1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <map>
#include <unordered_map>
#include "aco_ir.h"
/*
* Implements the algorithm for dominator-tree value numbering
* from "Value Numbering" by Briggs, Cooper, and Simpson.
*/
namespace aco {
namespace {
struct InstrHash {
std::size_t operator()(Instruction* instr) const
{
uint64_t hash = (uint64_t) instr->opcode + (uint64_t) instr->format;
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
uint64_t val = op.isTemp() ? op.tempId() : op.isFixed() ? op.physReg() : op.constantValue();
hash |= val << (i+1) * 8;
}
if (instr->isVOP3()) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
for (unsigned i = 0; i < 3; i++) {
hash ^= vop3->abs[i] << (i*3 + 0);
hash ^= vop3->neg[i] << (i*3 + 2);
}
hash ^= vop3->opsel * 13;
hash ^= (vop3->clamp << 28) * 13;
hash += vop3->omod << 19;
}
switch (instr->format) {
case Format::SMEM:
break;
case Format::VINTRP: {
Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
hash ^= interp->attribute << 13;
hash ^= interp->component << 27;
break;
}
case Format::DS:
break;
default:
break;
}
return hash;
}
};
struct InstrPred {
bool operator()(Instruction* a, Instruction* b) const
{
if (a->format != b->format)
return false;
if (a->opcode != b->opcode)
return false;
if (a->operands.size() != b->operands.size() || a->definitions.size() != b->definitions.size())
return false; /* possible with pseudo-instructions */
for (unsigned i = 0; i < a->operands.size(); i++) {
if (a->operands[i].isConstant()) {
if (!b->operands[i].isConstant())
return false;
if (a->operands[i].constantValue() != b->operands[i].constantValue())
return false;
}
else if (a->operands[i].isTemp()) {
if (!b->operands[i].isTemp())
return false;
if (a->operands[i].tempId() != b->operands[i].tempId())
return false;
}
else if (a->operands[i].isUndefined() ^ b->operands[i].isUndefined())
return false;
if (a->operands[i].isFixed()) {
if (!b->operands[i].isFixed())
return false;
if (a->operands[i].physReg() != b->operands[i].physReg())
return false;
if (a->operands[i].physReg() == exec && a->pass_flags != b->pass_flags)
return false;
}
}
for (unsigned i = 0; i < a->definitions.size(); i++) {
if (a->definitions[i].isTemp()) {
if (!b->definitions[i].isTemp())
return false;
if (a->definitions[i].regClass() != b->definitions[i].regClass())
return false;
}
if (a->definitions[i].isFixed()) {
if (!b->definitions[i].isFixed())
return false;
if (a->definitions[i].physReg() != b->definitions[i].physReg())
return false;
if (a->definitions[i].physReg() == exec)
return false;
}
}
if (a->opcode == aco_opcode::v_readfirstlane_b32)
return a->pass_flags == b->pass_flags;
/* The results of VOPC depend on the exec mask if used for subgroup operations. */
if ((uint32_t) a->format & (uint32_t) Format::VOPC && a->pass_flags != b->pass_flags)
return false;
if (a->isVOP3()) {
VOP3A_instruction* a3 = static_cast<VOP3A_instruction*>(a);
VOP3A_instruction* b3 = static_cast<VOP3A_instruction*>(b);
for (unsigned i = 0; i < 3; i++) {
if (a3->abs[i] != b3->abs[i] ||
a3->neg[i] != b3->neg[i])
return false;
}
return a3->clamp == b3->clamp &&
a3->omod == b3->omod &&
a3->opsel == b3->opsel;
}
if (a->isDPP()) {
DPP_instruction* aDPP = static_cast<DPP_instruction*>(a);
DPP_instruction* bDPP = static_cast<DPP_instruction*>(b);
return aDPP->pass_flags == bDPP->pass_flags &&
aDPP->dpp_ctrl == bDPP->dpp_ctrl &&
aDPP->bank_mask == bDPP->bank_mask &&
aDPP->row_mask == bDPP->row_mask &&
aDPP->bound_ctrl == bDPP->bound_ctrl &&
