aboutsummaryrefslogtreecommitdiffstats
path: root/include/jau/math/vec4f.hpp
blob: 2580c17257896ae3fe54c3810850dd3af2fb506a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
 * Author: Sven Gothel <sgothel@jausoft.com>
 * Copyright (c) 2022-2024 Gothel Software e.K.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
#ifndef JAU_VEC4F_HPP_
#define JAU_VEC4F_HPP_

#include <cmath>
#include <cstdarg>
#include <cstdint>
#include <cassert>
#include <limits>
#include <string>
#include <initializer_list>
#include <iostream>

#include <jau/float_math.hpp>
#include <jau/math/vec3f.hpp>

namespace jau::math {

    /** \addtogroup Math
     *
     *  @{
     */

    /**
     * 4D vector using four value_type components.
     */
    template<typename Value_type,
             std::enable_if_t<std::is_floating_point_v<Value_type>, bool> = true>
    class alignas(Value_type) Vector4F {
        public:
            typedef Value_type               value_type;
            typedef value_type*              pointer;
            typedef const value_type*        const_pointer;
            typedef value_type&              reference;
            typedef const value_type&        const_reference;
            typedef value_type*              iterator;
            typedef const value_type*        const_iterator;

            typedef Vector3F<value_type, std::is_floating_point_v<Value_type>> Vec3;

            constexpr static const value_type zero = value_type(0);
            constexpr static const value_type one  = value_type(1);

            value_type x;
            value_type y;
            value_type z;
            value_type w;

            constexpr Vector4F() noexcept
            : x(zero), y(zero), z(zero), w(zero) {}

            constexpr Vector4F(const value_type v) noexcept
            : x(v), y(v), z(v), w(v) {}

            constexpr Vector4F(const value_type x_, const value_type y_, const value_type z_, const value_type w_) noexcept
            : x(x_), y(y_), z(z_), w(w_) {}

            constexpr Vector4F(const Vec3& o3, const value_type w_) noexcept
            : x(o3.x), y(o3.y), z(o3.z), w(w_) {}

            constexpr Vector4F(const_iterator v) noexcept
            : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {}

            constexpr Vector4F(std::initializer_list<value_type> v) noexcept
            : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {}

            constexpr Vector4F(const Vector4F& o) noexcept = default;
            constexpr Vector4F(Vector4F&& o) noexcept = default;
            constexpr Vector4F& operator=(const Vector4F&) noexcept = default;
            constexpr Vector4F& operator=(Vector4F&&) noexcept = default;

            /** Returns read-only component */
            constexpr value_type operator[](size_t i) const noexcept {
                assert(i < 4);
                return (&x)[i];
            }

            /** Returns writeable reference to component */
            constexpr reference operator[](size_t i) noexcept {
                assert(i < 4);
                return (&x)[i];
            }

            /** xyzw = this, returns xyzw. */
            constexpr iterator get(iterator xyzw) const noexcept {
                xyzw[0] = x;
                xyzw[1] = y;
                xyzw[2] = z;
                xyzw[3] = w;
                return xyzw;
            }

            /** out = { this.x, this.y, this.z } dropping w, returns out. */
            constexpr Vec3& getVec3(Vec3& out) const noexcept {
                out.x = x;
                out.y = y;
                out.z = z;
                return out;
            }

            constexpr bool operator==(const Vector4F& rhs ) const noexcept {
                if( this == &rhs ) {
                    return true;
                }
                return jau::is_zero(x - rhs.x) && jau::is_zero(y - rhs.y) &&
                       jau::is_zero(z - rhs.z) && jau::is_zero(w - rhs.w);
            }
            /** TODO
            constexpr bool operator<=>(const vec4f_t& rhs ) const noexcept {
                return ...
            } */

            /** this = { o, w }, returns this. */
            constexpr Vector4F& set(const Vec3f& o, const value_type w_) noexcept
            { x = o.x; y = o.y; z = o.z; w = w_; return *this; }

            constexpr Vector4F& set(const value_type vx, const value_type vy, const value_type vz, const value_type vw) noexcept
            { x=vx; y=vy; z=vz; w=vw; return *this; }

            /** this = xyzw, returns this. */
            constexpr Vector4F& set(const_iterator xyzw) noexcept
            { x=xyzw[0]; y=xyzw[1]; z=xyzw[2]; z=xyzw[3]; return *this; }

            /** this = this + {dx, dy, dz, dw}, returns this. */
            constexpr Vector4F& add(const value_type dx, const value_type dy, const value_type dz, const value_type dw) noexcept
            { x+=dx; y+=dy; z+=dz; w+=dw; return *this; }

            /** this = this * {sx, sy, sz, sw}, returns this. */
            constexpr Vector4F& mul(const value_type sx, const value_type sy, const value_type sz, const value_type sw) noexcept
            { x*=sx; y*=sy; z*=sz; w*=sw; return *this; }

            /** this = this * s, returns this. */
            constexpr Vector4F& scale(const value_type s) noexcept
            { x*=s; y*=s; z*=s; w*=s; return *this; }

            /** this = this + rhs, returns this. */
            constexpr Vector4F& operator+=(const Vector4F& rhs ) noexcept {
                x+=rhs.x; y+=rhs.y; z+=rhs.z; w+=rhs.w;
                return *this;
            }

