/* * RSA * (C) 1999-2008 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include #include #include namespace Botan { /* * RSA Public Operation */ BigInt RSA_PublicKey::public_op(const BigInt& i) const { if(i >= n) throw Invalid_Argument(algo_name() + "::public_op: input is too large"); return core.public_op(i); } /* * RSA Encryption Function */ SecureVector RSA_PublicKey::encrypt(const byte in[], u32bit len, RandomNumberGenerator&) const { BigInt i(in, len); return BigInt::encode_1363(public_op(i), n.bytes()); } /* * RSA Verification Function */ SecureVector RSA_PublicKey::verify(const byte in[], u32bit len) const { BigInt i(in, len); return BigInt::encode(public_op(i)); } /* * Create a RSA private key */ RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng, u32bit bits, u32bit exp) { if(bits < 512) throw Invalid_Argument(algo_name() + ": Can't make a key that is only " + to_string(bits) + " bits long"); if(exp < 3 || exp % 2 == 0) throw Invalid_Argument(algo_name() + ": Invalid encryption exponent"); e = exp; p = random_prime(rng, (bits + 1) / 2, e); q = random_prime(rng, bits - p.bits(), e); n = p * q; if(n.bits() != bits) throw Self_Test_Failure(algo_name() + " private key generation failed"); d = inverse_mod(e, lcm(p - 1, q - 1)); d1 = d % (p - 1); d2 = d % (q - 1); c = inverse_mod(q, p); core = IF_Core(rng, e, n, d, p, q, d1, d2, c); gen_check(rng); } /* * RSA Private Operation */ BigInt RSA_PrivateKey::private_op(const byte in[], u32bit length) const { BigInt i(in, length); if(i >= n) throw Invalid_Argument(algo_name() + "::private_op: input is too large"); BigInt r = core.private_op(i); if(i != public_op(r)) throw Self_Test_Failure(algo_name() + " private operation check failed"); return r; } /* * RSA Decryption Operation */ SecureVector RSA_PrivateKey::decrypt(const byte in[], u32bit len) const { return BigInt::encode(private_op(in, len)); } /* * RSA Signature Operation */ SecureVector RSA_PrivateKey::sign(const byte in[], u32bit len, RandomNumberGenerator&) const { return BigInt::encode_1363(private_op(in, len), n.bytes()); } /* * Check Private RSA Parameters */ bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const { if(!IF_Scheme_PrivateKey::check_key(rng, strong)) return false; if(!strong) return true; if((e * d) % lcm(p - 1, q - 1) != 1) return false; try { KeyPair::check_key(rng, get_pk_encryptor(*this, "EME1(SHA-1)"), get_pk_decryptor(*this, "EME1(SHA-1)") ); KeyPair::check_key(rng, get_pk_signer(*this, "EMSA4(SHA-1)"), get_pk_verifier(*this, "EMSA4(SHA-1)") ); } catch(Self_Test_Failure) { return false; } return true; } RSA_Signature_Operation::RSA_Signature_Operation(const RSA_PrivateKey& rsa) : q(rsa.get_q()), c(rsa.get_c()), powermod_d1_p(rsa.get_d1(), rsa.get_p()), powermod_d2_q(rsa.get_d2(), rsa.get_q()), mod_p(rsa.get_p()), n_bits(rsa.get_n().bits()) { } SecureVector RSA_Signature_Operation::sign(const byte msg[], u32bit msg_len, RandomNumberGenerator& rng) { const u32bit n_bytes = (n_bits + 7) / 8; BigInt i(msg, msg_len); BigInt j1 = powermod_d1_p(i); BigInt j2 = powermod_d2_q(i); j1 = mod_p.reduce(sub_mul(j1, j2, c)); return BigInt::encode_1363(mul_add(j1, q, j2), n_bytes); } }