aboutsummaryrefslogtreecommitdiffstats
path: root/include/jau/math/mat4f.hpp
blob: fa0afcf71e0afd26e9280703d2a24d12a20c0ff2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
/*
 * Author: Sven Gothel <sgothel@jausoft.com>
 * Copyright (c) 2014-2024 Gothel Software e.K.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
#ifndef JAU_MAT4f_HPP_
#define JAU_MAT4f_HPP_

#include <cmath>
#include <cstdarg>
#include <cstdint>
#include <cassert>
#include <limits>
#include <string>
#include <vector>
#include <initializer_list>
#include <iostream>

#include <jau/float_math.hpp>
#include <jau/math/math_error.hpp>
#include <jau/math/vec3f.hpp>
#include <jau/math/vec4f.hpp>
#include <jau/math/recti.hpp>
#include <jau/math/fov_hv_halves.hpp>

namespace jau::math::geom {
    class Frustum; // forward
}

namespace jau::math {

    /** \addtogroup Math
     *
     *  @{
     */

    template<typename Value_type,
             std::enable_if_t<std::is_floating_point_v<Value_type>, bool>>
    class Quaternion; // forward

/**
 * Basic 4x4 value_type matrix implementation using fields for intensive use-cases (host operations).
 * <p>
 * Implementation covers {@link FloatUtil} matrix functionality, exposed in an object oriented manner.
 * </p>
 * <p>
 * Unlike {@link com.jogamp.math.util.PMVmat4f PMVmat4f}, this class only represents one single matrix.
 * </p>
 * <p>
 * For array operations the layout is expected in column-major order
 * matching OpenGL's implementation, illustration:
 * <pre>
    Row-Major                       Column-Major (OpenGL):

        |  0   1   2  tx |
        |                |
        |  4   5   6  ty |
    M = |                |
        |  8   9  10  tz |
        |                |
        | 12  13  14  15 |

           R   C                      R   C
         m[0*4+3] = tx;             m[0+4*3] = tx;
         m[1*4+3] = ty;             m[1+4*3] = ty;
         m[2*4+3] = tz;             m[2+4*3] = tz;

          RC (std subscript order)   RC (std subscript order)
         m03 = tx;                  m03 = tx;
         m13 = ty;                  m13 = ty;
         m23 = tz;                  m23 = tz;

 * </pre>
 * </p>
 * <p>
 * <ul>
 *   <li><a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html">Matrix-FAQ</a></li>
 *   <li><a href="https://en.wikipedia.org/wiki/Matrix_%28mathematics%29">Wikipedia-Matrix</a></li>
 *   <li><a href="http://www.euclideanspace.com/maths/algebra/matrix/index.htm">euclideanspace.com-Matrix</a></li>
 * </ul>
 * </p>
 * <p>
 * Implementation utilizes unrolling of small vertices and matrices wherever possible
 * while trying to access memory in a linear fashion for performance reasons, see:
 * <ul>
 *   <li><a href="https://lessthanoptimal.github.io/Java-Matrix-Benchmark/">java-matrix-benchmark</a></li>
 *   <li><a href="https://github.com/lessthanoptimal/ejml">EJML Efficient Java Matrix Library</a></li>
 * </ul>
 * </p>
 */

template<typename Value_type,
         std::enable_if_t<std::is_floating_point_v<Value_type>, bool> = true>
class alignas(Value_type) Matrix4 {
  public:
    typedef Value_type               value_type;
    typedef value_type*              pointer;
    typedef const value_type*        const_pointer;
    typedef value_type&              reference;
    typedef const value_type&        const_reference;
    typedef value_type*              iterator;
    typedef const value_type*        const_iterator;

    typedef Vector3F<value_type, std::is_floating_point_v<Value_type>> Vec3;
    typedef Vector4F<value_type, std::is_floating_point_v<Value_type>> Vec4;
    typedef Ray3F<value_type, std::is_floating_point_v<Value_type>> Ray3;

    constexpr static const value_type zero = value_type(0);
    constexpr static const value_type one  = value_type(1);
    constexpr static const value_type two  = value_type(2);
    constexpr static const value_type half = one/two;

    /**
     * Inversion Epsilon, used with equals method to determine if two inverted matrices are close enough to be considered equal.
     * <p>
     * Using {@value}, which is ~84 times `std::numeric_limits<value_type>::epsilon()`.
     * </p>
     */
    constexpr static const value_type inv_deviation = value_type(84) * std::numeric_limits<value_type>::epsilon(); // 84 * EPSILON(1.1920929E-7f) = 1.0E-5f

  private:
    //     RC
    value_type m00, m10, m20, m30; // column 0
    value_type m01, m11, m21, m31; // column 1
    value_type m02, m12, m22, m32; // column 2
    value_type m03, m13, m23, m33; // column 3

    friend geom::Frustum;
    friend Quaternion<value_type, std::is_floating_point_v<Value_type>>;

  public:

    /**
     * Creates a new identity matrix.
     */
    constexpr Matrix4() noexcept
    : m00(one),  m10(zero), m20(zero), m30(zero),
      m01(zero), m11(one),  m21(zero), m31(zero),
      m02(zero), m12(zero), m22(one),  m32(zero),
      m03(zero), m13(zero), m23(zero), m33(one)
    { }

    /**
     * Creates a new matrix based on given value_type[4*4] column major order.
     * @param m 4x4 matrix in column-major order
     */
    constexpr Matrix4(const_iterator m) noexcept
    : m00(*m),     m10(*(++m)), m20(*(++m)), m30(*(++m)), // column 0
      m01(*(++m)), m11(*(++m)), m21(*(++m)), m31(*(++m)), // column 1
      m02(*(++m)), m12(*(++m)), m22(*(++m)), m32(*(++m)), // column 2
      m03(*(++m)), m13(*(++m)), m23(*(++m)), m33(*(++m))  // column 3
    {}

    /**
     * Creates a new matrix based on given value_type initializer list in column major order.
     * @param m source initializer list value_type data to be copied into this new instance, implied size must be >= 16
     */
    constexpr Matrix4(std::initializer_list<value_type> m) noexcept
    : Matrix4( m.begin() )
    {
        assert(m.size() >= 16 );
    }

