aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2020-03-22 20:48:02 -0700
committerChris Robinson <[email protected]>2020-03-22 20:48:02 -0700
commitdc8ccc06ce2e4d7a7fec13f4e2a2bcda75ab43b9 (patch)
treef9d77aa44ac85c632b599e5dbdd2c01abb3b983f /alc/effects
parent813d4ed5668b44532f234a860ef494411a1009b1 (diff)
More cleanup for the pitch shifter
Diffstat (limited to 'alc/effects')
-rw-r--r--alc/effects/pshifter.cpp172
1 files changed, 70 insertions, 102 deletions
diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp
index b547fc84..993c26e7 100644
--- a/alc/effects/pshifter.cpp
+++ b/alc/effects/pshifter.cpp
@@ -65,31 +65,12 @@ std::array<double,STFT_SIZE> InitHannWindow()
alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow();
-struct ALphasor {
- double Amplitude;
- double Phase;
-};
-
-struct ALfrequencyDomain {
+struct FrequencyBin {
double Amplitude;
double Frequency;
};
-/* Converts complex to ALphasor */
-inline ALphasor rect2polar(const complex_d &number)
-{
- ALphasor polar;
- polar.Amplitude = std::abs(number);
- polar.Phase = std::arg(number);
- return polar;
-}
-
-/* Converts ALphasor to complex */
-inline complex_d polar2rect(const ALphasor &number)
-{ return std::polar<double>(number.Amplitude, number.Phase); }
-
-
struct PshifterState final : public EffectState {
/* Effect parameters */
size_t mCount;
@@ -98,22 +79,21 @@ struct PshifterState final : public EffectState {
double mFreqPerBin;
/* Effects buffers */
- double mInFIFO[STFT_SIZE];
- double mOutFIFO[STFT_STEP];
- double mLastPhase[STFT_HALF_SIZE+1];
- double mSumPhase[STFT_HALF_SIZE+1];
- double mOutputAccum[STFT_SIZE];
+ std::array<double,STFT_SIZE> mFIFO;
+ std::array<double,STFT_HALF_SIZE+1> mLastPhase;
+ std::array<double,STFT_HALF_SIZE+1> mSumPhase;
+ std::array<double,STFT_SIZE> mOutputAccum;
- complex_d mFFTbuffer[STFT_SIZE];
+ std::array<complex_d,STFT_SIZE> mFftBuffer;
- ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
- ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
+ std::array<FrequencyBin,STFT_HALF_SIZE+1> mAnalysisBuffer;
+ std::array<FrequencyBin,STFT_HALF_SIZE+1> mSynthesisBuffer;
- alignas(16) float mBufferOut[BUFFERSIZE];
+ alignas(16) FloatBufferLine mBufferOut;
/* Effect gains for each output channel */
- ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
- ALfloat mTargetGains[MAX_OUTPUT_CHANNELS];
+ float mCurrentGains[MAX_OUTPUT_CHANNELS];
+ float mTargetGains[MAX_OUTPUT_CHANNELS];
ALboolean deviceUpdate(const ALCdevice *device) override;
@@ -131,14 +111,13 @@ ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
mPitchShift = 1.0;
mFreqPerBin = device->Frequency / double{STFT_SIZE};
- std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0);
- std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0);
- std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
- std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
- std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
- std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{});
- std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{});
- std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{});
+ std::fill(mFIFO.begin(), mFIFO.end(), 0.0);
+ std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0);
+ std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0);
+ std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0);
+ std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{});
+ std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{});
+ std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
@@ -171,42 +150,40 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
for(size_t base{0u};base < samplesToDo;)
{
- size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
-
- /* Fill FIFO buffer with samples data */
- size_t count{mCount};
- do {
- mInFIFO[count] = samplesIn[0][base];
- mBufferOut[base] = static_cast<float>(mOutFIFO[count-FIFO_LATENCY]);
- ++base; ++count;
- } while(--todo);
- mCount = count;
-
- /* Check whether FIFO buffer is filled */
+ const size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
+
+ /* Retrieve the output samples from the FIFO and fill in the new input
+ * samples.
+ */
+ auto fifo_iter = mFIFO.begin() + mCount;
+ std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base,
+ [](double d) noexcept -> float { return static_cast<float>(d); });
+
+ std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
+ mCount += todo;
+ base += todo;
+
+ /* Check whether FIFO buffer is filled with new samples. */
if(mCount < STFT_SIZE) break;
mCount = FIFO_LATENCY;
- /* Real signal windowing and store in FFTbuffer */
+ /* Time-domain signal windowing, store in FftBuffer, and apply a
+ * forward FFT to get the frequency-domain signal.
