + /* Update pointer to next block of data to be processed. */ + if (ctx->ecb_remainder_len != 0) { + datap += need; + ctx->ecb_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block. */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->ecb_remainder, remainder); + ctx->ecb_remainder_len = remainder; + ctx->ecb_copy_to = datap; + goto out; + } + ctx->ecb_copy_to = NULL; + + } while (remainder > 0); + +out: + return (CRYPTO_SUCCESS); +} + +/* ARGSUSED */ +void * +ecb_alloc_ctx(int kmflag) +{ + ecb_ctx_t *ecb_ctx; + + if ((ecb_ctx = kmem_zalloc(sizeof (ecb_ctx_t), kmflag)) == NULL) + return (NULL); + + ecb_ctx->ecb_flags = ECB_MODE; + return (ecb_ctx); +} diff --git a/module/icp/algs/modes/gcm.c b/module/icp/algs/modes/gcm.c new file mode 100644 index 000000000..9cd8ab1e9 --- /dev/null +++ b/module/icp/algs/modes/gcm.c @@ -0,0 +1,748 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <sys/crypto/common.h> +#include <sys/crypto/impl.h> +#include <sys/byteorder.h> + +#ifdef __amd64 + +#ifdef _KERNEL +/* Workaround for no XMM kernel thread save/restore */ +#define KPREEMPT_DISABLE kpreempt_disable() +#define KPREEMPT_ENABLE kpreempt_enable() + +#else +#define KPREEMPT_DISABLE +#define KPREEMPT_ENABLE +#endif /* _KERNEL */ + +extern void gcm_mul_pclmulqdq(uint64_t *x_in, uint64_t *y, uint64_t *res); +static int intel_pclmulqdq_instruction_present(void); +#endif /* __amd64 */ + +struct aes_block { + uint64_t a; + uint64_t b; +}; + + +/* + * gcm_mul() + * Perform a carry-less multiplication (that is, use XOR instead of the + * multiply operator) on *x_in and *y and place the result in *res. + * + * Byte swap the input (*x_in and *y) and the output (*res). + * + * Note: x_in, y, and res all point to 16-byte numbers (an array of two + * 64-bit integers). + */ +void +gcm_mul(uint64_t *x_in, uint64_t *y, uint64_t *res) +{ +#ifdef __amd64 + if (intel_pclmulqdq_instruction_present()) { + KPREEMPT_DISABLE; + gcm_mul_pclmulqdq(x_in, y, res); + KPREEMPT_ENABLE; + } else +#endif /* __amd64 */ + { + static const uint64_t R = 0xe100000000000000ULL; + struct aes_block z = {0, 0}; + struct aes_block v; + uint64_t x; + int i, j; + + v.a = ntohll(y[0]); + v.b = ntohll(y[1]); + + for (j = 0; j < 2; j++) { + x = ntohll(x_in[j]); + for (i = 0; i < 64; i++, x <<= 1) { + if (x & 0x8000000000000000ULL) { + z.a ^= v.a; + z.b ^= v.b; + } + if (v.b & 1ULL) { + v.b = (v.a << 63)|(v.b >> 1); + v.a = (v.a >> 1) ^ R; + } else { + v.b = (v.a << 63)|(v.b >> 1); + v.a = v.a >> 1; + } + } + } + res[0] = htonll(z.a); + res[1] = htonll(z.b); + } +} + + +#define GHASH(c, d, t) \ + xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \ + gcm_mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \ + (uint64_t *)(void *)(t)); + + +/* + * Encrypt multiple blocks of data in GCM mode. Decrypt for GCM mode + * is done in another function. + */ +int +gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t remainder = length; + size_t need = 0; + uint8_t *datap = (uint8_t *)data; + uint8_t *blockp; + uint8_t *lastp; + void *iov_or_mp; + offset_t offset; + uint8_t *out_data_1; + uint8_t *out_data_2; + size_t out_data_1_len; + uint64_t counter; + uint64_t counter_mask = ntohll(0x00000000ffffffffULL); + + if (length + ctx->gcm_remainder_len < block_size) { + /* accumulate bytes here and return */ + bcopy(datap, + (uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len, + length); + ctx->gcm_remainder_len += length; + ctx->gcm_copy_to = datap; + return (CRYPTO_SUCCESS); + } + + lastp = (uint8_t *)ctx->gcm_cb; + if (out != NULL) + crypto_init_ptrs(out, &iov_or_mp, &offset); + + do { + /* Unprocessed data from last call. */ + if (ctx->gcm_remainder_len > 0) { + need = block_size - ctx->gcm_remainder_len; + + if (need > remainder) + return (CRYPTO_DATA_LEN_RANGE); + + bcopy(datap, &((uint8_t *)ctx->gcm_remainder) + [ctx->gcm_remainder_len], need); + + blockp = (uint8_t *)ctx->gcm_remainder; + } else { + blockp = datap; + } + + /* + * Increment counter. Counter bits are confined + * to the bottom 32 bits of the counter block. + */ + counter = ntohll(ctx->gcm_cb[1] & counter_mask); + counter = htonll(counter + 1); + counter &= counter_mask; + ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; + + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, + (uint8_t *)ctx->gcm_tmp); + xor_block(blockp, (uint8_t *)ctx->gcm_tmp); + + lastp = (uint8_t *)ctx->gcm_tmp; + + ctx->gcm_processed_data_len += block_size; + + if (out == NULL) { + if (ctx->gcm_remainder_len > 0) { + bcopy(blockp, ctx->gcm_copy_to, + ctx->gcm_remainder_len); + bcopy(blockp + ctx->gcm_remainder_len, datap, + need); + } + } else { + crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, + &out_data_1_len, &out_data_2, block_size); + + /* copy block to where it belongs */ + if (out_data_1_len == block_size) { + copy_block(lastp, out_data_1); + } else { + bcopy(lastp, out_data_1, out_data_1_len); + if (out_data_2 != NULL) { + bcopy(lastp + out_data_1_len, + out_data_2, + block_size - out_data_1_len); + } + } + /* update offset */ + out->cd_offset += block_size; + } + + /* add ciphertext to the hash */ + GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash); + + /* Update pointer to next block of data to be processed. */ + if (ctx->gcm_remainder_len != 0) { + datap += need; + ctx->gcm_remainder_len = 0; + } else { + datap += block_size; + } + + remainder = (size_t)&data[length] - (size_t)datap; + + /* Incomplete last block. */ + if (remainder > 0 && remainder < block_size) { + bcopy(datap, ctx->gcm_remainder, remainder); + ctx->gcm_remainder_len = remainder; + ctx->gcm_copy_to = datap; + goto out; + } + ctx->gcm_copy_to = NULL; + + } while (remainder > 0); +out: + return (CRYPTO_SUCCESS); +} + +/* ARGSUSED */ +int +gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + uint64_t counter_mask = ntohll(0x00000000ffffffffULL); + uint8_t *ghash, *macp = NULL; + int i, rv; + + if (out->cd_length < + (ctx->gcm_remainder_len + ctx->gcm_tag_len)) { + return (CRYPTO_DATA_LEN_RANGE); + } + + ghash = (uint8_t *)ctx->gcm_ghash; + + if (ctx->gcm_remainder_len > 0) { + uint64_t counter; + uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp; + + /* + * Here is where we deal with data that is not a + * multiple of the block size. + */ + + /* + * Increment counter. + */ + counter = ntohll(ctx->gcm_cb[1] & counter_mask); + counter = htonll(counter + 1); + counter &= counter_mask; + ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; + + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, + (uint8_t *)ctx->gcm_tmp); + + macp = (uint8_t *)ctx->gcm_remainder; + bzero(macp + ctx->gcm_remainder_len, + block_size - ctx->gcm_remainder_len); + + /* XOR with counter block */ + for (i = 0; i < ctx->gcm_remainder_len; i++) { + macp[i] ^= tmpp[i]; + } + + /* add ciphertext to the hash */ + GHASH(ctx, macp, ghash); + + ctx->gcm_processed_data_len += ctx->gcm_remainder_len; + } + + ctx->gcm_len_a_len_c[1] = + htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len)); + GHASH(ctx, ctx->gcm_len_a_len_c, ghash); + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0, + (uint8_t *)ctx->gcm_J0); + xor_block((uint8_t *)ctx->gcm_J0, ghash); + + if (ctx->gcm_remainder_len > 0) { + rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len); + if (rv != CRYPTO_SUCCESS) + return (rv); + } + out->cd_offset += ctx->gcm_remainder_len; + ctx->gcm_remainder_len = 0; + rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len); + if (rv != CRYPTO_SUCCESS) + return (rv); + out->cd_offset += ctx->gcm_tag_len; + + return (CRYPTO_SUCCESS); +} + +/* + * This will only deal with decrypting the last block of the input that + * might not be a multiple of block length. + */ +static void +gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + uint8_t *datap, *outp, *counterp; + uint64_t counter; + uint64_t counter_mask = ntohll(0x00000000ffffffffULL); + int i; + + /* + * Increment counter. + * Counter bits are confined to the bottom 32 bits + */ + counter = ntohll(ctx->gcm_cb[1] & counter_mask); + counter = htonll(counter + 1); + counter &= counter_mask; + ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; + + datap = (uint8_t *)ctx->gcm_remainder; + outp = &((ctx->gcm_pt_buf)[index]); + counterp = (uint8_t *)ctx->gcm_tmp; + + /* authentication tag */ + bzero((uint8_t *)ctx->gcm_tmp, block_size); + bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len); + + /* add ciphertext to the hash */ + GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash); + + /* decrypt remaining ciphertext */ + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp); + + /* XOR with counter block */ + for (i = 0; i < ctx->gcm_remainder_len; i++) { + outp[i] = datap[i] ^ counterp[i]; + } +} + +/* ARGSUSED */ +int +gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length, + crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t new_len; + uint8_t *new; + + /* + * Copy contiguous ciphertext input blocks to plaintext buffer. + * Ciphertext will be decrypted in the final. + */ + if (length > 0) { + new_len = ctx->gcm_pt_buf_len + length; + new = vmem_alloc(new_len, ctx->gcm_kmflag); + bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len); + vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len); + if (new == NULL) + return (CRYPTO_HOST_MEMORY); + + ctx->gcm_pt_buf = new; + ctx->gcm_pt_buf_len = new_len; + bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len], + length); + ctx->gcm_processed_data_len += length; + } + + ctx->gcm_remainder_len = 0; + return (CRYPTO_SUCCESS); +} + +int +gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + size_t pt_len; + size_t remainder; + uint8_t *ghash; + uint8_t *blockp; + uint8_t *cbp; + uint64_t counter; + uint64_t counter_mask = ntohll(0x00000000ffffffffULL); + int processed = 0, rv; + + ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len); + + pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len; + ghash = (uint8_t *)ctx->gcm_ghash; + blockp = ctx->gcm_pt_buf; + remainder = pt_len; + while (remainder > 0) { + /* Incomplete last block */ + if (remainder < block_size) { + bcopy(blockp, ctx->gcm_remainder, remainder); + ctx->gcm_remainder_len = remainder; + /* + * not expecting anymore ciphertext, just + * compute plaintext for the remaining input + */ + gcm_decrypt_incomplete_block(ctx, block_size, + processed, encrypt_block, xor_block); + ctx->gcm_remainder_len = 0; + goto out; + } + /* add ciphertext to the hash */ + GHASH(ctx, blockp, ghash); + + /* + * Increment counter. + * Counter bits are confined to the bottom 32 bits + */ + counter = ntohll(ctx->gcm_cb[1] & counter_mask); + counter = htonll(counter + 1); + counter &= counter_mask; + ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; + + cbp = (uint8_t *)ctx->gcm_tmp; + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp); + + /* XOR with ciphertext */ + xor_block(cbp, blockp); + + processed += block_size; + blockp += block_size; + remainder -= block_size; + } +out: + ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len)); + GHASH(ctx, ctx->gcm_len_a_len_c, ghash); + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0, + (uint8_t *)ctx->gcm_J0); + xor_block((uint8_t *)ctx->gcm_J0, ghash); + + /* compare the input authentication tag with what we calculated */ + if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) { + /* They don't match */ + return (CRYPTO_INVALID_MAC); + } else { + rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len); + if (rv != CRYPTO_SUCCESS) + return (rv); + out->cd_offset += pt_len; + } + return (CRYPTO_SUCCESS); +} + +static int +gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param) +{ + size_t tag_len; + + /* + * Check the length of the authentication tag (in bits). + */ + tag_len = gcm_param->ulTagBits; + switch (tag_len) { + case 32: + case 64: + case 96: + case 104: + case 112: + case 120: + case 128: + break; + default: + return (CRYPTO_MECHANISM_PARAM_INVALID); + } + + if (gcm_param->ulIvLen == 0) + return (CRYPTO_MECHANISM_PARAM_INVALID); + + return (CRYPTO_SUCCESS); +} + +static void +gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len, + gcm_ctx_t *ctx, size_t block_size, + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + uint8_t *cb; + ulong_t remainder = iv_len; + ulong_t processed = 0; + uint8_t *datap, *ghash; + uint64_t len_a_len_c[2]; + + ghash = (uint8_t *)ctx->gcm_ghash; + cb = (uint8_t *)ctx->gcm_cb; + if (iv_len == 12) { + bcopy(iv, cb, 12); + cb[12] = 0; + cb[13] = 0; + cb[14] = 0; + cb[15] = 1; + /* J0 will be used again in the final */ + copy_block(cb, (uint8_t *)ctx->gcm_J0); + } else { + /* GHASH the IV */ + do { + if (remainder < block_size) { + bzero(cb, block_size); + bcopy(&(iv[processed]), cb, remainder); + datap = (uint8_t *)cb; + remainder = 0; + } else { + datap = (uint8_t *)(&(iv[processed])); + processed += block_size; + remainder -= block_size; + } + GHASH(ctx, datap, ghash); + } while (remainder > 0); + + len_a_len_c[0] = 