aDPP->abs[0] == bDPP->abs[0] &&
aDPP->abs[1] == bDPP->abs[1] &&
aDPP->neg[0] == bDPP->neg[0] &&
aDPP->neg[1] == bDPP->neg[1];
}
switch (a->format) {
case Format::SOPK: {
SOPK_instruction* aK = static_cast<SOPK_instruction*>(a);
SOPK_instruction* bK = static_cast<SOPK_instruction*>(b);
return aK->imm == bK->imm;
}
case Format::SMEM: {
SMEM_instruction* aS = static_cast<SMEM_instruction*>(a);
SMEM_instruction* bS = static_cast<SMEM_instruction*>(b);
return aS->can_reorder && bS->can_reorder &&
aS->glc == bS->glc && aS->nv == bS->nv;
}
case Format::VINTRP: {
Interp_instruction* aI = static_cast<Interp_instruction*>(a);
Interp_instruction* bI = static_cast<Interp_instruction*>(b);
if (aI->attribute != bI->attribute)
return false;
if (aI->component != bI->component)
return false;
return true;
}
case Format::PSEUDO_REDUCTION: {
Pseudo_reduction_instruction *aR = static_cast<Pseudo_reduction_instruction*>(a);
Pseudo_reduction_instruction *bR = static_cast<Pseudo_reduction_instruction*>(b);
return aR->pass_flags == bR->pass_flags &&
aR->reduce_op == bR->reduce_op &&
aR->cluster_size == bR->cluster_size;
}
case Format::MTBUF: {
/* this is fine since they are only used for vertex input fetches */
MTBUF_instruction* aM = static_cast<MTBUF_instruction *>(a);
MTBUF_instruction* bM = static_cast<MTBUF_instruction *>(b);
return aM->can_reorder && bM->can_reorder &&
aM->barrier == bM->barrier &&
aM->dfmt == bM->dfmt &&
aM->nfmt == bM->nfmt &&
aM->offset == bM->offset &&
aM->offen == bM->offen &&
aM->idxen == bM->idxen &&
aM->glc == bM->glc &&
aM->slc == bM->slc &&
aM->tfe == bM->tfe &&
aM->disable_wqm == bM->disable_wqm;
}
/* we want to optimize these in NIR and don't hassle with load-store dependencies */
case Format::MUBUF:
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH:
case Format::EXP:
case Format::SOPP:
case Format::PSEUDO_BRANCH:
case Format::PSEUDO_BARRIER:
return false;
case Format::DS: {
if (a->opcode != aco_opcode::ds_bpermute_b32 &&
a->opcode != aco_opcode::ds_permute_b32 &&
a->opcode != aco_opcode::ds_swizzle_b32)
return false;
DS_instruction* aD = static_cast<DS_instruction *>(a);
DS_instruction* bD = static_cast<DS_instruction *>(b);
return aD->pass_flags == bD->pass_flags &&
aD->gds == bD->gds &&
aD->offset0 == bD->offset0 &&
aD->offset1 == bD->offset1;
}
case Format::MIMG: {
MIMG_instruction* aM = static_cast<MIMG_instruction*>(a);
MIMG_instruction* bM = static_cast<MIMG_instruction*>(b);
return aM->can_reorder && bM->can_reorder &&
aM->barrier == bM->barrier &&
aM->dmask == bM->dmask &&
aM->unrm == bM->unrm &&
aM->glc == bM->glc &&
aM->slc == bM->slc &&
aM->tfe == bM->tfe &&
aM->da == bM->da &&
aM->lwe == bM->lwe &&
aM->r128 == bM->r128 &&
aM->a16 == bM->a16 &&
aM->d16 == bM->d16 &&
aM->disable_wqm == bM->disable_wqm;
}
default:
return true;
}
}
};
using expr_set = std::unordered_map<Instruction*, uint32_t, InstrHash, InstrPred>;
struct vn_ctx {
Program* program;
expr_set expr_values;
std::map<uint32_t, Temp> renames;
/* The exec id should be the same on the same level of control flow depth.
* Together with the check for dominator relations, it is safe to assume
* that the same exec_id also means the same execution mask.
* Discards increment the exec_id, so that it won't return to the previous value.
*/
uint32_t exec_id = 1;
vn_ctx(Program* program) : program(program) {}
};
/* dominates() returns true if the parent block dominates the child block and
* if the parent block is part of the same loop or has a smaller loop nest depth.