+ */
for(size_t k{0u};k < STFT_SIZE;k++)
- {
- mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]);
- mFFTbuffer[k].imag(0.0);
- }
-
- /* ANALYSIS */
- /* Apply FFT to FFTbuffer data */
- complex_fft(mFFTbuffer, -1.0);
+ mFftBuffer[k] = mFIFO[k] * HannWindow[k];
+ complex_fft(mFftBuffer, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
- /* Compute amplitude and phase */
- ALphasor component{rect2polar(mFFTbuffer[k])};
+ const double amplitude{std::abs(mFftBuffer[k])};
+ const double phase{std::arg(mFftBuffer[k])};
/* Compute phase difference and subtract expected phase difference */
- double tmp{(component.Phase - mLastPhase[k]) - static_cast<double>(k)*expected};
+ double tmp{(phase - mLastPhase[k]) - static_cast<double>(k)*expected};
/* Map delta phase into +/- Pi interval */
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
@@ -219,68 +196,59 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
* for maintain the gain (because half of bins are used) and store
* amplitude and true frequency in analysis buffer.
*/
- mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
- mAnalysis_buffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
+ mAnalysisBuffer[k].Amplitude = 2.0 * amplitude;
+ mAnalysisBuffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
- /* Store actual phase[k] for the calculations in the next frame*/
- mLastPhase[k] = component.Phase;
- }
-
- /* PROCESSING */
- /* pitch shifting */
- for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
- {
- mSyntesis_buffer[k].Amplitude = 0.0;
- mSyntesis_buffer[k].Frequency = 0.0;
+ /* Store the actual phase[k] for the next frame. */
+ mLastPhase[k] = phase;
}
+ /* Shift the frequency bins according to the pitch adjustment,
+ * accumulating the amplitudes of overlapping frequency bins.
+ */
+ std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
size_t j{(k*mPitchShiftI) >> FRACTIONBITS};
if(j >= STFT_HALF_SIZE+1) break;
- mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude;
- mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift;
+ mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude;
+ mSynthesisBuffer[j].Frequency = mAnalysisBuffer[k].Frequency * mPitchShift;
}
- /* SYNTHESIS */
- /* Synthesis the processing data */
+ /* Reconstruct the frequency-domain signal from the adjusted frequency
+ * bins.
+ */
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
/* Compute bin deviation from scaled freq */
- const double tmp{mSyntesis_buffer[k].Frequency / freq_per_bin};
+ const double tmp{mSynthesisBuffer[k].Frequency / freq_per_bin};
/* Calculate actual delta phase and accumulate it to get bin phase */
mSumPhase[k] += tmp * expected;
- ALphasor component;
- component.Amplitude = mSyntesis_buffer[k].Amplitude;
- component.Phase = mSumPhase[k];
-
- /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
- mFFTbuffer[k] = polar2rect(component);
+ mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]);
}
- /* zero negative frequencies for recontruct a real signal */
- for(size_t k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
- mFFTbuffer[k] = complex_d{};
-
- /* Apply iFFT to buffer data */
- complex_fft(mFFTbuffer, 1.0);
+ /* Clear negative frequencies to recontruct the time-domain signal. */
+ std::fill(mFftBuffer.begin()+STFT_HALF_SIZE+1, mFftBuffer.end(), complex_d{});
- /* Windowing and add to output */
+ /* Apply an inverse FFT to get the time-domain siganl, and accumulate
+ * for the output with windowing.
+ */
+ complex_fft(mFftBuffer, 1.0);
for(size_t k{0u};k < STFT_SIZE;k++)
- mOutputAccum[k] += HannWindow[k]*mFFTbuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
-
- /* Shift accumulator, input & output FIFO */
- std::copy_n(mOutputAccum, STFT_STEP, mOutFIFO);
- auto accum_iter = std::copy(std::begin(mOutputAccum)+STFT_STEP, std::end(mOutputAccum),
- std::begin(mOutputAccum));
- std::fill(accum_iter, std::end(mOutputAccum), 0.0);
- std::copy(std::begin(mInFIFO)+STFT_STEP, std::end(mInFIFO), std::begin(mInFIFO));
+ mOutputAccum[k] += HannWindow[k]*mFftBuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
+
+ /* Shift FIFO and accumulator. */
+ fifo_iter = std::copy(mFIFO.begin()+STFT_STEP, mFIFO.end(), mFIFO.begin());
+ std::copy_n(mOutputAccum.begin(), STFT_STEP, fifo_iter);
+ auto accum_iter = std::copy(mOutputAccum.begin()+STFT_STEP, mOutputAccum.end(),
+ mOutputAccum.begin());
+ std::fill(accum_iter, mOutputAccum.end(), 0.0);
}
/* Now, mix the processed sound data to the output. */
- MixSamples({mBufferOut, samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
+ MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
maxz(samplesToDo, 512), 0);
}