0; + len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len)); + GHASH(ctx, len_a_len_c, ctx->gcm_J0); + + /* J0 will be used again in the final */ + copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb); + } +} + +/* + * The following function is called at encrypt or decrypt init time + * for AES GCM mode. + */ +int +gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len, + unsigned char *auth_data, size_t auth_data_len, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + uint8_t *ghash, *datap, *authp; + size_t remainder, processed; + + /* encrypt zero block to get subkey H */ + bzero(ctx->gcm_H, sizeof (ctx->gcm_H)); + encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H, + (uint8_t *)ctx->gcm_H); + + gcm_format_initial_blocks(iv, iv_len, ctx, block_size, + copy_block, xor_block); + + authp = (uint8_t *)ctx->gcm_tmp; + ghash = (uint8_t *)ctx->gcm_ghash; + bzero(authp, block_size); + bzero(ghash, block_size); + + processed = 0; + remainder = auth_data_len; + do { + if (remainder < block_size) { + /* + * There's not a block full of data, pad rest of + * buffer with zero + */ + bzero(authp, block_size); + bcopy(&(auth_data[processed]), authp, remainder); + datap = (uint8_t *)authp; + remainder = 0; + } else { + datap = (uint8_t *)(&(auth_data[processed])); + processed += block_size; + remainder -= block_size; + } + + /* add auth data to the hash */ + GHASH(ctx, datap, ghash); + + } while (remainder > 0); + + return (CRYPTO_SUCCESS); +} + +int +gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + int rv; + CK_AES_GCM_PARAMS *gcm_param; + + if (param != NULL) { + gcm_param = (CK_AES_GCM_PARAMS *)(void *)param; + + if ((rv = gcm_validate_args(gcm_param)) != 0) { + return (rv); + } + + gcm_ctx->gcm_tag_len = gcm_param->ulTagBits; + gcm_ctx->gcm_tag_len >>= 3; + gcm_ctx->gcm_processed_data_len = 0; + + /* these values are in bits */ + gcm_ctx->gcm_len_a_len_c[0] + = htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen)); + + rv = CRYPTO_SUCCESS; + gcm_ctx->gcm_flags |= GCM_MODE; + } else { + rv = CRYPTO_MECHANISM_PARAM_INVALID; + goto out; + } + + if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen, + gcm_param->pAAD, gcm_param->ulAADLen, block_size, + encrypt_block, copy_block, xor_block) != 0) { + rv = CRYPTO_MECHANISM_PARAM_INVALID; + } +out: + return (rv); +} + +int +gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size, + int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), + void (*copy_block)(uint8_t *, uint8_t *), + void (*xor_block)(uint8_t *, uint8_t *)) +{ + int rv; + CK_AES_GMAC_PARAMS *gmac_param; + + if (param != NULL) { + gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param; + + gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS); + gcm_ctx->gcm_processed_data_len = 0; + + /* these values are in bits */ + gcm_ctx->gcm_len_a_len_c[0] + = htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen)); + + rv = CRYPTO_SUCCESS; + gcm_ctx->gcm_flags |= GMAC_MODE; + } else { + rv = CRYPTO_MECHANISM_PARAM_INVALID; + goto out; + } + + if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN, + gmac_param->pAAD, gmac_param->ulAADLen, block_size, + encrypt_block, copy_block, xor_block) != 0) { + rv = CRYPTO_MECHANISM_PARAM_INVALID; + } +out: + return (rv); +} + +void * +gcm_alloc_ctx(int kmflag) +{ + gcm_ctx_t *gcm_ctx; + + if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL) + return (NULL); + + gcm_ctx->gcm_flags = GCM_MODE; + return (gcm_ctx); +} + +void * +gmac_alloc_ctx(int kmflag) +{ + gcm_ctx_t *gcm_ctx; + + if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL) + return (NULL); + + gcm_ctx->gcm_flags = GMAC_MODE; + return (gcm_ctx); +} + +void +gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag) +{ + ctx->gcm_kmflag = kmflag; +} + + +#ifdef __amd64 + +#define INTEL_PCLMULQDQ_FLAG (1 << 1) + +/* + * Return 1 if executing on Intel with PCLMULQDQ instructions, + * otherwise 0 (i.e., Intel without PCLMULQDQ or AMD64). + * Cache the result, as the CPU can't change. + * + * Note: the userland version uses getisax(). The kernel version uses + * is_x86_featureset(). + */ +static int +intel_pclmulqdq_instruction_present(void) +{ + static int cached_result = -1; + unsigned eax, ebx, ecx, edx; + unsigned func, subfunc; + + if (cached_result == -1) { /* first time */ + /* check for an intel cpu */ + func = 0; + subfunc = 0; + + __asm__ __volatile__( + "cpuid" + : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) + : "a"(func), "c"(subfunc)); + + if (memcmp((char *) (&ebx), "Genu", 4) == 0 && + memcmp((char *) (&edx), "ineI", 4) == 0 && + memcmp((char *) (&ecx), "ntel", 4) == 0) { + + func = 1; + subfunc = 0; + + /* check for aes-ni instruction set */ + __asm__ __volatile__( + "cpuid" + : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) + : "a"(func), "c"(subfunc)); + + cached_result = !!(ecx & INTEL_PCLMULQDQ_FLAG); + } else { + cached_result = 0; + } + } + + return (cached_result); +} + +#endif /* __amd64 */ diff --git a/module/icp/algs/modes/modes.c b/module/icp/algs/modes/modes.c new file mode 100644 index 000000000..1d33c4268 --- /dev/null +++ b/module/icp/algs/modes/modes.c @@ -0,0 +1,159 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <modes/modes.h> +#include <sys/crypto/common.h> +#include <sys/crypto/impl.h> + +/* + * Initialize by setting iov_or_mp to point to the current iovec or mp, + * and by setting current_offset to an offset within the current iovec or mp. + */ +void +crypto_init_ptrs(crypto_data_t *out, void **iov_or_mp, offset_t *current_offset) +{ + offset_t offset; + + switch (out->cd_format) { + case CRYPTO_DATA_RAW: + *current_offset = out->cd_offset; + break; + + case CRYPTO_DATA_UIO: { + uio_t *uiop = out->cd_uio; + uintptr_t vec_idx; + + offset = out->cd_offset; + for (vec_idx = 0; vec_idx < uiop->uio_iovcnt && + offset >= uiop->uio_iov[vec_idx].iov_len; + offset -= uiop->uio_iov[vec_idx++].iov_len) + ; + + *current_offset = offset; + *iov_or_mp = (void *)vec_idx; + break; + } + } /* end switch */ +} + +/* + * Get pointers for where in the output to copy a block of encrypted or + * decrypted data. The iov_or_mp argument stores a pointer to the current + * iovec or mp, and offset stores an offset into the current iovec or mp. + */ +void +crypto_get_ptrs(crypto_data_t *out, void **iov_or_mp, offset_t *current_offset, + uint8_t **out_data_1, size_t *out_data_1_len, uint8_t **out_data_2, + size_t amt) +{ + offset_t offset; + + switch (out->cd_format) { + case CRYPTO_DATA_RAW: { + iovec_t *iov; + + offset = *current_offset; + iov = &out->cd_raw; + if ((offset + amt) <= iov->iov_len) { + /* one block fits */ + *out_data_1 = (uint8_t *)iov->iov_base + offset; + *out_data_1_len = amt; + *out_data_2 = NULL; + *current_offset = offset + amt; + } + break; + } + + case CRYPTO_DATA_UIO: { + uio_t *uio = out->cd_uio; + iovec_t *iov; + offset_t offset; + uintptr_t vec_idx; + uint8_t *p; + + offset = *current_offset; + vec_idx = (uintptr_t)(*iov_or_mp); + iov = (iovec_t *)&uio->uio_iov[vec_idx]; + p = (uint8_t *)iov->iov_base + offset; + *out_data_1 = p; + + if (offset + amt <= iov->iov_len) { + /* can fit one block into this iov */ + *out_data_1_len = amt; + *out_data_2 = NULL; + *current_offset = offset + amt; + } else { + /* one block spans two iovecs */ + *out_data_1_len = iov->iov_len - offset; + if (vec_idx == uio->uio_iovcnt) + return; + vec_idx++; + iov = (iovec_t *)&uio->uio_iov[vec_idx]; + *out_data_2 = (uint8_t *)iov->iov_base; + *current_offset = amt - *out_data_1_len; + } + *iov_or_mp = (void *)vec_idx; + break; + } + } /* end switch */ +} + +void +crypto_free_mode_ctx(void *ctx) +{ + common_ctx_t *common_ctx = (common_ctx_t *)ctx; + + switch (common_ctx->cc_flags & + (ECB_MODE|CBC_MODE|CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) { + case ECB_MODE: + kmem_free(common_ctx, sizeof (ecb_ctx_t)); + break; + + case CBC_MODE: + kmem_free(common_ctx, sizeof (cbc_ctx_t)); + break; + + case CTR_MODE: + kmem_free(common_ctx, sizeof (ctr_ctx_t)); + break; + + case CCM_MODE: + if (((ccm_ctx_t *)ctx)->ccm_pt_buf != NULL) + vmem_free(((ccm_ctx_t *)ctx)->ccm_pt_buf, + ((ccm_ctx_t *)ctx)->ccm_data_len); + + kmem_free(ctx, sizeof (ccm_ctx_t)); + break; + + case GCM_MODE: + case GMAC_MODE: + if (((gcm_ctx_t *)ctx)->gcm_pt_buf != NULL) + vmem_free(((gcm_ctx_t *)ctx)->gcm_pt_buf, + ((gcm_ctx_t *)ctx)->gcm_pt_buf_len); + + kmem_free(ctx, sizeof (gcm_ctx_t)); + } +} diff --git a/module/icp/algs/sha1/sha1.c b/module/icp/algs/sha1/sha1.c new file mode 100644 index 000000000..b826c54ad --- /dev/null +++ b/module/icp/algs/sha1/sha1.c @@ -0,0 +1,663 @@ +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +/* + * The basic framework for this code came from the reference + * implementation for MD5. That implementation is Copyright (C) + * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. + * + * License to copy and use this software is granted provided that it + * is identified as the "RSA Data Security, Inc. MD5 Message-Digest + * Algorithm" in all material mentioning or referencing this software + * or this function. + * + * License is also granted to make and use derivative works provided + * that such works are identified as "derived from the RSA Data + * Security, Inc. MD5 Message-Digest Algorithm" in all material + * mentioning or referencing the derived work. + * + * RSA Data Security, Inc. makes no representations concerning either + * the merchantability of this software or the suitability of this + * software for any particular purpose. It is provided "as is" + * without express or implied warranty of any kind. + * + * These notices must be retained in any copies of any part of this + * documentation and/or software. + * + * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 + * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm + * Not as fast as one would like -- further optimizations are encouraged + * and appreciated. + */ + +#include <sys/zfs_context.h> +#include <sha1/sha1.h> +#include <sha1/sha1_consts.h> + +#ifdef _LITTLE_ENDIAN +#include <sys/byteorder.h> +#define HAVE_HTONL +#endif + +#define _RESTRICT_KYWD + +static void Encode(uint8_t *, const uint32_t *, size_t); + +#if defined(__amd64) + +#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) +#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ + (in), (num)) + +void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); + +#else + +#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) + +static void SHA1Transform(SHA1_CTX *, const uint8_t *); + +#endif + + +static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; + +/* + * F, G, and H are the basic SHA1 functions. + */ +#define F(b, c, d) (((b) & (c)) | ((~b) & (d))) +#define G(b, c, d) ((b) ^ (c) ^ (d)) +#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) + +/* + * ROTATE_LEFT rotates x left n bits. + */ + +#if defined(__GNUC__) && defined(_LP64) +static __inline__ uint64_t +ROTATE_LEFT(uint64_t value, uint32_t n) +{ + uint32_t t32; + + t32 = (uint32_t)value; + return ((t32 << n) | (t32 >> (32 - n))); +} + +#else + +#define ROTATE_LEFT(x, n) \ + (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) + +#endif + + +/* + * SHA1Init() + * + * purpose: initializes the sha1 context and begins and sha1 digest operation + * input: SHA1_CTX * : the context to initializes. + * output: void + */ + +void +SHA1Init(SHA1_CTX *ctx) +{ + ctx->count[0] = ctx->count[1] = 0; + + /* + * load magic initialization constants. Tell lint + * that these constants are unsigned by using U. + */ + + ctx->state[0] = 0x67452301U; + ctx->state[1] = 0xefcdab89U; + ctx->state[2] = 0x98badcfeU; + ctx->state[3] = 0x10325476U; + ctx->state[4] = 0xc3d2e1f0U; +} + +void +SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) +{ + uint32_t i, buf_index, buf_len; + const uint8_t *input = inptr; +#if defined(__amd64) + uint32_t block_count; +#endif /* __amd64 */ + + /* check for noop */ + if (input_len == 0) + return; + + /* compute number of bytes mod 64 */ + buf_index = (ctx->count[1] >> 3) & 0x3F; + + /* update number of bits */ + if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) + ctx->count[0]++; + + ctx->count[0] += (input_len >> 29); + + buf_len = 64 - buf_index; + + /* transform as many times as possible */ + i = 0; + if (input_len >= buf_len) { + + /* + * general optimization: + * + * only do initial bcopy() and SHA1Transform() if + * buf_index != 0. if buf_index == 0, we're just + * wasting our time doing the bcopy() since there + * wasn't any data left over from a previous call to + * SHA1Update(). + */ + + if (buf_index) { + bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); + SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); + i = buf_len; + } + +#if !defined(__amd64) + for (; i + 63 < input_len; i += 64) + SHA1_TRANSFORM(ctx, &input[i]); +#else + block_count = (input_len - i) >> 6; + if (block_count > 0) { + SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); + i += block_count << 6; + } +#endif /* !