*/
bool dominates(vn_ctx& ctx, uint32_t parent, uint32_t child)
{
unsigned parent_loop_nest_depth = ctx.program->blocks[parent].loop_nest_depth;
while (parent < child && parent_loop_nest_depth <= ctx.program->blocks[child].loop_nest_depth)
child = ctx.program->blocks[child].logical_idom;
return parent == child;
}
void process_block(vn_ctx& ctx, Block& block)
{
std::vector<aco_ptr<Instruction>> new_instructions;
new_instructions.reserve(block.instructions.size());
for (aco_ptr<Instruction>& instr : block.instructions) {
/* first, rename operands */
for (Operand& op : instr->operands) {
if (!op.isTemp())
continue;
auto it = ctx.renames.find(op.tempId());
if (it != ctx.renames.end())
op.setTemp(it->second);
}
if (instr->opcode == aco_opcode::p_discard_if ||
instr->opcode == aco_opcode::p_demote_to_helper)
ctx.exec_id++;
if (instr->definitions.empty() || instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi) {
new_instructions.emplace_back(std::move(instr));
continue;
}
/* simple copy-propagation through renaming */
if ((instr->opcode == aco_opcode::s_mov_b32 || instr->opcode == aco_opcode::s_mov_b64 || instr->opcode == aco_opcode::v_mov_b32) &&
!instr->definitions[0].isFixed() && instr->operands[0].isTemp() && instr->operands[0].regClass() == instr->definitions[0].regClass() &&
!instr->isDPP() && !((int)instr->format & (int)Format::SDWA)) {
ctx.renames[instr->definitions[0].tempId()] = instr->operands[0].getTemp();
}
instr->pass_flags = ctx.exec_id;
std::pair<expr_set::iterator, bool> res = ctx.expr_values.emplace(instr.get(), block.index);
/* if there was already an expression with the same value number */
if (!res.second) {
Instruction* orig_instr = res.first->first;
assert(instr->definitions.size() == orig_instr->definitions.size());
/* check if the original instruction dominates the current one */
if (dominates(ctx, res.first->second, block.index) &&
ctx.program->blocks[res.first->second].fp_mode.canReplace(block.fp_mode)) {
for (unsigned i = 0; i < instr->definitions.size(); i++) {
assert(instr->definitions[i].regClass() == orig_instr->definitions[i].regClass());
assert(instr->definitions[i].isTemp());
ctx.renames[instr->definitions[i].tempId()] = orig_instr->definitions[i].getTemp();
}
} else {
ctx.expr_values.erase(res.first);
ctx.expr_values.emplace(instr.get(), block.index);
new_instructions.emplace_back(std::move(instr));
}
} else {
new_instructions.emplace_back(std::move(instr));
}
}
block.instructions = std::move(new_instructions);
}
void rename_phi_operands(Block& block, std::map<uint32_t, Temp>& renames)
{
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
break;
for (Operand& op : phi->operands) {
if (!op.isTemp())
continue;
auto it = renames.find(op.tempId());
if (it != renames.end())
op.setTemp(it->second);
}
}
}
} /* end namespace */
void value_numbering(Program* program)
{
vn_ctx ctx(program);
std::vector<unsigned> loop_headers;
for (Block& block : program->blocks) {
assert(ctx.exec_id > 0);
/* decrement exec_id when leaving nested control flow */
if (block.kind & block_kind_loop_header)
loop_headers.push_back(block.index);
if (block.kind & block_kind_merge) {
ctx.exec_id--;
} else if (block.kind & block_kind_loop_exit) {
ctx.exec_id -= program->blocks[loop_headers.back()].linear_preds.size();
ctx.exec_id -= block.linear_preds.size();
loop_headers.pop_back();
}
if (block.logical_idom != -1)
process_block(ctx, block);
else
rename_phi_operands(block, ctx.renames);
/* increment exec_id when entering nested control flow */
if (block.kind & block_kind_branch ||
block.kind & block_kind_loop_preheader ||
block.kind & block_kind_break ||
block.kind & block_kind_continue ||
block.kind & block_kind_discard)
ctx.exec_id++;
else if (block.kind & block_kind_continue_or_break)
ctx.exec_id += 2;
}
/* rename loop header phi operands */
for (Block& block : program->blocks) {
if (block.kind & block_kind_loop_header)
rename_phi_operands(block, ctx.renames);
}
}
}
|