/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "aco_ir.h" /* * Implements the algorithm for dominator-tree value numbering * from "Value Numbering" by Briggs, Cooper, and Simpson. */ namespace aco { namespace { struct InstrHash { std::size_t operator()(Instruction* instr) const { uint64_t hash = (uint64_t) instr->opcode + (uint64_t) instr->format; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; uint64_t val = op.isTemp() ? op.tempId() : op.isFixed() ? op.physReg() : op.constantValue(); hash |= val << (i+1) * 8; } if (instr->isVOP3()) { VOP3A_instruction* vop3 = static_cast(instr); for (unsigned i = 0; i < 3; i++) { hash ^= vop3->abs[i] << (i*3 + 0); hash ^= vop3->neg[i] << (i*3 + 2); } hash ^= vop3->opsel * 13; hash ^= (vop3->clamp << 28) * 13; hash += vop3->omod << 19; } switch (instr->format) { case Format::SMEM: break; case Format::VINTRP: { Interp_instruction* interp = static_cast(instr); hash ^= interp->attribute << 13; hash ^= interp->component << 27; break; } case Format::DS: break; default: break; } return hash; } }; struct InstrPred { bool operator()(Instruction* a, Instruction* b) const { if (a->format != b->format) return false; if (a->opcode != b->opcode) return false; if (a->operands.size() != b->operands.size() || a->definitions.size() != b->definitions.size()) return false; /* possible with pseudo-instructions */ for (unsigned i = 0; i < a->operands.size(); i++) { if (a->operands[i].isConstant()) { if (!b->operands[i].isConstant()) return false; if (a->operands[i].constantValue() != b->operands[i].constantValue()) return false; } else if (a->operands[i].isTemp()) { if (!b->operands[i].isTemp()) return false; if (a->operands[i].tempId() != b->operands[i].tempId()) return false; } else if (a->operands[i].isUndefined() ^ b->operands[i].isUndefined()) return false; if (a->operands[i].isFixed()) { if (!b->operands[i].isFixed()) return false; if (a->operands[i].physReg() != b->operands[i].physReg()) return false; if (a->operands[i].physReg() == exec && a->pass_flags != b->pass_flags) return false; } } for (unsigned i = 0; i < a->definitions.size(); i++) { if (a->definitions[i].isTemp()) { if (!b->definitions[i].isTemp()) return false; if (a->definitions[i].regClass() != b->definitions[i].regClass()) return false; } if (a->definitions[i].isFixed()) { if (!b->definitions[i].isFixed()) return false; if (a->definitions[i].physReg() != b->definitions[i].physReg()) return false; if (a->definitions[i].physReg() == exec) return false; } } if (a->opcode == aco_opcode::v_readfirstlane_b32) return a->pass_flags == b->pass_flags; /* The results of VOPC depend on the exec mask if used for subgroup operations. */ if ((uint32_t) a->format & (uint32_t) Format::VOPC && a->pass_flags != b->pass_flags) return false; if (a->isVOP3()) { VOP3A_instruction* a3 = static_cast(a); VOP3A_instruction* b3 = static_cast(b); for (unsigned i = 0; i < 3; i++) { if (a3->abs[i] != b3->abs[i] || a3->neg[i] != b3->neg[i]) return false; } return a3->clamp == b3->clamp && a3->omod == b3->omod && a3->opsel == b3->opsel; } if (a->isDPP()) { DPP_instruction* aDPP = static_cast(a); DPP_instruction* bDPP = static_cast(b); return aDPP->pass_flags == bDPP->pass_flags && aDPP->dpp_ctrl == bDPP->dpp_ctrl && aDPP->bank_mask == bDPP->bank_mask && aDPP->row_mask == bDPP->row_mask && aDPP->bound_ctrl == bDPP->bound_ctrl && aDPP->abs[0] == bDPP->abs[0] && aDPP->abs[1] == bDPP->abs[1] && aDPP->neg[0] == bDPP->neg[0] && aDPP->neg[1] == bDPP->neg[1]; } switch (a->format) { case Format::SOPK: { SOPK_instruction* aK = static_cast(a); SOPK_instruction* bK = static_cast(b); return aK->imm == bK->imm; } case Format::SMEM: { SMEM_instruction* aS = static_cast(a); SMEM_instruction* bS = static_cast(b); return aS->can_reorder && bS->can_reorder && aS->glc == bS->glc && aS->nv == bS->nv; } case Format::VINTRP: { Interp_instruction* aI = static_cast(a); Interp_instruction* bI = static_cast(b); if (aI->attribute != bI->attribute) return false; if (aI->component != bI->component) return false; return true; } case Format::PSEUDO_REDUCTION: { Pseudo_reduction_instruction *aR = static_cast(a); Pseudo_reduction_instruction *bR = static_cast(b); return aR->pass_flags == bR->pass_flags && aR->reduce_op == bR->reduce_op && aR->cluster_size == bR->cluster_size; } case Format::MTBUF: { /* this is fine since they are only used for vertex input fetches */ MTBUF_instruction* aM = static_cast(a); MTBUF_instruction* bM = static_cast(b); return aM->can_reorder && bM->can_reorder && aM->barrier == bM->barrier && aM->dfmt == bM->dfmt && aM->nfmt == bM->nfmt && aM->offset == bM->offset && aM->offen == bM->offen && aM->idxen == bM->idxen && aM->glc == bM->glc && aM->slc == bM->slc && aM->tfe == bM->tfe && aM->disable_wqm == bM->disable_wqm; } /* we want to optimize these in NIR and don't hassle with load-store dependencies */ case Format::MUBUF: case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: case Format::EXP: case Format::SOPP: case Format::PSEUDO_BRANCH: case Format::PSEUDO_BARRIER: return false; case Format::DS: { if (a->opcode != aco_opcode::ds_bpermute_b32 && a->opcode != aco_opcode::ds_permute_b32 && a->opcode != aco_opcode::ds_swizzle_b32) return