1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
/*
* RSA
* (C) 1999-2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/rsa.h>
#include <botan/parsing.h>
#include <botan/numthry.h>
#include <botan/keypair.h>
#include <botan/look_pk.h>
namespace Botan {
/*
* RSA Public Operation
*/
BigInt RSA_PublicKey::public_op(const BigInt& i) const
{
if(i >= n)
throw Invalid_Argument(algo_name() + "::public_op: input is too large");
return core.public_op(i);
}
/*
* RSA Encryption Function
*/
SecureVector<byte> RSA_PublicKey::encrypt(const byte in[], u32bit len,
RandomNumberGenerator&) const
{
BigInt i(in, len);
return BigInt::encode_1363(public_op(i), n.bytes());
}
/*
* RSA Verification Function
*/
SecureVector<byte> RSA_PublicKey::verify(const byte in[], u32bit len) const
{
BigInt i(in, len);
return BigInt::encode(public_op(i));
}
/*
* Create a RSA private key
*/
RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng,
u32bit bits, u32bit exp)
{
if(bits < 512)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
to_string(bits) + " bits long");
if(exp < 3 || exp % 2 == 0)
throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
e = exp;
p = random_prime(rng, (bits + 1) / 2, e);
q = random_prime(rng, bits - p.bits(), e);
n = p * q;
if(n.bits() != bits)
throw Self_Test_Failure(algo_name() + " private key generation failed");
d = inverse_mod(e, lcm(p - 1, q - 1));
d1 = d % (p - 1);
d2 = d % (q - 1);
c = inverse_mod(q, p);
core = IF_Core(rng, e, n, d, p, q, d1, d2, c);
gen_check(rng);
}
/*
* RSA Private Operation
*/
BigInt RSA_PrivateKey::private_op(const byte in[], u32bit length) const
{
BigInt i(in, length);
if(i >= n)
throw Invalid_Argument(algo_name() + "::private_op: input is too large");
BigInt r = core.private_op(i);
if(i != public_op(r))
throw Self_Test_Failure(algo_name() + " private operation check failed");
return r;
}
/*
* RSA Decryption Operation
*/
SecureVector<byte> RSA_PrivateKey::decrypt(const byte in[], u32bit len) const
{
return BigInt::encode(private_op(in, len));
}
/*
* RSA Signature Operation
*/
SecureVector<byte> RSA_PrivateKey::sign(const byte in[], u32bit len,
RandomNumberGenerator&) const
{
return BigInt::encode_1363(private_op(in, len), n.bytes());
}
/*
* Check Private RSA Parameters
*/
bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
{
if(!IF_Scheme_PrivateKey::check_key(rng, strong))
return false;
if(!strong)
return true;
if((e * d) % lcm(p - 1, q - 1) != 1)
return false;
try
{
KeyPair::check_key(rng,
get_pk_encryptor(*this, "EME1(SHA-1)"),
get_pk_decryptor(*this, "EME1(SHA-1)")
);
KeyPair::check_key(rng,
get_pk_signer(*this, "EMSA4(SHA-1)"),
get_pk_verifier(*this, "EMSA4(SHA-1)")
);
}
catch(Self_Test_Failure)
{
return false;
}
return true;
}
RSA_Signature_Operation::RSA_Signature_Operation(const RSA_PrivateKey& rsa) :
q(rsa.get_q()),
c(rsa.get_c()),
powermod_d1_p(rsa.get_d1(), rsa.get_p()),
powermod_d2_q(rsa.get_d2(), rsa.get_q()),
mod_p(rsa.get_p()),
n_bits(rsa.get_n().bits())
{
}
SecureVector<byte> RSA_Signature_Operation::sign(const byte msg[],
u32bit msg_len,
RandomNumberGenerator& rng)
{
const u32bit n_bytes = (n_bits + 7) / 8;
BigInt i(msg, msg_len);
BigInt j1 = powermod_d1_p(i);
BigInt j2 = powermod_d2_q(i);
j1 = mod_p.reduce(sub_mul(j1, j2, c));
return BigInt::encode_1363(mul_add(j1, q, j2), n_bytes);
}
}
|