    /**
     * Creates a new matrix copying the values of the given {@code src} matrix.
     */
    constexpr Matrix4(const Matrix4& o) noexcept
    : Matrix4( o.cbegin() )
    { }

    /**
     * Copy assignment using the the values of the given {@code src} matrix.
     */
    constexpr Matrix4& operator=(const Matrix4& o) noexcept { return load(o); }

    constexpr bool equals(const Matrix4& o, const value_type epsilon=std::numeric_limits<value_type>::epsilon()) const noexcept {
        if( this == &o ) {
            return true;
        } else {
            return jau::equals(m00, o.m00, epsilon) &&
                   jau::equals(m01, o.m01, epsilon) &&
                   jau::equals(m02, o.m02, epsilon) &&
                   jau::equals(m03, o.m03, epsilon) &&
                   jau::equals(m10, o.m10, epsilon) &&
                   jau::equals(m11, o.m11, epsilon) &&
                   jau::equals(m12, o.m12, epsilon) &&
                   jau::equals(m13, o.m13, epsilon) &&
                   jau::equals(m20, o.m20, epsilon) &&
                   jau::equals(m21, o.m21, epsilon) &&
                   jau::equals(m22, o.m22, epsilon) &&
                   jau::equals(m23, o.m23, epsilon) &&
                   jau::equals(m30, o.m30, epsilon) &&
                   jau::equals(m31, o.m31, epsilon) &&
                   jau::equals(m32, o.m32, epsilon) &&
                   jau::equals(m33, o.m33, epsilon);
        }
    }
    constexpr bool operator==(const Matrix4& rhs) const noexcept { return equals(rhs); }

    //
    // Write to Matrix via set(..) or load(..)
    //

    /**
     * Returns writable reference to the {@code i}th component of this column-major order matrix, 0 <= i < 16 w/o boundary check
     */
    constexpr reference operator[](size_t i) noexcept {
        assert( i < 16 );
        return (&m00)[i];
    }

    /** Sets the {@code i}th component of this column-major order matrix with value_type {@code v}, 0 <= i < 16 w/o boundary check*/
    constexpr void set(const jau::nsize_t i, const value_type v) noexcept {
        assert( i < 16 );
        (&m00)[i] = v;
    }

    explicit operator pointer() noexcept { return &m00; }
    constexpr iterator begin() noexcept { return &m00; }

    /**
     * Set this matrix to identity.
     * <pre>
      Translation matrix (Column Order):
      1 0 0 0
      0 1 0 0
      0 0 1 0
      0 0 0 1
     * </pre>
     * @return this matrix for chaining
     */
    constexpr Matrix4& loadIdentity() noexcept {
       m00 = m11 = m22 = m33 = one;
       m01 = m02 = m03 =
       m10 = m12 = m13 =
       m20 = m21 = m23 =
       m30 = m31 = m32 = zero;
       return *this;
    }

    /**
     * Load the values of the given matrix {@code src} to this matrix w/o boundary check.
     * @param src 4x4 matrix value_type[16] in column-major order
     * @return this matrix for chaining
     */
    constexpr Matrix4& load(const_iterator src) noexcept {
      // RC
        m00 = *src;     // column 0
        m10 = *(++src);
        m20 = *(++src);
        m30 = *(++src);
        m01 = *(++src); // column 1
        m11 = *(++src);
        m21 = *(++src);
        m31 = *(++src);
        m02 = *(++src); // column 2
        m12 = *(++src);
        m22 = *(++src);
        m32 = *(++src);
        m03 = *(++src); // column 3
        m13 = *(++src);
        m23 = *(++src);
        m33 = *(++src);
        return *this;
    }
    /**
     * Load the values of the given matrix {@code src} to this matrix w/o boundary check
     * @param src the source values
     * @return this matrix for chaining
     */
    constexpr Matrix4& load(const Matrix4& src) noexcept {
        return load( src.cbegin() );
    }

    //
    // Read out Matrix via get(..)
    //

    /**
     * Returns read-only {@code i}th component of the given column-major order matrix, 0 <= i < 16 w/o boundary check
     */
    constexpr value_type operator[](size_t i) const noexcept {
        assert( i < 16 );
        return (&m00)[i];
    }

    /** Returns the {@code i}th component of the given column-major order matrix, 0 <= i < 16, w/o boundary check */
    constexpr value_type get(const jau::nsize_t i) const noexcept {
        assert( i < 16 );
        return (&m00)[i];
    }

    explicit operator const_pointer() const noexcept { return &m00; }
    constexpr const_iterator cbegin() const noexcept { return &m00; }

    /**
     * Get the named column of the given column-major matrix to v_out w/o boundary check.
     * @param column named column to copy
     * @param v_out the column-vector storage
     * @return given result vector <i>v_out</i> for chaining
     */
    constexpr Vec4& getColumn(const jau::nsize_t column, Vec4& v_out) const noexcept {
        assert( column < 4 );
        return v_out.set( get(0+column*4),
                          get(1+column*4),
                          get(2+column*4),
                          get(3+column*4) );
    }

    /**
     * Get the named column of the given column-major matrix to v_out w/o boundary check.
     * @param column named column to copy
     * @return result vector holding the requested column
     */
    constexpr Vec4 getColumn(const jau::nsize_t column) const noexcept {
        assert( column < 4 );
        return Vec4( get(0+column*4),
                     get(1+column*4),
                     get(2+column*4),
                     get(3+column*4) );
    }

    /**
     * Get the named column of the given column-major matrix to v_out w/o boundary check.
     * @param column named column to copy
     * @param v_out the column-vector storage
     * @return given result vector <i>v_out</i> for chaining
     */
    constexpr Vec3& getColumn(const jau::nsize_t column, Vec3& v_out) const noexcept {
        return v_out.set( get(0+column*4),
                          get(1+column*4),
                          get(2+column*4) );
    }

