1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "vc4_context.h"
#include "vc4_qir.h"
#include "vc4_qpu.h"
#include "util/ralloc.h"
static void
vc4_dump_program(struct vc4_compile *c)
{
fprintf(stderr, "%s prog %d/%d QPU:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
for (int i = 0; i < c->qpu_inst_count; i++) {
fprintf(stderr, "0x%016"PRIx64" ", c->qpu_insts[i]);
vc4_qpu_disasm(&c->qpu_insts[i], 1);
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
static void
queue(struct qblock *block, uint64_t inst)
{
struct queued_qpu_inst *q = rzalloc(block, struct queued_qpu_inst);
q->inst = inst;
list_addtail(&q->link, &block->qpu_inst_list);
}
static uint64_t *
last_inst(struct qblock *block)
{
struct queued_qpu_inst *q =
(struct queued_qpu_inst *)block->qpu_inst_list.prev;
return &q->inst;
}
static void
set_last_cond_add(struct qblock *block, uint32_t cond)
{
*last_inst(block) = qpu_set_cond_add(*last_inst(block), cond);
}
static void
set_last_cond_mul(struct qblock *block, uint32_t cond)
{
*last_inst(block) = qpu_set_cond_mul(*last_inst(block), cond);
}
/**
* Some special registers can be read from either file, which lets us resolve
* raddr conflicts without extra MOVs.
*/
static bool
swap_file(struct qpu_reg *src)
{
switch (src->addr) {
case QPU_R_UNIF:
case QPU_R_VARY:
if (src->mux == QPU_MUX_SMALL_IMM) {
return false;
} else {
if (src->mux == QPU_MUX_A)
src->mux = QPU_MUX_B;
else
src->mux = QPU_MUX_A;
return true;
}
default:
return false;
}
}
/**
* Sets up the VPM read FIFO before we do any VPM read.
*
* VPM reads (vertex attribute input) and VPM writes (varyings output) from
* the QPU reuse the VRI (varying interpolation) block's FIFOs to talk to the
* VPM block. In the VS/CS (unlike in the FS), the block starts out
* uninitialized, and you need to emit setup to the block before any VPM
* reads/writes.
*
* VRI has a FIFO in each direction, with each FIFO able to hold four
* 32-bit-per-vertex values. VPM reads come through the read FIFO and VPM
* writes go through the write FIFO. The read/write setup values from QPU go
* through the write FIFO as well, with a sideband signal indicating that
* they're setup values. Once a read setup reaches the other side of the
* FIFO, the VPM block will start asynchronously reading vertex attributes and
* filling the read FIFO -- that way hopefully the QPU doesn't have to block
* on reads later.
*
* VPM read setup can configure 16 32-bit-per-vertex values to be read at a
* time, which is 4 vec4s. If more than that is being read (since we support
* 8 vec4 vertex attributes), then multiple read setup writes need to be done.
*
* The existence of the FIFO makes it seem like you should be able to emit
* both setups for the 5-8 attribute cases and then do all the attribute
* reads. However, once the setup value makes it to the other end of the
* write FIFO, it will immediately update the VPM block's setup register.
* That updated setup register would be used for read FIFO fills from then on,
* breaking whatever remaining VPM values were supposed to be read into the
* read FIFO from the previous attribute set.
*
* As a result, we need to emit the read setup, pull every VPM read value from
* that setup, and only then emit the second setup if applicable.
*/
static void
setup_for_vpm_read(struct vc4_compile *c, struct qblock *block)
{
if (c->num_inputs_in_fifo) {
c->num_inputs_in_fifo--;
return;
}
c->num_inputs_in_fifo = MIN2(c->num_inputs_remaining, 16);
queue(block,
qpu_load_imm_ui(qpu_vrsetup(),
c->vpm_read_offset |
0x00001a00 |
((c->num_inputs_in_fifo & 0xf) << 20)));
c->num_inputs_remaining -= c->num_inputs_in_fifo;
c->vpm_read_offset += c->num_inputs_in_fifo;
c->num_inputs_in_fifo--;
}
/**
* This is used to resolve the fact that we might register-allocate two
* different operands of an instruction to the same physical register file
* even though instructions have only one field for the register file source
* address.
