1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
/*
* Author: Sven Gothel <sgothel@jausoft.com>
* Copyright (c) 2024 Gothel Software e.K.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <jau/test/catch2_ext.hpp>
#include <jau/int_types.hpp>
#include <jau/mp/big_int.hpp>
using namespace jau;
using namespace jau::mp;
using namespace jau::int_literals;
static BigInt phi(const BigInt& P, const BigInt& Q) {
const BigInt one(BigInt::one());
return (P-one)*(Q-one);
}
/**
* Returns e with `1 < e < Φ(n)`
*
* e must be co-prime to phi and smaller than phi
*/
static BigInt eval_e(BigInt e, const BigInt& phi) {
const BigInt one(BigInt::one());
while (e < phi && gcd(e, phi) != one ) {
++e;
}
return e;
}
TEST_CASE( "MP Big Encryption Test 00", "[big_int_t][arithmetic][math]" ) {
std::cout << "big_int mp_word_bits " << std::to_string( mp_word_bits ) << std::endl;
// textbook RSA (insecure)
{
BigInt pub_P(53), pub_Q(59), pub_n(pub_P*pub_Q);
BigInt sec_phi = phi(pub_P, pub_Q);
BigInt pub_e = eval_e(BigInt(2), sec_phi);
std::cout << "Public Key:: P " << pub_P << ", Q " << pub_Q << ", n " << pub_n << ", e " << pub_e << std::endl;
// Private key (d stands for decrypt)
// choosing d such that it satisfies
// d*e = 1 + k * totient
BigInt sec_k = 2; // an arbitrary constant
BigInt sec_d = ( sec_k * sec_phi + 1 ) / pub_e;
std::cout << "Private Key:: phi " << sec_phi << ", k " << sec_k << ", d " << sec_d << std::endl;
// big_int_t clear("0x112233445566778899aabbccddeeff0102030405060708090a0b0c0d0e0f");
BigInt clear(1122);
std::cout << "clear:: " << clear.to_hex_string(true) << std::endl;
BigInt cipher = clear.mod_pow(pub_e, pub_n);
std::cout << "encrypted:: " << cipher.to_hex_string(true) << std::endl;
BigInt decrypted = cipher.mod_pow(sec_d, pub_n);
std::cout << "decrypted:: " << decrypted.to_hex_string(true) << std::endl;
REQUIRE( clear == decrypted );
}
}
|