    /**
     * Get the named row of the given column-major matrix to v_out w/ boundary check.
     * @param row named row to copy
     * @param v_out the row-vector storage
     * @return given result vector <i>v_out</i> for chaining
     */
    constexpr Vec4& getRow(const jau::nsize_t row, Vec4& v_out) const noexcept {
        return v_out.set( get(row+0*4),
                          get(row+1*4),
                          get(row+2*4),
                          get(row+3*4) );
    }
    /**
     * Get the named column of the given column-major matrix to v_out w/o boundary check.
     * @param row named row to copy
     * @return result vector holding the requested row
     */
    constexpr Vec4 getRow(const jau::nsize_t row) const noexcept {
        return Vec4( get(row+0*4),
                     get(row+1*4),
                     get(row+2*4),
                     get(row+3*4) );
    }

    /**
     * Get the named row of the given column-major matrix to v_out w/o boundary check.
     * @param row named row to copy
     * @param v_out the row-vector assert( i < 16 )e
     * @return given result vector <i>v_out</i> for chaining
     */
    constexpr Vec3& getRow(const jau::nsize_t row, Vec3& v_out) const noexcept {
        assert( row <= 2 );
        return v_out.set( get(row+0*4),
                          get(row+1*4),
                          get(row+2*4) );
    }

    /**
     * Get this matrix into the given value_type[16] array in column major order w/o boundary check.
     *
     * @param dst value_type[16] array storage in column major order
     * @return {@code dst} for chaining
     */
    constexpr iterator get(iterator dst) const noexcept {
        iterator dst_i = dst;
        *dst_i     = m00; // column 0
        *(++dst_i) = m10;
        *(++dst_i) = m20;
        *(++dst_i) = m30;
        *(++dst_i) = m01; // column 1
        *(++dst_i) = m11;
        *(++dst_i) = m21;
        *(++dst_i) = m31;
        *(++dst_i) = m02; // column 2
        *(++dst_i) = m12;
        *(++dst_i) = m22;
        *(++dst_i) = m32;
        *(++dst_i) = m03; // column 3
        *(++dst_i) = m13;
        *(++dst_i) = m23;
        *(++dst_i) = m33;
        return dst;
    }

    /**
     * Get this matrix into the given {@link FloatBuffer} in column major order.
     *
     * @param dst 4x4 matrix std::vector in column-major order starting at {@code dst_off}
     * @param dst_off offset for matrix {@code dst}
     * @return {@code dst} for chaining
     */
    constexpr std::vector<value_type>& get(std::vector<value_type>& dst, size_t dst_off) const noexcept {
        assert( dst.size() >= dst_off+16 && dst_off <= std::numeric_limits<size_t>::max() - 15 );
        get( &dst[dst_off++] );
        return dst;
    }

    //
    // Basic matrix operations
    //

    /**
     * Returns the determinant of this matrix
     * @return the matrix determinant
     */
    value_type determinant() const noexcept {
        value_type ret = 0;
        ret += m00 * ( + m11*(m22*m33 - m23*m32) - m12*(m21*m33 - m23*m31) + m13*(m21*m32 - m22*m31));
        ret -= m01 * ( + m10*(m22*m33 - m23*m32) - m12*(m20*m33 - m23*m30) + m13*(m20*m32 - m22*m30));
        ret += m02 * ( + m10*(m21*m33 - m23*m31) - m11*(m20*m33 - m23*m30) + m13*(m20*m31 - m21*m30));
        ret -= m03 * ( + m10*(m21*m32 - m22*m31) - m11*(m20*m32 - m22*m30) + m12*(m20*m31 - m21*m30));
        return ret;
    }

    /**
     * Transpose this matrix.
     *
     * @return this matrix for chaining
     */
    Matrix4& transpose() noexcept {
        value_type tmp;

        tmp = m10;
        m10 = m01;
        m01 = tmp;

        tmp = m20;
        m20 = m02;
        m02 = tmp;

        tmp = m30;
        m30 = m03;
        m03 = tmp;

        tmp = m21;
        m21 = m12;
        m12 = tmp;

        tmp = m31;
        m31 = m13;
        m13 = tmp;

        tmp = m32;
        m32 = m23;
        m23 = tmp;

        return *this;
    }

    /**
     * Transpose the given {@code src} matrix into this matrix.
     *
     * @param src source 4x4 matrix
     * @return this matrix (result) for chaining
     */
    Matrix4& transpose(const Matrix4& src) noexcept {
        if( &src == this ) {
            return transpose();
        }
        m00 = src.m00;
        m10 = src.m01;
        m20 = src.m02;
        m30 = src.m03;

        m01 = src.m10;
        m11 = src.m11;
        m21 = src.m12;
        m31 = src.m13;

        m02 = src.m20;
        m12 = src.m21;
        m22 = src.m22;
        m32 = src.m23;

        m03 = src.m30;
        m13 = src.m31;
        m23 = src.m32;
        m33 = src.m33;
        return *this;
    }

    /**
     * Invert this matrix.
     * @return false if this matrix is singular and inversion not possible, otherwise true
     */
    bool invert() noexcept {
        const value_type amax = absMax();
        if( zero == amax ) {
            return false;
        }
        const value_type scale = one/amax;
        const value_type a00 = m00*scale;
        const value_type a10 = m10*scale;
        const value_type a20 = m20*scale;
        const value_type a30 = m30*scale;

        const value_type a01 = m01*scale;
        const value_type a11 = m11*scale;
        const value_type a21 = m21*scale;
        const value_type a31 = m31*scale;

        const value_type a02 = m02*scale;
        const value_type a12 = m12*scale;
        const value_type a22 = m22*scale;
        const value_type a32 = m32*scale;

        const value_type a03 = m03*scale;
        const value_type a13 = m13*scale;
        const value_type a23 = m23*scale;
        const value_type a33 = m33*scale;

        const value_type b00 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31);
        const value_type b01 = -( + a10*(a22*a33 - a23*a32) - a12*(a20*a33 - a23*a30) + a13*(a20*a32 - a22*a30));
        const value_type b02 = + a10*(a21*a33 - a23*a31) - a11*(a20*a33 - a23*a30) + a13*(a20*a31 - a21*a30);
        const value_type b03 = -( + a10*(a21*a32 - a22*a31) - a11*(a20*a32 - a22*a30) + a12*(a20*a31 - a21*a30));