*
* In that case, we need to move one to a temporary that can be used in the
* instruction, instead. We reserve ra14/rb14 for this purpose.
*/
static void
fixup_raddr_conflict(struct qblock *block,
struct qpu_reg dst,
struct qpu_reg *src0, struct qpu_reg *src1,
struct qinst *inst, uint64_t *unpack)
{
uint32_t mux0 = src0->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src0->mux;
uint32_t mux1 = src1->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src1->mux;
if (mux0 <= QPU_MUX_R5 ||
mux0 != mux1 ||
(src0->addr == src1->addr &&
src0->mux == src1->mux)) {
return;
}
if (swap_file(src0) || swap_file(src1))
return;
if (mux0 == QPU_MUX_A) {
/* Make sure we use the same type of MOV as the instruction,
* in case of unpacks.
*/
if (qir_is_float_input(inst))
queue(block, qpu_a_FMAX(qpu_rb(14), *src0, *src0));
else
queue(block, qpu_a_MOV(qpu_rb(14), *src0));
/* If we had an unpack on this A-file source, we need to put
* it into this MOV, not into the later move from regfile B.
*/
if (inst->src[0].pack) {
*last_inst(block) |= *unpack;
*unpack = 0;
}
*src0 = qpu_rb(14);
} else {
queue(block, qpu_a_MOV(qpu_ra(14), *src0));
*src0 = qpu_ra(14);
}
}
static void
set_last_dst_pack(struct qblock *block, struct qinst *inst)
{
ASSERTED bool had_pm = *last_inst(block) & QPU_PM;
ASSERTED bool had_ws = *last_inst(block) & QPU_WS;
ASSERTED uint32_t unpack = QPU_GET_FIELD(*last_inst(block), QPU_UNPACK);
if (!inst->dst.pack)
return;
*last_inst(block) |= QPU_SET_FIELD(inst->dst.pack, QPU_PACK);
if (qir_is_mul(inst)) {
assert(!unpack || had_pm);
*last_inst(block) |= QPU_PM;
} else {
assert(!unpack || !had_pm);
assert(!had_ws); /* dst must be a-file to pack. */
}
}
static void
handle_r4_qpu_write(struct qblock *block, struct qinst *qinst,
struct qpu_reg dst)
{
if (dst.mux != QPU_MUX_R4) {
queue(block, qpu_a_MOV(dst, qpu_r4()));
set_last_cond_add(block, qinst->cond);
} else {
assert(qinst->cond == QPU_COND_ALWAYS);
if (qinst->sf)
queue(block, qpu_a_MOV(qpu_ra(QPU_W_NOP), qpu_r4()));
}
}
static void
vc4_generate_code_block(struct vc4_compile *c,
struct qblock *block,
struct qpu_reg *temp_registers)
{
int last_vpm_read_index = -1;
qir_for_each_inst(qinst, block) {
#if 0
fprintf(stderr, "translating qinst to qpu: ");
qir_dump_inst(qinst);
fprintf(stderr, "\n");
#endif
static const struct {
uint32_t op;
} translate[] = {
#define A(name) [QOP_##name] = {QPU_A_##name}
#define M(name) [QOP_##name] = {QPU_M_##name}
A(FADD),
A(FSUB),
A(FMIN),
A(FMAX),
A(FMINABS),
A(FMAXABS),
A(FTOI),
A(ITOF),
A(ADD),
A(SUB),
A(SHL),
A(SHR),
A(ASR),
A(MIN),
A(MAX),
A(AND),
A(OR),
A(XOR),
A(NOT),
M(FMUL),
M(V8MULD),
M(V8MIN),
M(V8MAX),
M(V8ADDS),
M(V8SUBS),
M(MUL24),
/* If we replicate src[0] out to src[1], this works
* out the same as a MOV.