            /** this = this - rhs, returns this. */
            constexpr Vector4F& operator-=(const Vector4F& rhs ) noexcept {
                x-=rhs.x; y-=rhs.y; z-=rhs.z; w-=rhs.w;
                return *this;
            }

            /**
             * Scale this vector with given scale factor
             * @param s scale factor
             * @return this instance
             */
            constexpr Vector4F& operator*=(const value_type s ) noexcept {
                x*=s; y*=s; z*=s; w*=s;
                return *this;
            }

            /**
             * Divide this vector with given scale factor
             * @param s scale factor
             * @return this instance
             */
            constexpr Vector4F& operator/=(const value_type s ) noexcept {
                x/=s; y/=s; z/=s; w/=s;
                return *this;
            }

            std::string toString() const noexcept { return std::to_string(x)+" / "+std::to_string(y)+" / "+std::to_string(z)+" / "+std::to_string(w); }

            constexpr bool is_zero() const noexcept {
                return jau::is_zero(x) && jau::is_zero(y) && jau::is_zero(z) && jau::is_zero(w);
            }

            /**
             * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
             */
            constexpr value_type length_sq() const noexcept {
                return x*x + y*y + z*z + w*w;
            }

            /**
             * Return the length of a vector, a.k.a the <i>norm</i> or <i>magnitude</i>
             */
            constexpr value_type length() const noexcept {
                return std::sqrt(length_sq());
            }

            /**
             * Normalize this vector in place
             */
            constexpr Vector4F& normalize() noexcept {
                const value_type lengthSq = length_sq();
                if ( jau::is_zero( lengthSq ) ) {
                    x = zero;
                    y = zero;
                    z = zero;
                    w = zero;
                } else {
                    const value_type invSqr = one / std::sqrt(lengthSq);
                    x *= invSqr;
                    y *= invSqr;
                    z *= invSqr;
                    w *= invSqr;
                }
                return *this;
            }

            /**
             * Return the squared distance between this vector and the given one.
             * <p>
             * When comparing the relative distance between two points it is usually sufficient to compare the squared
             * distances, thus avoiding an expensive square root operation.
             * </p>
             */
            constexpr value_type dist_sq(const Vector4F& o) const noexcept {
                const value_type dx = x - o.x;
                const value_type dy = y - o.y;
                const value_type dz = z - o.z;
                const value_type dw = w - o.w;
                return dx*dx + dy*dy + dz*dz + dw*dw;
            }

            /**
             * Return the distance between this vector and the given one.
             */
            constexpr value_type dist(const Vector4F& o) const noexcept {
                return std::sqrt(dist_sq(o));
            }

            constexpr_cxx23 bool intersects(const Vector4F& o) const noexcept {
                const value_type eps = std::numeric_limits<value_type>::epsilon();
                if( std::abs(x-o.x) >= eps || std::abs(y-o.y) >= eps ||
                    std::abs(z-o.z) >= eps || std::abs(w-o.w) >= eps ) {
                    return false;
                }
                return true;
            }
    };

    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    constexpr Vector4F<T> operator+(const Vector4F<T>& lhs, const Vector4F<T>& rhs ) noexcept {
        // Returning a Vector4 object from the returned reference of operator+=()
        // may hinder copy-elision or "named return value optimization" (NRVO).
        // return Vector4<T>(lhs) += rhs;

        // Returning named object allows copy-elision (NRVO),
        // only one object is created 'on target'.
        Vector4F<T> r(lhs); r += rhs; return r;
    }

    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    constexpr Vector4F<T> operator-(const Vector4F<T>& lhs, const Vector4F<T>& rhs ) noexcept {
        Vector4F<T> r(lhs); r -= rhs; return r;
    }

    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    constexpr Vector4F<T> operator*(const Vector4F<T>& lhs, const T s ) noexcept {
        Vector4F<T> r(lhs); r *= s; return r;
    }

    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    constexpr Vector4F<T> operator*(const T s, const Vector4F<T>& rhs) noexcept {
        Vector4F<T> r(rhs); r *= s; return r;
    }

    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    constexpr Vector4F<T> operator/(const Vector4F<T>& lhs, const T s ) noexcept {
        Vector4F<T> r(lhs); r /= s; return r;
    }

    /** out = { this.x, this.y, this.z } dropping w, returns out. */
    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    constexpr Vector3F<T> to_vec3(const Vector4F<T>& v) noexcept {
        Vector3F<T> r; v.getVec3(r); return r;
    }

    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    std::ostream& operator<<(std::ostream& out, const Vector4F<T>& v) noexcept {
        return out << v.toString();
    }

    typedef Vector4F<float> Vec4f;
    static_assert(alignof(float) == alignof(Vec4f));
    static_assert(sizeof(float)*4 == sizeof(Vec4f));

    /**
     * Point4F alias of Vector4F
     */
    template<typename T,
             std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
    using Point4F = Vector4F<T>;

    typedef Point4F<float> Point4f;
    static_assert(alignof(float) == alignof(Point4f));
    static_assert(sizeof(float)*4 == sizeof(Point4f));

    /**@}*/

} // namespace jau::math

#endif /*  JAU_VEC4F_HPP_ */