false; DS_instruction* aD = static_cast(a); DS_instruction* bD = static_cast(b); return aD->pass_flags == bD->pass_flags && aD->gds == bD->gds && aD->offset0 == bD->offset0 && aD->offset1 == bD->offset1; } case Format::MIMG: { MIMG_instruction* aM = static_cast(a); MIMG_instruction* bM = static_cast(b); return aM->can_reorder && bM->can_reorder && aM->barrier == bM->barrier && aM->dmask == bM->dmask && aM->unrm == bM->unrm && aM->glc == bM->glc && aM->slc == bM->slc && aM->tfe == bM->tfe && aM->da == bM->da && aM->lwe == bM->lwe && aM->r128 == bM->r128 && aM->a16 == bM->a16 && aM->d16 == bM->d16 && aM->disable_wqm == bM->disable_wqm; } default: return true; } } }; using expr_set = std::unordered_map; struct vn_ctx { Program* program; expr_set expr_values; std::map renames; /* The exec id should be the same on the same level of control flow depth. * Together with the check for dominator relations, it is safe to assume * that the same exec_id also means the same execution mask. * Discards increment the exec_id, so that it won't return to the previous value. */ uint32_t exec_id = 1; vn_ctx(Program* program) : program(program) {} }; /* dominates() returns true if the parent block dominates the child block and * if the parent block is part of the same loop or has a smaller loop nest depth. */ bool dominates(vn_ctx& ctx, uint32_t parent, uint32_t child) { unsigned parent_loop_nest_depth = ctx.program->blocks[parent].loop_nest_depth; while (parent < child && parent_loop_nest_depth <= ctx.program->blocks[child].loop_nest_depth) child = ctx.program->blocks[child].logical_idom; return parent == child; } void process_block(vn_ctx& ctx, Block& block) { std::vector> new_instructions; new_instructions.reserve(block.instructions.size()); for (aco_ptr& instr : block.instructions) { /* first, rename operands */ for (Operand& op : instr->operands) { if (!op.isTemp()) continue; auto it = ctx.renames.find(op.tempId()); if (it != ctx.renames.end()) op.setTemp(it->second); } if (instr->opcode == aco_opcode::p_discard_if || instr->opcode == aco_opcode::p_demote_to_helper) ctx.exec_id++; if (instr->definitions.empty() || instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi) { new_instructions.emplace_back(std::move(instr)); continue; } /* simple copy-propagation through renaming */ if ((instr->opcode == aco_opcode::s_mov_b32 || instr->opcode == aco_opcode::s_mov_b64 || instr->opcode == aco_opcode::v_mov_b32) && !instr->definitions[0].isFixed() && instr->operands[0].isTemp() && instr->operands[0].regClass() == instr->definitions[0].regClass() && !instr->isDPP() && !((int)instr->format & (int)Format::SDWA)) { ctx.renames[instr->definitions[0].tempId()] = instr->operands[0].getTemp(); } instr->pass_flags = ctx.exec_id; std::pair res = ctx.expr_values.emplace(instr.get(), block.index); /* if there was already an expression with the same value number */ if (!res.second) { Instruction* orig_instr = res.first->first; assert(instr->definitions.size() == orig_instr->definitions.size()); /* check if the original instruction dominates the current one */ if (dominates(ctx, res.first->second, block.index) && ctx.program->blocks[res.first->second].fp_mode.canReplace(block.fp_mode)) { for (unsigned i = 0; i < instr->definitions.size(); i++) { assert(instr->definitions[i].regClass() == orig_instr->definitions[i].regClass()); assert(instr->definitions[i].isTemp()); ctx.renames[instr->definitions[i].tempId()] = orig_instr->definitions[i].getTemp(); } } else { ctx.expr_values.erase(res.first); ctx.expr_values.emplace(instr.get(), block.index); new_instructions.emplace_back(std::move(instr)); } } else { new_instructions.emplace_back(std::move(instr)); } } block.instructions = std::move(new_instructions); } void rename_phi_operands(Block& block, std::map& renames) { for (aco_ptr& phi : block.instructions) { if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi) break; for (Operand& op : phi->operands) { if (!op.isTemp()) continue; auto it = renames.find(op.tempId()); if (it != renames.end()) op.setTemp(it->second); } } } } /* end namespace */ void value_numbering(Program* program) { vn_ctx ctx(program); std::vector loop_headers; for (Block& block : program->blocks) { assert(ctx.exec_id > 0); /* decrement exec_id when leaving nested control flow */ if (block.kind & block_kind_loop_header) loop_headers.push_back(block.index); if (block.kind & block_kind_merge) { ctx.exec_id--; } else if (block.kind & block_kind_loop_exit) { ctx.exec_id -= program->blocks[loop_headers.back()].linear_preds.size(); ctx.exec_id -= block.linear_preds.size(); loop_headers.pop_back(); } if (block.logical_idom != -1) process_block(ctx, block); else rename_phi_operands(block, ctx.renames); /* increment exec_id when entering nested control flow */ if (block.kind & block_kind_branch || block.kind & block_kind_loop_preheader || block.kind & block_kind_break || block.kind & block_kind_continue || block.kind & block_kind_discard) ctx.exec_id++; else if (block.kind & block_kind_continue_or_break) ctx.exec_id += 2; } /* rename loop header phi operands */ for (Block& block : program->blocks) { if (block.kind & block_kind_loop_header) rename_phi_operands(block, ctx.renames); } } }