__amd64 */ + + /* + * general optimization: + * + * if i and input_len are the same, return now instead + * of calling bcopy(), since the bcopy() in this case + * will be an expensive nop. + */ + + if (input_len == i) + return; + + buf_index = 0; + } + + /* buffer remaining input */ + bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); +} + +/* + * SHA1Final() + * + * purpose: ends an sha1 digest operation, finalizing the message digest and + * zeroing the context. + * input: uchar_t * : A buffer to store the digest. + * : The function actually uses void* because many + * : callers pass things other than uchar_t here. + * SHA1_CTX * : the context to finalize, save, and zero + * output: void + */ + +void +SHA1Final(void *digest, SHA1_CTX *ctx) +{ + uint8_t bitcount_be[sizeof (ctx->count)]; + uint32_t index = (ctx->count[1] >> 3) & 0x3f; + + /* store bit count, big endian */ + Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); + + /* pad out to 56 mod 64 */ + SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); + + /* append length (before padding) */ + SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); + + /* store state in digest */ + Encode(digest, ctx->state, sizeof (ctx->state)); + + /* zeroize sensitive information */ + bzero(ctx, sizeof (*ctx)); +} + + +#if !defined(__amd64) + +typedef uint32_t sha1word; + +/* + * sparc optimization: + * + * on the sparc, we can load big endian 32-bit data easily. note that + * special care must be taken to ensure the address is 32-bit aligned. + * in the interest of speed, we don't check to make sure, since + * careful programming can guarantee this for us. + */ + +#if defined(_BIG_ENDIAN) +#define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) + +#elif defined(HAVE_HTONL) +#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) + +#else +/* little endian -- will work on big endian, but slowly */ +#define LOAD_BIG_32(addr) \ + (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) +#endif /* _BIG_ENDIAN */ + +/* + * SHA1Transform() + */ +#if defined(W_ARRAY) +#define W(n) w[n] +#else /* !defined(W_ARRAY) */ +#define W(n) w_ ## n +#endif /* !defined(W_ARRAY) */ + +void /* CSTYLED */ +SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) +{ + /* CSTYLED */ + sha1word a = ctx->state[0]; + sha1word b = ctx->state[1]; + sha1word c = ctx->state[2]; + sha1word d = ctx->state[3]; + sha1word e = ctx->state[4]; + +#if defined(W_ARRAY) + sha1word w[16]; +#else /* !defined(W_ARRAY) */ + sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; + sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; +#endif /* !defined(W_ARRAY) */ + + W(0) = LOAD_BIG_32((void *)(blk + 0)); + W(1) = LOAD_BIG_32((void *)(blk + 4)); + W(2) = LOAD_BIG_32((void *)(blk + 8)); + W(3) = LOAD_BIG_32((void *)(blk + 12)); + W(4) = LOAD_BIG_32((void *)(blk + 16)); + W(5) = LOAD_BIG_32((void *)(blk + 20)); + W(6) = LOAD_BIG_32((void *)(blk + 24)); + W(7) = LOAD_BIG_32((void *)(blk + 28)); + W(8) = LOAD_BIG_32((void *)(blk + 32)); + W(9) = LOAD_BIG_32((void *)(blk + 36)); + W(10) = LOAD_BIG_32((void *)(blk + 40)); + W(11) = LOAD_BIG_32((void *)(blk + 44)); + W(12) = LOAD_BIG_32((void *)(blk + 48)); + W(13) = LOAD_BIG_32((void *)(blk + 52)); + W(14) = LOAD_BIG_32((void *)(blk + 56)); + W(15) = LOAD_BIG_32((void *)(blk + 60)); + + /* + * general optimization: + * + * even though this approach is described in the standard as + * being slower algorithmically, it is 30-40% faster than the + * "faster" version under SPARC, because this version has more + * of the constraints specified at compile-time and uses fewer + * variables (and therefore has better register utilization) + * than its "speedier" brother. (i've tried both, trust me) + * + * for either method given in the spec, there is an "assignment" + * phase where the following takes place: + * + * tmp = (main_computation); + * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; + * + * we can make the algorithm go faster by not doing this work, + * but just pretending that `d' is now `e', etc. this works + * really well and obviates the need for a temporary variable. + * however, we still explicitly perform the rotate action, + * since it is cheaper on SPARC to do it once than to have to + * do it over and over again. + */ + + /* round 1 */ + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ + b = ROTATE_LEFT(b, 30); + + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ + a = ROTATE_LEFT(a, 30); + + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ + e = ROTATE_LEFT(e, 30); + + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ + d = ROTATE_LEFT(d, 30); + + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ + c = ROTATE_LEFT(c, 30); + + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ + b = ROTATE_LEFT(b, 30); + + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ + a = ROTATE_LEFT(a, 30); + + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ + e = ROTATE_LEFT(e, 30); + + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ + d = ROTATE_LEFT(d, 30); + + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ + c = ROTATE_LEFT(c, 30); + + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ + b = ROTATE_LEFT(b, 30); + + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ + a = ROTATE_LEFT(a, 30); + + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ + e = ROTATE_LEFT(e, 30); + + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ + d = ROTATE_LEFT(d, 30); + + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ + c = ROTATE_LEFT(c, 30); + + e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ + b = ROTATE_LEFT(b, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ + d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); + a = ROTATE_LEFT(a, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ + c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); + e = ROTATE_LEFT(e, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ + b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); + d = ROTATE_LEFT(d, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ + a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); + c = ROTATE_LEFT(c, 30); + + /* round 2 */ + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); + b = ROTATE_LEFT(b, 30); + + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); + a = ROTATE_LEFT(a, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); + e = ROTATE_LEFT(e, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); + d = ROTATE_LEFT(d, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); + c = ROTATE_LEFT(c, 30); + + /* round 3 */ + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ + e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); + b = ROTATE_LEFT(b, 30); + + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ + d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); + a = ROTATE_LEFT(a, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ + c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); + e = ROTATE_LEFT(e, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ + b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); + d = ROTATE_LEFT(d, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ + a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); + c = ROTATE_LEFT(c, 30); + + /* round 4 */ + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); + c = ROTATE_LEFT(c, 30); + + W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); + c = ROTATE_LEFT(c, 30); + + W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ + a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); + c = ROTATE_LEFT(c, 30); + + W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ + e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); + b = ROTATE_LEFT(b, 30); + + W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ + d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); + a = ROTATE_LEFT(a, 30); + + W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ + c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); + e = ROTATE_LEFT(e, 30); + + W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ + b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); + d = ROTATE_LEFT(d, 30); + + W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ + + ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + + SHA1_CONST(3); + ctx->state[1] += b; + ctx->state[2] += ROTATE_LEFT(c, 30); + ctx->state[3] += d; + ctx->state[4] += e; + + /* zeroize sensitive information */ + W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; + W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; +} +#endif /* !__amd64 */ + + +/* + * Encode() + * + * purpose: to convert a list of numbers from little endian to big endian + * input: uint8_t * : place to store the converted big endian numbers + * uint32_t * : place to get numbers to convert from + * size_t : the length of the input in bytes + * output: void + */ + +static void +Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, + size_t len) +{ + size_t i, j; + + for (i = 0, j = 0; j < len; i++, j += 4) { + output[j] = (input[i] >> 24) & 0xff; + output[j + 1] = (input[i] >> 16) & 0xff; + output[j + 2] = (input[i] >> 8) & 0xff; + output[j + 3] = input[i] & 0xff; + } +} diff --git a/module/icp/algs/sha2/sha2.c b/module/icp/algs/sha2/sha2.c new file mode 100644 index 000000000..792ca8825 --- /dev/null +++ b/module/icp/algs/sha2/sha2.c @@ -0,0 +1,495 @@ +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ +/* + * Copyright 2013 Saso Kiselkov. All rights reserved. + */ + +/* + * The basic framework for this code came from the reference + * implementation for MD5. That implementation is Copyright (C) + * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. + * + * License to copy and use this software is granted provided that it + * is identified as the "RSA Data Security, Inc. MD5 Message-Digest + * Algorithm" in all material mentioning or referencing this software + * or this function. + * + * License is also granted to make and use derivative works provided + * that such works are identified as "derived from the RSA Data + * Security, Inc. MD5 Message-Digest Algorithm" in all material + * mentioning or referencing the derived work. + * + * RSA Data Security, Inc. makes no representations concerning either + * the merchantability of this software or the suitability of this + * software for any particular purpose. It is provided "as is" + * without express or implied warranty of any kind. + * + * These notices must be retained in any copies of any part of this + * documentation and/or software. + * + * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 + * standard, available at + * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf + * Not as fast as one would like -- further optimizations are encouraged + * and appreciated. + */ + +#include <sys/zfs_context.h> +#define _SHA2_IMPL +#include <sha2/sha2.h> +#include <sha2/sha2_consts.h> + +#define _RESTRICT_KYWD + +#ifdef _LITTLE_ENDIAN +#include <sys/byteorder.h> +#define HAVE_HTONL +#endif + +static void Encode(uint8_t *, uint32_t *, size_t); + +#if defined(__amd64) +#define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1) +void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); +#else +static void SHA256Transform(SHA2_CTX *, const uint8_t *); +#endif /* __amd64 */ + +static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; + +/* Ch and Maj are the basic SHA2 functions. */ +#define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) +#define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) + +/* Rotates x right n bits. */ +#define ROTR(x, n) \ + (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) + +/* Shift x right n bits */ +#define SHR(x, n) ((x) >> (n)) + +/* SHA256 Functions */ +#define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) +#define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) +#define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) +#define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) + +#define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ + T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ + d += T1; \ + T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ + h = T1 + T2 + +/* + * sparc optimization: + * + * on the sparc, we can load big endian 32-bit data easily. note that + * special care must be taken to ensure the address is 32-bit aligned. + * in the interest of speed, we don't check to make sure, since + * careful programming can guarantee this for us. + */ + +#if defined(_BIG_ENDIAN) +#define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) +#define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) + +#elif defined(HAVE_HTONL) +#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) +#define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr))) + +#else +/* little endian -- will work on big endian, but slowly */ +#define LOAD_BIG_32(addr) \ + (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) +#define LOAD_BIG_64(addr) \ + (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ + ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ + ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ + ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) +#endif /* _BIG_ENDIAN */ + + +#if !defined(__amd64) +/* SHA256 Transform */ + +static void +SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) +{ + uint32_t a = ctx->state.s32[0]; + uint32_t b = ctx->state.s32[1]; + uint32_t c = ctx->state.s32[2]; + uint32_t d = ctx->state.s32[3]; + uint32_t e = ctx->state.s32[4]; + uint32_t f = ctx->state.s32[5]; + uint32_t g = ctx->state.s32[6]; + uint32_t h = ctx->state.s32[7]; + + uint32_t w0, w1, w2, w3, w4, w5, w6, w7; + uint32_t w8, w9, w10, w11, w12, w13, w14, w15; + uint32_t T1, T2; + + if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ + bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); + blk = (uint8_t *)ctx->buf_un.buf32; + } + + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w0 = LOAD_BIG_32(blk + 4 * 0); + SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w1 = LOAD_BIG_32(blk + 4 * 1); + SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w2 = LOAD_BIG_32(blk + 4 * 2); + SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w3 = LOAD_BIG_32(blk + 4 * 3); + SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w4 = LOAD_BIG_32(blk + 4 * 4); + SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w5 = LOAD_BIG_32(blk + 4 * 5); + SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w6 = LOAD_BIG_32(blk + 4 * 6); + SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w7 = LOAD_BIG_32(blk + 4 * 7); + SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w8 = LOAD_BIG_32(blk + 4 * 8); + SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w9 = LOAD_BIG_32(blk + 4 * 9); + SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w10 = LOAD_BIG_32(blk + 4 * 10); + SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w11 = LOAD_BIG_32(blk + 4 * 11); + SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w12 = LOAD_BIG_32(blk + 4 * 12); + SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w13 = LOAD_BIG_32(blk + 4 * 13); + SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w14 = LOAD_BIG_32(blk + 4 * 14); + SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w15 = LOAD_BIG_32(blk + 4 * 15); + SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); + + w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; + SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); + w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; + SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); + w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; + SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); + w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; + SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); + w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; + SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); + w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; + SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); + w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; + SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); + w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; + SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); + w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; + SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); + w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; + SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); + w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; + SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); + w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; + SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); + w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; + SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); + w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; + SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); + w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; + SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); + w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; + SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); + + w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; + SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); + w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; + SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); + w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; + SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); + w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; + SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); + w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; + SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); + w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; + SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); + w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; + SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); + w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; + SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); + w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; + SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); + w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; + SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); + w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; + SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); + w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; + SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); + w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; + SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); + w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; + SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); + w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; + SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); + w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; + SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); + + w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; + SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); + w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; + SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); + w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; + SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); + w