*/
[QOP_MOV] = { QPU_A_OR },
[QOP_FMOV] = { QPU_A_FMAX },
[QOP_MMOV] = { QPU_M_V8MIN },
[QOP_MIN_NOIMM] = { QPU_A_MIN },
};
uint64_t unpack = 0;
struct qpu_reg src[ARRAY_SIZE(qinst->src)];
for (int i = 0; i < qir_get_nsrc(qinst); i++) {
int index = qinst->src[i].index;
switch (qinst->src[i].file) {
case QFILE_NULL:
case QFILE_LOAD_IMM:
src[i] = qpu_rn(0);
break;
case QFILE_TEMP:
src[i] = temp_registers[index];
if (qinst->src[i].pack) {
assert(!unpack ||
unpack == qinst->src[i].pack);
unpack = QPU_SET_FIELD(qinst->src[i].pack,
QPU_UNPACK);
if (src[i].mux == QPU_MUX_R4)
unpack |= QPU_PM;
}
break;
case QFILE_UNIF:
src[i] = qpu_unif();
break;
case QFILE_VARY:
src[i] = qpu_vary();
break;
case QFILE_SMALL_IMM:
src[i].mux = QPU_MUX_SMALL_IMM;
src[i].addr = qpu_encode_small_immediate(qinst->src[i].index);
/* This should only have returned a valid
* small immediate field, not ~0 for failure.
*/
assert(src[i].addr <= 47);
break;
case QFILE_VPM:
setup_for_vpm_read(c, block);
assert((int)qinst->src[i].index >=
last_vpm_read_index);
(void)last_vpm_read_index;
last_vpm_read_index = qinst->src[i].index;
src[i] = qpu_ra(QPU_R_VPM);
break;
case QFILE_FRAG_X:
src[i] = qpu_ra(QPU_R_XY_PIXEL_COORD);
break;
case QFILE_FRAG_Y:
src[i] = qpu_rb(QPU_R_XY_PIXEL_COORD);
break;
case QFILE_FRAG_REV_FLAG:
src[i] = qpu_rb(QPU_R_MS_REV_FLAGS);
break;
case QFILE_QPU_ELEMENT:
src[i] = qpu_ra(QPU_R_ELEM_QPU);
break;
case QFILE_TLB_COLOR_WRITE:
case QFILE_TLB_COLOR_WRITE_MS:
case QFILE_TLB_Z_WRITE:
case QFILE_TLB_STENCIL_SETUP:
case QFILE_TEX_S:
case QFILE_TEX_S_DIRECT:
case QFILE_TEX_T:
case QFILE_TEX_R:
case QFILE_TEX_B:
unreachable("bad qir src file");
}
}
struct qpu_reg dst;
switch (qinst->dst.file) {
case QFILE_NULL:
dst = qpu_ra(QPU_W_NOP);
break;
case QFILE_TEMP:
dst = temp_registers[qinst->dst.index];
break;
case QFILE_VPM:
dst = qpu_ra(QPU_W_VPM);
break;
case QFILE_TLB_COLOR_WRITE:
dst = qpu_tlbc();
break;
case QFILE_TLB_COLOR_WRITE_MS:
dst = qpu_tlbc_ms();
break;
case QFILE_TLB_Z_WRITE:
dst = qpu_ra(QPU_W_TLB_Z);
break;
case QFILE_TLB_STENCIL_SETUP:
dst = qpu_ra(QPU_W_TLB_STENCIL_SETUP);
break;
case QFILE_TEX_S:
case QFILE_TEX_S_DIRECT:
dst = qpu_rb(QPU_W_TMU0_S);
break;
case QFILE_TEX_T:
dst = qpu_rb(QPU_W_TMU0_T);
break;
case QFILE_TEX_R:
dst = qpu_rb(QPU_W_TMU0_R);
break;
case QFILE_TEX_B:
dst = qpu_rb(QPU_W_TMU0_B);
break;
case QFILE_VARY:
case QFILE_UNIF:
case QFILE_SMALL_IMM:
case QFILE_LOAD_IMM:
case QFILE_FRAG_X:
case QFILE_FRAG_Y:
case QFILE_FRAG_REV_FLAG:
case QFILE_QPU_ELEMENT:
assert(!"not reached");
break;
}
ASSERTED bool handled_qinst_cond = false;
switch (qinst->op) {
case QOP_RCP:
case QOP_RSQ:
case QOP_EXP2:
case QOP_LOG2:
switch (qinst->op) {
case QOP_RCP:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIP),
src[0]) | unpack);
break;