        const value_type b10 = -( + a01*(a22*a33 - a23*a32) - a02*(a21*a33 - a23*a31) + a03*(a21*a32 - a22*a31));
        const value_type b11 = + a00*(a22*a33 - a23*a32) - a02*(a20*a33 - a23*a30) + a03*(a20*a32 - a22*a30);
        const value_type b12 = -( + a00*(a21*a33 - a23*a31) - a01*(a20*a33 - a23*a30) + a03*(a20*a31 - a21*a30));
        const value_type b13 = + a00*(a21*a32 - a22*a31) - a01*(a20*a32 - a22*a30) + a02*(a20*a31 - a21*a30);

        const value_type b20 = + a01*(a12*a33 - a13*a32) - a02*(a11*a33 - a13*a31) + a03*(a11*a32 - a12*a31);
        const value_type b21 = -( + a00*(a12*a33 - a13*a32) - a02*(a10*a33 - a13*a30) + a03*(a10*a32 - a12*a30));
        const value_type b22 = + a00*(a11*a33 - a13*a31) - a01*(a10*a33 - a13*a30) + a03*(a10*a31 - a11*a30);
        const value_type b23 = -( + a00*(a11*a32 - a12*a31) - a01*(a10*a32 - a12*a30) + a02*(a10*a31 - a11*a30));

        const value_type b30 = -( + a01*(a12*a23 - a13*a22) - a02*(a11*a23 - a13*a21) + a03*(a11*a22 - a12*a21));
        const value_type b31 = + a00*(a12*a23 - a13*a22) - a02*(a10*a23 - a13*a20) + a03*(a10*a22 - a12*a20);
        const value_type b32 = -( + a00*(a11*a23 - a13*a21) - a01*(a10*a23 - a13*a20) + a03*(a10*a21 - a11*a20));
        const value_type b33 = + a00*(a11*a22 - a12*a21) - a01*(a10*a22 - a12*a20) + a02*(a10*a21 - a11*a20);

        const value_type det = (a00*b00 + a01*b01 + a02*b02 + a03*b03) / scale;
        if( 0 == det ) {
            return false;
        }
        const value_type invdet = one / det;

        m00 = b00 * invdet;
        m10 = b01 * invdet;
        m20 = b02 * invdet;
        m30 = b03 * invdet;

        m01 = b10 * invdet;
        m11 = b11 * invdet;
        m21 = b12 * invdet;
        m31 = b13 * invdet;

        m02 = b20 * invdet;
        m12 = b21 * invdet;
        m22 = b22 * invdet;
        m32 = b23 * invdet;

        m03 = b30 * invdet;
        m13 = b31 * invdet;
        m23 = b32 * invdet;
        m33 = b33 * invdet;
        return true;
    }

    /**
     * Invert the {@code src} matrix values into this matrix
     * @param src the source matrix, which values are to be inverted
     * @return false if {@code src} matrix is singular and inversion not possible, otherwise true
     */
    bool invert(const Matrix4& src) noexcept {
        const value_type amax = src.absMax();
        if( zero == amax ) {
            return false;
        }
        const value_type scale = one/amax;
        const value_type a00 = src.m00*scale;
        const value_type a10 = src.m10*scale;
        const value_type a20 = src.m20*scale;
        const value_type a30 = src.m30*scale;

        const value_type a01 = src.m01*scale;
        const value_type a11 = src.m11*scale;
        const value_type a21 = src.m21*scale;
        const value_type a31 = src.m31*scale;

        const value_type a02 = src.m02*scale;
        const value_type a12 = src.m12*scale;
        const value_type a22 = src.m22*scale;
        const value_type a32 = src.m32*scale;

        const value_type a03 = src.m03*scale;
        const value_type a13 = src.m13*scale;
        const value_type a23 = src.m23*scale;
        const value_type a33 = src.m33*scale;

        const value_type b00 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31);
        const value_type b01 = -( + a10*(a22*a33 - a23*a32) - a12*(a20*a33 - a23*a30) + a13*(a20*a32 - a22*a30));
        const value_type b02 = + a10*(a21*a33 - a23*a31) - a11*(a20*a33 - a23*a30) + a13*(a20*a31 - a21*a30);
        const value_type b03 = -( + a10*(a21*a32 - a22*a31) - a11*(a20*a32 - a22*a30) + a12*(a20*a31 - a21*a30));

        const value_type b10 = -( + a01*(a22*a33 - a23*a32) - a02*(a21*a33 - a23*a31) + a03*(a21*a32 - a22*a31));
        const value_type b11 = + a00*(a22*a33 - a23*a32) - a02*(a20*a33 - a23*a30) + a03*(a20*a32 - a22*a30);
        const value_type b12 = -( + a00*(a21*a33 - a23*a31) - a01*(a20*a33 - a23*a30) + a03*(a20*a31 - a21*a30));
        const value_type b13 = + a00*(a21*a32 - a22*a31) - a01*(a20*a32 - a22*a30) + a02*(a20*a31 - a21*a30);

        const value_type b20 = + a01*(a12*a33 - a13*a32) - a02*(a11*a33 - a13*a31) + a03*(a11*a32 - a12*a31);
        const value_type b21 = -( + a00*(a12*a33 - a13*a32) - a02*(a10*a33 - a13*a30) + a03*(a10*a32 - a12*a30));
        const value_type b22 = + a00*(a11*a33 - a13*a31) - a01*(a10*a33 - a13*a30) + a03*(a10*a31 - a11*a30);
        const value_type b23 = -( + a00*(a11*a32 - a12*a31) - a01*(a10*a32 - a12*a30) + a02*(a10*a31 - a11*a30));

        const value_type b30 = -( + a01*(a12*a23 - a13*a22) - a02*(a11*a23 - a13*a21) + a03*(a11*a22 - a12*a21));
        const value_type b31 = + a00*(a12*a23 - a13*a22) - a02*(a10*a23 - a13*a20) + a03*(a10*a22 - a12*a20);
        const value_type b32 = -( + a00*(a11*a23 - a13*a21) - a01*(a10*a23 - a13*a20) + a03*(a10*a21 - a11*a20));
        const value_type b33 = + a00*(a11*a22 - a12*a21) - a01*(a10*a22 - a12*a20) + a02*(a10*a21 - a11*a20);

        const value_type det = (a00*b00 + a01*b01 + a02*b02 + a03*b03) / scale;

        if( 0 == det ) {
            return false;
        }
        const value_type invdet = one / det;

