diff options
-rw-r--r-- | alc/effects/pshifter.cpp | 172 |
1 files changed, 70 insertions, 102 deletions
diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp index b547fc84..993c26e7 100644 --- a/alc/effects/pshifter.cpp +++ b/alc/effects/pshifter.cpp @@ -65,31 +65,12 @@ std::array<double,STFT_SIZE> InitHannWindow() alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow(); -struct ALphasor { - double Amplitude; - double Phase; -}; - -struct ALfrequencyDomain { +struct FrequencyBin { double Amplitude; double Frequency; }; -/* Converts complex to ALphasor */ -inline ALphasor rect2polar(const complex_d &number) -{ - ALphasor polar; - polar.Amplitude = std::abs(number); - polar.Phase = std::arg(number); - return polar; -} - -/* Converts ALphasor to complex */ -inline complex_d polar2rect(const ALphasor &number) -{ return std::polar<double>(number.Amplitude, number.Phase); } - - struct PshifterState final : public EffectState { /* Effect parameters */ size_t mCount; @@ -98,22 +79,21 @@ struct PshifterState final : public EffectState { double mFreqPerBin; /* Effects buffers */ - double mInFIFO[STFT_SIZE]; - double mOutFIFO[STFT_STEP]; - double mLastPhase[STFT_HALF_SIZE+1]; - double mSumPhase[STFT_HALF_SIZE+1]; - double mOutputAccum[STFT_SIZE]; + std::array<double,STFT_SIZE> mFIFO; + std::array<double,STFT_HALF_SIZE+1> mLastPhase; + std::array<double,STFT_HALF_SIZE+1> mSumPhase; + std::array<double,STFT_SIZE> mOutputAccum; - complex_d mFFTbuffer[STFT_SIZE]; + std::array<complex_d,STFT_SIZE> mFftBuffer; - ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1]; - ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1]; + std::array<FrequencyBin,STFT_HALF_SIZE+1> mAnalysisBuffer; + std::array<FrequencyBin,STFT_HALF_SIZE+1> mSynthesisBuffer; - alignas(16) float mBufferOut[BUFFERSIZE]; + alignas(16) FloatBufferLine mBufferOut; /* Effect gains for each output channel */ - ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]; + float mCurrentGains[MAX_OUTPUT_CHANNELS]; + float mTargetGains[MAX_OUTPUT_CHANNELS]; ALboolean deviceUpdate(const ALCdevice *device) override; @@ -131,14 +111,13 @@ ALboolean PshifterState::deviceUpdate(const ALCdevice *device) mPitchShift = 1.0; mFreqPerBin = device->Frequency / double{STFT_SIZE}; - std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0); - std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0); - std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0); - std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0); - std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0); - std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{}); - std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{}); - std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{}); + std::fill(mFIFO.begin(), mFIFO.end(), 0.0); + std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0); + std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0); + std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0); + std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{}); + std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{}); + std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{}); std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); @@ -171,42 +150,40 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float for(size_t base{0u};base < samplesToDo;) { - size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)}; - - /* Fill FIFO buffer with samples data */ - size_t count{mCount}; - do { - mInFIFO[count] = samplesIn[0][base]; - mBufferOut[base] = static_cast<float>(mOutFIFO[count-FIFO_LATENCY]); - ++base; ++count; - } while(--todo); - mCount = count; - - /* Check whether FIFO buffer is filled */ + const size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)}; + + /* Retrieve the output samples from the FIFO and fill in the new input + * samples. + */ + auto fifo_iter = mFIFO.begin() + mCount; + std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base, + [](double d) noexcept -> float { return static_cast<float>(d); }); + + std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter); + mCount += todo; + base += todo; + + /* Check whether FIFO buffer is filled with new samples. */ if(mCount < STFT_SIZE) break; mCount = FIFO_LATENCY; - /* Real signal windowing and store in FFTbuffer */ + /* Time-domain signal windowing, store in FftBuffer, and apply a + * forward FFT to get the frequency-domain signal. + */ for(size_t k{0u};k < STFT_SIZE;k++) - { - mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]); - mFFTbuffer[k].imag(0.0); - } - - /* ANALYSIS */ - /* Apply FFT to FFTbuffer data */ - complex_fft(mFFTbuffer, -1.0); + mFftBuffer[k] = mFIFO[k] * HannWindow[k]; + complex_fft(mFftBuffer, -1.0); /* Analyze the obtained data. Since the real FFT is symmetric, only * STFT_HALF_SIZE+1 samples are needed. */ for(size_t k{0u};k < STFT_HALF_SIZE+1;k++) { - /* Compute amplitude and phase */ - ALphasor component{rect2polar(mFFTbuffer[k])}; + const double amplitude{std::abs(mFftBuffer[k])}; + const double phase{std::arg(mFftBuffer[k])}; /* Compute phase difference and subtract expected phase difference */ - double tmp{(component.Phase - mLastPhase[k]) - static_cast<double>(k)*expected}; + double tmp{(phase - mLastPhase[k]) - static_cast<double>(k)*expected}; /* Map delta phase into +/- Pi interval */ int qpd{double2int(tmp / al::MathDefs<double>::Pi())}; @@ -219,68 +196,59 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float * for maintain the gain (because half of bins are used) and store * amplitude and true frequency in analysis buffer. */ - mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude; - mAnalysis_buffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin; + mAnalysisBuffer[k].Amplitude = 2.0 * amplitude; + mAnalysisBuffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin; - /* Store actual phase[k] for the calculations in the next frame*/ - mLastPhase[k] = component.Phase; - } - - /* PROCESSING */ - /* pitch shifting */ - for(size_t k{0u};k < STFT_HALF_SIZE+1;k++) - { - mSyntesis_buffer[k].Amplitude = 0.0; - mSyntesis_buffer[k].Frequency = 0.0; + /* Store the actual phase[k] for the next frame. */ + mLastPhase[k] = phase; } + /* Shift the frequency bins according to the pitch adjustment, + * accumulating the amplitudes of overlapping frequency bins. + */ + std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{}); for(size_t k{0u};k < STFT_HALF_SIZE+1;k++) { size_t j{(k*mPitchShiftI) >> FRACTIONBITS}; if(j >= STFT_HALF_SIZE+1) break; - mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude; - mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift; + mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude; + mSynthesisBuffer[j].Frequency = mAnalysisBuffer[k].Frequency * mPitchShift; } - /* SYNTHESIS */ - /* Synthesis the processing data */ + /* Reconstruct the frequency-domain signal from the adjusted frequency + * bins. + */ for(size_t k{0u};k < STFT_HALF_SIZE+1;k++) { /* Compute bin deviation from scaled freq */ - const double tmp{mSyntesis_buffer[k].Frequency / freq_per_bin}; + const double tmp{mSynthesisBuffer[k].Frequency / freq_per_bin}; /* Calculate actual delta phase and accumulate it to get bin phase */ mSumPhase[k] += tmp * expected; - ALphasor component; - component.Amplitude = mSyntesis_buffer[k].Amplitude; - component.Phase = mSumPhase[k]; - - /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/ - mFFTbuffer[k] = polar2rect(component); + mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]); } - /* zero negative frequencies for recontruct a real signal */ - for(size_t k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++) - mFFTbuffer[k] = complex_d{}; - - /* Apply iFFT to buffer data */ - complex_fft(mFFTbuffer, 1.0); + /* Clear negative frequencies to recontruct the time-domain signal. */ + std::fill(mFftBuffer.begin()+STFT_HALF_SIZE+1, mFftBuffer.end(), complex_d{}); - /* Windowing and add to output */ + /* Apply an inverse FFT to get the time-domain siganl, and accumulate + * for the output with windowing. + */ + complex_fft(mFftBuffer, 1.0); for(size_t k{0u};k < STFT_SIZE;k++) - mOutputAccum[k] += HannWindow[k]*mFFTbuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP); - - /* Shift accumulator, input & output FIFO */ - std::copy_n(mOutputAccum, STFT_STEP, mOutFIFO); - auto accum_iter = std::copy(std::begin(mOutputAccum)+STFT_STEP, std::end(mOutputAccum), - std::begin(mOutputAccum)); - std::fill(accum_iter, std::end(mOutputAccum), 0.0); - std::copy(std::begin(mInFIFO)+STFT_STEP, std::end(mInFIFO), std::begin(mInFIFO)); + mOutputAccum[k] += HannWindow[k]*mFftBuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP); + + /* Shift FIFO and accumulator. */ + fifo_iter = std::copy(mFIFO.begin()+STFT_STEP, mFIFO.end(), mFIFO.begin()); + std::copy_n(mOutputAccum.begin(), STFT_STEP, fifo_iter); + auto accum_iter = std::copy(mOutputAccum.begin()+STFT_STEP, mOutputAccum.end(), + mOutputAccum.begin()); + std::fill(accum_iter, mOutputAccum.end(), 0.0); } /* Now, mix the processed sound data to the output. */ - MixSamples({mBufferOut, samplesToDo}, samplesOut, mCurrentGains, mTargetGains, + MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains, maxz(samplesToDo, 512), 0); } |