case QOP_RSQ:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIPSQRT),
src[0]) | unpack);
break;
case QOP_EXP2:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_EXP),
src[0]) | unpack);
break;
case QOP_LOG2:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_LOG),
src[0]) | unpack);
break;
default:
abort();
}
handle_r4_qpu_write(block, qinst, dst);
handled_qinst_cond = true;
break;
case QOP_LOAD_IMM:
assert(qinst->src[0].file == QFILE_LOAD_IMM);
queue(block, qpu_load_imm_ui(dst, qinst->src[0].index));
break;
case QOP_LOAD_IMM_U2:
queue(block, qpu_load_imm_u2(dst, qinst->src[0].index));
break;
case QOP_LOAD_IMM_I2:
queue(block, qpu_load_imm_i2(dst, qinst->src[0].index));
break;
case QOP_ROT_MUL:
/* Rotation at the hardware level occurs on the inputs
* to the MUL unit, and they must be accumulators in
* order to have the time necessary to move things.
*/
assert(src[0].mux <= QPU_MUX_R3);
queue(block,
qpu_m_rot(dst, src[0], qinst->src[1].index -
QPU_SMALL_IMM_MUL_ROT) | unpack);
set_last_cond_mul(block, qinst->cond);
handled_qinst_cond = true;
set_last_dst_pack(block, qinst);
break;
case QOP_MS_MASK:
src[1] = qpu_ra(QPU_R_MS_REV_FLAGS);
fixup_raddr_conflict(block, dst, &src[0], &src[1],
qinst, &unpack);
queue(block, qpu_a_AND(qpu_ra(QPU_W_MS_FLAGS),
src[0], src[1]) | unpack);
break;
case QOP_FRAG_Z:
case QOP_FRAG_W:
/* QOP_FRAG_Z/W don't emit instructions, just allocate
* the register to the Z/W payload.
*/
break;
case QOP_TLB_COLOR_READ:
queue(block, qpu_NOP());
*last_inst(block) = qpu_set_sig(*last_inst(block),
QPU_SIG_COLOR_LOAD);
handle_r4_qpu_write(block, qinst, dst);
handled_qinst_cond = true;
break;
case QOP_VARY_ADD_C:
queue(block, qpu_a_FADD(dst, src[0], qpu_r5()) | unpack);
break;
case QOP_TEX_RESULT:
queue(block, qpu_NOP());
*last_inst(block) = qpu_set_sig(*last_inst(block),
QPU_SIG_LOAD_TMU0);
handle_r4_qpu_write(block, qinst, dst);
handled_qinst_cond = true;
break;
case QOP_THRSW:
queue(block, qpu_NOP());
*last_inst(block) = qpu_set_sig(*last_inst(block),
QPU_SIG_THREAD_SWITCH);
c->last_thrsw = last_inst(block);
break;
case QOP_BRANCH:
/* The branch target will be updated at QPU scheduling
* time.
*/
queue(block, (qpu_branch(qinst->cond, 0) |
QPU_BRANCH_REL));
handled_qinst_cond = true;
break;
case QOP_UNIFORMS_RESET:
fixup_raddr_conflict(block, dst, &src[0], &src[1],
qinst, &unpack);
queue(block, qpu_a_ADD(qpu_ra(QPU_W_UNIFORMS_ADDRESS),
src[0], src[1]));
break;
default:
assert(qinst->op < ARRAY_SIZE(translate));
assert(translate[qinst->op].op != 0); /* NOPs */
/* Skip emitting the MOV if it's a no-op. */
if (qir_is_raw_mov(qinst) &&
dst.mux == src[0].mux && dst.addr == src[0].addr) {
break;
}
/* If we have only one source, put it in the second
* argument slot as well so that we don't take up
* another raddr just to get unused data.