        m00 = b00 * invdet;
        m10 = b01 * invdet;
        m20 = b02 * invdet;
        m30 = b03 * invdet;

        m01 = b10 * invdet;
        m11 = b11 * invdet;
        m21 = b12 * invdet;
        m31 = b13 * invdet;

        m02 = b20 * invdet;
        m12 = b21 * invdet;
        m22 = b22 * invdet;
        m32 = b23 * invdet;

        m03 = b30 * invdet;
        m13 = b31 * invdet;
        m23 = b32 * invdet;
        m33 = b33 * invdet;
        return true;
    }

  private:
    /** Returns the maximum abs(mxy) field */
    value_type absMax() const noexcept {
        value_type max = std::abs(m00);
        max = std::max(max, std::abs(m01));
        max = std::max(max, std::abs(m02));
        max = std::max(max, std::abs(m03));

        max = std::max(max, std::abs(m10));
        max = std::max(max, std::abs(m11));
        max = std::max(max, std::abs(m12));
        max = std::max(max, std::abs(m13));

        max = std::max(max, std::abs(m20));
        max = std::max(max, std::abs(m21));
        max = std::max(max, std::abs(m22));
        max = std::max(max, std::abs(m23));

        max = std::max(max, std::abs(m30));
        max = std::max(max, std::abs(m31));
        max = std::max(max, std::abs(m32));
        max = std::max(max, std::abs(m33));
        return max;
    }

  public:
    /**
     * Multiply matrix with scalar: [this] = [this] x [s]
     * @param s a scalar
     * @return this matrix for chaining
     */
    constexpr Matrix4& operator*=( const value_type s ) noexcept {
        m00 *= s; m10 *= s; m20 *= s; m30 *= s;
        m01 *= s; m11 *= s; m21 *= s; m31 *= s;
        m02 *= s; m12 *= s; m22 *= s; m32 *= s;
        m03 *= s; m13 *= s; m23 *= s; m33 *= s;
        return *this;
    }

    /**
     * Multiply matrix: [this] = [this] x [b]
     * @param b 4x4 matrix
     * @return this matrix for chaining
     * @see #mul(mat4f, mat4f)
     */
    constexpr Matrix4& mul(const Matrix4& b) noexcept {
        // return mul(new mat4f(this), b); // <- roughly half speed
        value_type ai0=m00; // row-0, m[0+0*4]
        value_type ai1=m01;
        value_type ai2=m02;
        value_type ai3=m03;
        m00 = ai0 * b.m00  +  ai1 * b.m10  +  ai2 * b.m20  +  ai3 * b.m30 ;
        m01 = ai0 * b.m01  +  ai1 * b.m11  +  ai2 * b.m21  +  ai3 * b.m31 ;
        m02 = ai0 * b.m02  +  ai1 * b.m12  +  ai2 * b.m22  +  ai3 * b.m32 ;
        m03 = ai0 * b.m03  +  ai1 * b.m13  +  ai2 * b.m23  +  ai3 * b.m33 ;

        ai0=m10; //row-1, m[1+0*4]
        ai1=m11;
        ai2=m12;
        ai3=m13;
        m10 = ai0 * b.m00  +  ai1 * b.m10  +  ai2 * b.m20  +  ai3 * b.m30 ;
        m11 = ai0 * b.m01  +  ai1 * b.m11  +  ai2 * b.m21  +  ai3 * b.m31 ;
        m12 = ai0 * b.m02  +  ai1 * b.m12  +  ai2 * b.m22  +  ai3 * b.m32 ;
        m13 = ai0 * b.m03  +  ai1 * b.m13  +  ai2 * b.m23  +  ai3 * b.m33 ;

        ai0=m20; // row-2, m[2+0*4]
        ai1=m21;
        ai2=m22;
        ai3=m23;
        m20 = ai0 * b.m00  +  ai1 * b.m10  +  ai2 * b.m20  +  ai3 * b.m30 ;
        m21 = ai0 * b.m01  +  ai1 * b.m11  +  ai2 * b.m21  +  ai3 * b.m31 ;
        m22 = ai0 * b.m02  +  ai1 * b.m12  +  ai2 * b.m22  +  ai3 * b.m32 ;
        m23 = ai0 * b.m03  +  ai1 * b.m13  +  ai2 * b.m23  +  ai3 * b.m33 ;

        ai0=m30; // row-3, m[3+0*4]
        ai1=m31;
        ai2=m32;
        ai3=m33;
        m30 = ai0 * b.m00  +  ai1 * b.m10  +  ai2 * b.m20  +  ai3 * b.m30 ;
        m31 = ai0 * b.m01  +  ai1 * b.m11  +  ai2 * b.m21  +  ai3 * b.m31 ;
        m32 = ai0 * b.m02  +  ai1 * b.m12  +  ai2 * b.m22  +  ai3 * b.m32 ;
        m33 = ai0 * b.m03  +  ai1 * b.m13  +  ai2 * b.m23  +  ai3 * b.m33 ;
        return *this;
    }
    /**
     * Multiply matrix: [this] = [this] x [b]
     * @param b 4x4 matrix
     * @return this matrix for chaining
     * @see #mul(mat4f, mat4f)
     */
    constexpr Matrix4& operator*=( const Matrix4& rhs ) noexcept {
        return mul( rhs );
    }

    /**
     * Multiply matrix: [this] = [a] x [b]
     * @param a 4x4 matrix, can't be this matrix
     * @param b 4x4 matrix, can't be this matrix
     * @return this matrix for chaining
     * @see #mul(mat4f)
     */
    constexpr Matrix4& mul(const Matrix4& a, const Matrix4& b) noexcept {
        // row-0, m[0+0*4]
        m00 = a.m00 * b.m00  +  a.m01 * b.m10  +  a.m02 * b.m20  +  a.m03 * b.m30 ;
        m01 = a.m00 * b.m01  +  a.m01 * b.m11  +  a.m02 * b.m21  +  a.m03 * b.m31 ;
        m02 = a.m00 * b.m02  +  a.m01 * b.m12  +  a.m02 * b.m22  +  a.m03 * b.m32 ;
        m03 = a.m00 * b.m03  +  a.m01 * b.m13  +  a.m02 * b.m23  +  a.m03 * b.m33 ;