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; + SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); + w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; + SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); + w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; + SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); + w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; + SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); + w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; + SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); + w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; + SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); + w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; + SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); + w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; + SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); + w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; + SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); + w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; + SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); + w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; + SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); + w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; + SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); + w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; + SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); + + ctx->state.s32[0] += a; + ctx->state.s32[1] += b; + ctx->state.s32[2] += c; + ctx->state.s32[3] += d; + ctx->state.s32[4] += e; + ctx->state.s32[5] += f; + ctx->state.s32[6] += g; + ctx->state.s32[7] += h; +} +#endif /* !__amd64 */ + + +/* + * Encode() + * + * purpose: to convert a list of numbers from little endian to big endian + * input: uint8_t * : place to store the converted big endian numbers + * uint32_t * : place to get numbers to convert from + * size_t : the length of the input in bytes + * output: void + */ + +static void +Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, + size_t len) +{ + size_t i, j; + + for (i = 0, j = 0; j < len; i++, j += 4) { + output[j] = (input[i] >> 24) & 0xff; + output[j + 1] = (input[i] >> 16) & 0xff; + output[j + 2] = (input[i] >> 8) & 0xff; + output[j + 3] = input[i] & 0xff; + } +} + +void +SHA2Init(uint64_t mech, SHA2_CTX *ctx) +{ + + switch (mech) { + case SHA256_MECH_INFO_TYPE: + case SHA256_HMAC_MECH_INFO_TYPE: + case SHA256_HMAC_GEN_MECH_INFO_TYPE: + ctx->state.s32[0] = 0x6a09e667U; + ctx->state.s32[1] = 0xbb67ae85U; + ctx->state.s32[2] = 0x3c6ef372U; + ctx->state.s32[3] = 0xa54ff53aU; + ctx->state.s32[4] = 0x510e527fU; + ctx->state.s32[5] = 0x9b05688cU; + ctx->state.s32[6] = 0x1f83d9abU; + ctx->state.s32[7] = 0x5be0cd19U; + break; + default: + cmn_err(CE_PANIC, + "sha2_init: failed to find a supported algorithm: 0x%x", + (uint32_t)mech); + } + + ctx->algotype = (uint32_t)mech; + ctx->count.c64[0] = ctx->count.c64[1] = 0; +} + +void +SHA256Init(SHA256_CTX *ctx) +{ + SHA2Init(SHA256, ctx); +} + +/* + * SHA2Update() + * + * purpose: continues an sha2 digest operation, using the message block + * to update the context. + * input: SHA2_CTX * : the context to update + * void * : the message block + * size_t : the length of the message block, in bytes + * output: void + */ + +void +SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) +{ + uint32_t i, buf_index, buf_len, buf_limit; + const uint8_t *input = inptr; + uint32_t algotype = ctx->algotype; +#if defined(__amd64) + uint32_t block_count; +#endif /* !__amd64 */ + + + /* check for noop */ + if (input_len == 0) + return; + + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + buf_limit = 64; + + /* compute number of bytes mod 64 */ + buf_index = (ctx->count.c32[1] >> 3) & 0x3F; + + /* update number of bits */ + if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) + ctx->count.c32[0]++; + + ctx->count.c32[0] += (input_len >> 29); + + } else { + buf_limit = 128; + + /* compute number of bytes mod 128 */ + buf_index = (ctx->count.c64[1] >> 3) & 0x7F; + + /* update number of bits */ + if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) + ctx->count.c64[0]++; + + ctx->count.c64[0] += (input_len >> 29); + } + + buf_len = buf_limit - buf_index; + + /* transform as many times as possible */ + i = 0; + if (input_len >= buf_len) { + + /* + * general optimization: + * + * only do initial bcopy() and SHA2Transform() if + * buf_index != 0. if buf_index == 0, we're just + * wasting our time doing the bcopy() since there + * wasn't any data left over from a previous call to + * SHA2Update(). + */ + if (buf_index) { + bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) + SHA256Transform(ctx, ctx->buf_un.buf8); + + i = buf_len; + } + +#if !defined(__amd64) + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + for (; i + buf_limit - 1 < input_len; i += buf_limit) { + SHA256Transform(ctx, &input[i]); + } + } + +#else + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + block_count = (input_len - i) >> 6; + if (block_count > 0) { + SHA256TransformBlocks(ctx, &input[i], + block_count); + i += block_count << 6; + } + } +#endif /* !__amd64 */ + + /* + * general optimization: + * + * if i and input_len are the same, return now instead + * of calling bcopy(), since the bcopy() in this case + * will be an expensive noop. + */ + + if (input_len == i) + return; + + buf_index = 0; + } + + /* buffer remaining input */ + bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); +} + + +/* + * SHA2Final() + * + * purpose: ends an sha2 digest operation, finalizing the message digest and + * zeroing the context. + * input: uchar_t * : a buffer to store the digest + * : The function actually uses void* because many + * : callers pass things other than uchar_t here. + * SHA2_CTX * : the context to finalize, save, and zero + * output: void + */ + +void +SHA2Final(void *digest, SHA2_CTX *ctx) +{ + uint8_t bitcount_be[sizeof (ctx->count.c32)]; + uint32_t index; + uint32_t algotype = ctx->algotype; + + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + index = (ctx->count.c32[1] >> 3) & 0x3f; + Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); + SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); + SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); + Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); + } + + /* zeroize sensitive information */ + bzero(ctx, sizeof (*ctx)); +} |