*/
if (qir_get_non_sideband_nsrc(qinst) == 1)
src[1] = src[0];
fixup_raddr_conflict(block, dst, &src[0], &src[1],
qinst, &unpack);
if (qir_is_mul(qinst)) {
queue(block, qpu_m_alu2(translate[qinst->op].op,
dst,
src[0], src[1]) | unpack);
set_last_cond_mul(block, qinst->cond);
} else {
queue(block, qpu_a_alu2(translate[qinst->op].op,
dst,
src[0], src[1]) | unpack);
set_last_cond_add(block, qinst->cond);
}
handled_qinst_cond = true;
set_last_dst_pack(block, qinst);
break;
}
assert(qinst->cond == QPU_COND_ALWAYS ||
handled_qinst_cond);
if (qinst->sf)
*last_inst(block) |= QPU_SF;
}
}
void
vc4_generate_code(struct vc4_context *vc4, struct vc4_compile *c)
{
struct qblock *start_block = list_first_entry(&c->blocks,
struct qblock, link);
struct qpu_reg *temp_registers = vc4_register_allocate(vc4, c);
if (!temp_registers)
return;
switch (c->stage) {
case QSTAGE_VERT:
case QSTAGE_COORD:
c->num_inputs_remaining = c->num_inputs;
queue(start_block, qpu_load_imm_ui(qpu_vwsetup(), 0x00001a00));
break;
case QSTAGE_FRAG:
break;
}
qir_for_each_block(block, c)
vc4_generate_code_block(c, block, temp_registers);
/* Switch the last SIG_THRSW instruction to SIG_LAST_THRSW.
*
* LAST_THRSW is a new signal in BCM2708B0 (including Raspberry Pi)
* that ensures that a later thread doesn't try to lock the scoreboard
* and terminate before an earlier-spawned thread on the same QPU, by
* delaying switching back to the later shader until earlier has
* finished. Otherwise, if the earlier thread was hitting the same
* quad, the scoreboard would deadlock.
*/
if (c->last_thrsw) {
assert(QPU_GET_FIELD(*c->last_thrsw, QPU_SIG) ==
QPU_SIG_THREAD_SWITCH);
*c->last_thrsw = ((*c->last_thrsw & ~QPU_SIG_MASK) |
QPU_SET_FIELD(QPU_SIG_LAST_THREAD_SWITCH,
QPU_SIG));
}
uint32_t cycles = qpu_schedule_instructions(c);
uint32_t inst_count_at_schedule_time = c->qpu_inst_count;
/* thread end can't have VPM write or read */
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_WADDR_ADD) == QPU_W_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_WADDR_MUL) == QPU_W_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_A) == QPU_R_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_B) == QPU_R_VPM) {
qpu_serialize_one_inst(c, qpu_NOP());
}
/* thread end can't have uniform read */
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_A) == QPU_R_UNIF ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_B) == QPU_R_UNIF) {
qpu_serialize_one_inst(c, qpu_NOP());
}
/* thread end can't have TLB operations */
if (qpu_inst_is_tlb(c->qpu_insts[c->qpu_inst_count - 1]))
qpu_serialize_one_inst(c, qpu_NOP());
/* Make sure there's no existing signal set (like for a small
* immediate)
*/
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG) != QPU_SIG_NONE) {
qpu_serialize_one_inst(c, qpu_NOP());
}
c->qpu_insts[c->qpu_inst_count - 1] =
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG_PROG_END);
qpu_serialize_one_inst(c, qpu_NOP());
qpu_serialize_one_inst(c, qpu_NOP());
switch (c->stage) {
case QSTAGE_VERT:
case QSTAGE_COORD:
break;
case QSTAGE_FRAG:
c->qpu_insts[c->qpu_inst_count - 1] =
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG_SCOREBOARD_UNLOCK);
break;
}
cycles += c->qpu_inst_count - inst_count_at_schedule_time;
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d estimated cycles\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
cycles);
}
if (vc4_debug & VC4_DEBUG_QPU)
vc4_dump_program(c);
vc4_qpu_validate(c->qpu_insts, c->qpu_inst_count);
free(temp_registers);
}
|