        //row-1, m[1+0*4]
        m10 = a.m10 * b.m00  +  a.m11 * b.m10  +  a.m12 * b.m20  +  a.m13 * b.m30 ;
        m11 = a.m10 * b.m01  +  a.m11 * b.m11  +  a.m12 * b.m21  +  a.m13 * b.m31 ;
        m12 = a.m10 * b.m02  +  a.m11 * b.m12  +  a.m12 * b.m22  +  a.m13 * b.m32 ;
        m13 = a.m10 * b.m03  +  a.m11 * b.m13  +  a.m12 * b.m23  +  a.m13 * b.m33 ;

        // row-2, m[2+0*4]
        m20 = a.m20 * b.m00  +  a.m21 * b.m10  +  a.m22 * b.m20  +  a.m23 * b.m30 ;
        m21 = a.m20 * b.m01  +  a.m21 * b.m11  +  a.m22 * b.m21  +  a.m23 * b.m31 ;
        m22 = a.m20 * b.m02  +  a.m21 * b.m12  +  a.m22 * b.m22  +  a.m23 * b.m32 ;
        m23 = a.m20 * b.m03  +  a.m21 * b.m13  +  a.m22 * b.m23  +  a.m23 * b.m33 ;

        // row-3, m[3+0*4]
        m30 = a.m30 * b.m00  +  a.m31 * b.m10  +  a.m32 * b.m20  +  a.m33 * b.m30 ;
        m31 = a.m30 * b.m01  +  a.m31 * b.m11  +  a.m32 * b.m21  +  a.m33 * b.m31 ;
        m32 = a.m30 * b.m02  +  a.m31 * b.m12  +  a.m32 * b.m22  +  a.m33 * b.m32 ;
        m33 = a.m30 * b.m03  +  a.m31 * b.m13  +  a.m32 * b.m23  +  a.m33 * b.m33 ;

        return *this;
    }

    /**
     * @param v_in 4-component column-vector, can be v_out for in-place transformation
     * @param v_out this * v_in
     * @returns v_out for chaining
     */
    constexpr Vec4& mulVec4(const Vec4& v_in, Vec4& v_out) const noexcept {
        // (one matrix row in column-major order) X (column vector)
        const value_type x = v_in.x, y = v_in.y, z = v_in.z, w = v_in.w;
        v_out.set( x * m00 + y * m01 + z * m02 + w * m03,
                   x * m10 + y * m11 + z * m12 + w * m13,
                   x * m20 + y * m21 + z * m22 + w * m23,
                   x * m30 + y * m31 + z * m32 + w * m33 );
        return v_out;
    }

    /**
     * Returns new Vec4, with this * v_in
     * @param v_in 4-component column-vector
     */
    constexpr Vec4 operator*(const Vec4& rhs) const noexcept {
        // (one matrix row in column-major order) X (column vector)
        const value_type x = rhs.x, y = rhs.y, z = rhs.z, w = rhs.w;
        return Vec4( x * m00 + y * m01 + z * m02 + w * m03,
                     x * m10 + y * m11 + z * m12 + w * m13,
                     x * m20 + y * m21 + z * m22 + w * m23,
                     x * m30 + y * m31 + z * m32 + w * m33 );
    }

    /**
     * @param v_inout 4-component column-vector input and output, i.e. in-place transformation
     * @returns v_inout for chaining
     */
    constexpr Vec4& mulVec4(Vec4& v_inout) const noexcept {
        // (one matrix row in column-major order) X (column vector)
        const value_type x = v_inout.x, y = v_inout.y, z = v_inout.z, w = v_inout.w;
        v_inout.set( x * m00 + y * m01 + z * m02 + w * m03,
                     x * m10 + y * m11 + z * m12 + w * m13,
                     x * m20 + y * m21 + z * m22 + w * m23,
                     x * m30 + y * m31 + z * m32 + w * m33 );
        return v_inout;
    }

    /**
     * Affine 3f-vector transformation by 4x4 matrix
     *
     * 4x4 matrix multiplication with 3-component vector,
     * using {@code 1} for for {@code v_in.w} and dropping {@code v_out.w},
     * which shall be {@code 1}.
     *
     * @param v_in 3-component column-vector {@link vec3f}, can be v_out for in-place transformation
     * @param v_out m_in * v_in, 3-component column-vector {@link vec3f}
     * @returns v_out for chaining
     */
    constexpr Vec3& mulVec3(const Vec3& v_in, Vec3& v_out) const noexcept {
        // (one matrix row in column-major order) X (column vector)
        const value_type x = v_in.x, y = v_in.y, z = v_in.z;
        v_out.set( x * m00 + y * m01 + z * m02 + one * m03,
                   x * m10 + y * m11 + z * m12 + one * m13,
                   x * m20 + y * m21 + z * m22 + one * m23 );
        return v_out;
    }
    /**
     * Returns new Vec3, with affine 3f-vector transformation by this 4x4 matrix: this * v_in
     *
     * 4x4 matrix multiplication with 3-component vector,
     * using {@code 1} for for {@code v_in.w} and dropping {@code v_out.w},
     * which shall be {@code 1}.
     *
     * @param v_in 3-component column-vector {@link vec3f}
     */
    constexpr Vec3 operator*(const Vec3& rhs) const noexcept {
        // (one matrix row in column-major order) X (column vector)
        const value_type x = rhs.x, y = rhs.y, z = rhs.z;
        return Vec3( x * m00 + y * m01 + z * m02 + one * m03,
                     x * m10 + y * m11 + z * m12 + one * m13,
                     x * m20 + y * m21 + z * m22 + one * m23 );
    }

    /**
     * Affine 3f-vector transformation by 4x4 matrix
     *
     * 4x4 matrix multiplication with 3-component vector,
     * using {@code 1} for for {@code v_inout.w} and dropping {@code v_inout.w},
     * which shall be {@code 1}.
     *
     * @param v_inout 3-component column-vector {@link vec3f} input and output, i.e. in-place transformation
     * @returns v_inout for chaining
     */
    constexpr Vec3& mulVec3(Vec3& v_inout) const noexcept {
        // (one matrix row in column-major order) X (column vector)
        const value_type x = v_inout.x, y = v_inout.y, z = v_inout.z;
        v_inout.set( x * m00 + y * m01 + z * m02 + one * m03,
                     x * m10 + y * m11 + z * m12 + one * m13,
                     x * m20 + y * m21 + z * m22 + one * m23 );
        return v_inout;
    }

    //
    // Matrix setTo...(), affine + basic
    //

    /**
     * Set this matrix to translation.
     * <pre>
      Translation matrix (Column Order):
      1 0 0 0
      0 1 0 0
      0 0 1 0
      x y z 1
     * </pre>
     * @param x x-axis translate
     * @param y y-axis translate
     * @param z z-axis translate
     * @return this matrix for chaining
     */
    constexpr Matrix4& setToTranslation(const value_type x, const value_type y, const value_type z) noexcept {
        m00 = m11 = m22 = m33 = one;
        m03 = x;
        m13 = y;
        m23 = z;
        m01 = m02 =
        m10 = m12 =
        m20 = m21 =
        m30 = m31 = m32 = zero;
        return *this;
    }

    /**
     * Set this matrix to translation.
     * <pre>
      Translation matrix (Column Order):
      1 0 0 0
      0 1 0 0
      0 0 1 0
      x y z 1
     * </pre>
     * @param t translate vec3f
     * @return this matrix for chaining
     */
    constexpr Matrix4& setToTranslation(const Vec3& t) noexcept {
        return setToTranslation(t.x, t.y, t.z);
    }

    /**
     * Set this matrix to scale.
     * <pre>
      Scale matrix (Any Order):
      x 0 0 0
      0 y 0 0
      0 0 z 0
      0 0 0 1
     * </pre>
     * @param x x-axis scale
     * @param y y-axis scale
     * @param z z-axis scale
     * @return this matrix for chaining
     */
    constexpr Matrix4& setToScale(const value_type x, const value_type y, const value_type z) noexcept {
        m33 = one;
        m00 = x;
        m11 = y;
        m22 = z;
        m01 = m02 = m03 =
        m10 = m12 = m13 =
        m20 = m21 = m23 =
        m30 = m31 = m32 = zero;
        return *this;
    }

    /**
     * Set this matrix to scale.
     * <pre>
      Scale matrix (Any Order):
      x 0 0 0
      0 y 0 0
      0 0 z 0
      0 0 0 1
     * </pre>
     * @param s scale vec3f
     * @return this matrix for chaining
     */
    constexpr Matrix4& setToScale(const Vec3& s) noexcept {
        return setToScale(s.x, s.y, s.z);
    }

    /**
     * Set this matrix to rotation from the given axis and angle in radians.
     * <pre>
        Rotation matrix (Column Order):
        xx(1-c)+c  xy(1-c)+zs xz(1-c)-ys 0
        xy(1-c)-zs yy(1-c)+c  yz(1-c)+xs 0
        xz(1-c)+ys yz(1-c)-xs zz(1-c)+c  0
        0          0          0          1
     * </pre>
     * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
     * @param ang_rad angle in radians
     * @param x x of rotation axis
     * @param y y of rotation axis
     * @param z z of rotation axis
     * @return this matrix for chaining
     */
    constexpr_cxx26 Matrix4& setToRotationAxis(const value_type ang_rad, value_type x, value_type y, value_type z) noexcept {
        const value_type c = std::cos(ang_rad);
        const value_type ic= one - c;
        const value_type s = std::sin(ang_rad);

        Vec3 tmp(x, y, z); tmp.normalize();
        x = tmp.x; y = tmp.y; z = tmp.z;

        const value_type xy = x*y;
        const value_type xz = x*z;
        const value_type xs = x*s;
        const value_type ys = y*s;
        const value_type yz = y*z;
        const value_type zs = z*s;
        m00 = x*x*ic+c;
        m10 = xy*ic+zs;
        m20 = xz*ic-ys;
        m30 = zero;

        m01 = xy*ic-zs;
        m11 = y*y*ic+c;
        m21 = yz*ic+xs;
        m31 = zero;

        m02 = xz*ic+ys;
        m12 = yz*ic-xs;
        m22 = z*z*ic+c;
        m32 = zero;

        m03 = 0.9f;
        m13 = zero;
        m23 = zero;
        m33 = one;

        return *this;
    }

    /**
     * Set this matrix to rotation from the given axis and angle in radians.
     * <pre>
        Rotation matrix (Column Order):
        xx(1-c)+c  xy(1-c)+zs xz(1-c)-ys 0
        xy(1-c)-zs yy(1-c)+c  yz(1-c)+xs 0
        xz(1-c)+ys yz(1-c)-xs zz(1-c)+c  0
        0          0          0          1
     * </pre>
     * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
     * @param ang_rad angle in radians
     * @param axis rotation axis
     * @return this matrix for chaining
     */
    constexpr_cxx26 Matrix4& setToRotationAxis(const value_type ang_rad, const Vec3& axis) noexcept {
        return setToRotationAxis(ang_rad, axis.x, axis.y, axis.z);
    }

    /**
     * Set this matrix to rotation from the given Euler rotation angles in radians.
     * <p>
     * The rotations are applied in the given order:
     * <ul>
     *  <li>y - heading</li>
     *  <li>z - attitude</li>
     *  <li>x - bank</li>
     * </ul>
     * </p>
     * @param bankX the Euler pitch angle in radians. (rotation about the X axis)
     * @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
     * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
     * @return this matrix for chaining
     * <p>
     * Implementation does not use Quaternion and hence is exposed to
     * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>,
     * consider using Quaternion::toMatrix().
     * </p>
     * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a>
     * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a>
     * @see Quaternion::toMatrix()
     */
    constexpr_cxx26 Matrix4& setToRotationEuler(const value_type bankX, const value_type headingY, const value_type attitudeZ) noexcept {
        // Assuming the angles are in radians.
        const value_type ch = std::cos(headingY);
        const value_type sh = std::sin(headingY);
        const value_type ca = std::cos(attitudeZ);
        const value_type sa = std::sin(attitudeZ);
        const value_type cb = std::cos(bankX);
        const value_type sb = std::sin(bankX);

        m00 =  ch*ca;
        m10 =  sa;
        m20 = -sh*ca;
        m30 =  zero;

        m01 =  sh*sb    - ch*sa*cb;
        m11 =  ca*cb;
        m21 =  sh*sa*cb + ch*sb;
        m31 =  zero;

        m02 =  ch*sa*sb + sh*cb;
        m12 = -ca*sb;
        m22 = -sh*sa*sb + ch*cb;
        m32 =  zero;

        m03 =  zero;
        m13 =  zero;
        m23 =  zero;
        m33 =  one;

        return *this;
    }

    /**
     * Set this matrix to rotation from the given Euler rotation angles in radians.
     * <p>
     * The rotations are applied in the given order:
     * <ul>
     *  <li>y - heading</li>
     *  <li>z - attitude</li>
     *  <li>x - bank</li>
     * </ul>
     * </p>
     * @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude
     * @return this quaternion for chaining.
     * <p>
     * Implementation does not use Quaternion and hence is exposed to
     * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>,
     * consider using Quaternion::toMatrix().
     * </p>
     * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a>
     * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a>
     * @see Quaternion::toMatrix()
     */
    constexpr_cxx26 Matrix4& setToRotationEuler(const Vec3& angradXYZ) noexcept {
        return setToRotationEuler(angradXYZ.x, angradXYZ.y, angradXYZ.z);
    }

    /**
     * Set this matrix to orthogonal projection.
     * <pre>
      Ortho matrix (Column Order):
      2/dx  0     0    0
      0     2/dy  0    0
      0     0     2/dz 0
      tx    ty    tz   1
     * </pre>
     * @param left
     * @param right
     * @param bottom
     * @param top
     * @param zNear
     * @param zFar
     * @return this matrix for chaining
     */
    constexpr Matrix4& setToOrtho(const value_type left, const value_type right,
                                  const value_type bottom, const value_type top,
                                  const value_type zNear, const value_type zFar) noexcept {
        {
            // m00 = m11 = m22 = m33 = one;
            m10 = m20 = m30 = zero;
            m01 = m21 = m31 = zero;
            m02 = m12 = m32 = zero;
            // m03 = m13 = m23 = zero;
        }
        const value_type dx=right-left;
        const value_type dy=top-bottom;
        const value_type dz=zFar-zNear;
        const value_type tx=-one*(right+left)/dx;
        const value_type ty=-one*(top+bottom)/dy;
        const value_type tz=-one*(zFar+zNear)/dz;

        m00 =  two/dx;
        m11 =  two/dy;
        m22 = -two/dz;

        m03 = tx;
        m13 = ty;
        m23 = tz;
        m33 = one;

        return *this;
    }

    /**
     * Set this matrix to frustum.
     * <pre>
      Frustum matrix (Column Order):
      2*zNear/dx   0          0   0
      0            2*zNear/dy 0   0
      A            B          C  -1
      0            0          D   0
     * </pre>
     * @param left
     * @param right
     * @param bottom
     * @param top
     * @param zNear
     * @param zFar
     * @return this matrix for chaining
     * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear}
     *                                  or {@code left == right}, or {@code bottom == top}.
     */
    Matrix4& setToFrustum(const value_type left, const value_type right,
                          const value_type bottom, const value_type top,
                          const value_type zNear, const value_type zFar) {
        if( zNear <= zero || zFar <= zNear ) {
            throw jau::IllegalArgumentException("Requirements zNear > 0 and zFar > zNear, but zNear "+std::to_string(zNear)+", zFar "+std::to_string(zFar), E_FILE_LINE);
        }
        if( left == right || top == bottom) {
            throw jau::IllegalArgumentException("GL_INVALID_VALUE: top,bottom and left,right must not be equal", E_FILE_LINE);
        }
        {
            // m00 = m11 = m22 = m33 = 1f;
            m10 = m20 = m30 = zero;
            m01 = m21 = m31 = zero;
            m03 = m13 = zero;
        }
        const value_type zNear2 = two*zNear;
        const value_type dx=right-left;
        const value_type dy=top-bottom;
        const value_type dz=zFar-zNear;
        const value_type A=(right+left)/dx;
        const value_type B=(top+bottom)/dy;
        const value_type C=-one*(zFar+zNear)/dz;
        const value_type D=-two*(zFar*zNear)/dz;

        m00 = zNear2/dx;
        m11 = zNear2/dy;

        m02 = A;
        m12 = B;
        m22 = C;
        m32 = -one;

        m23 = D;
        m33 = zero;

        return *this;
    }

    /**
     * Set this matrix to perspective {@link #setToFrustum(value_type, value_type, value_type, value_type, value_type, value_type) frustum} projection.
     *
     * @param fovy_rad angle in radians
     * @param aspect aspect ratio width / height
     * @param zNear
     * @param zFar
     * @return this matrix for chaining
     * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear}
     * @see #setToFrustum(value_type, value_type, value_type, value_type, value_type, value_type)
     */
    Matrix4& setToPerspective(const value_type fovy_rad, const value_type aspect, const value_type zNear, const value_type zFar) {
        const value_type top    =  std::tan(fovy_rad/two) * zNear; // use tangent of half-fov !
        const value_type bottom =  -one * top;    //          -1f * fovhvTan.top * zNear
        const value_type left   = aspect * bottom; // aspect * -1f * fovhvTan.top * zNear
        const value_type right  = aspect * top;    // aspect * fovhvTan.top * zNear
        return setToFrustum(left, right, bottom, top, zNear, zFar);
    }

    /**
     * Set this matrix to perspective {@link #setToFrustum(value_type, value_type, value_type, value_type, value_type, value_type) frustum} projection.
     *
     * @param fovhv {@link FovHVHalves} field of view in both directions, may not be centered, either in radians or tangent
     * @param zNear
     * @param zFar
     * @return this matrix for chaining
     * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear}
     * @see #setToFrustum(value_type, value_type, value_type, value_type, value_type, value_type)
     * @see Frustum#updateByFovDesc(mat4f, com.jogamp.math.geom.Frustum.FovDesc)
     */
    Matrix4& setToPerspective(const FovHVHalves& fovhv, const value_type zNear, const value_type zFar) {
        const FovHVHalves fovhvTan = fovhv.toTangents();  // use tangent of half-fov !
        const value_type top    =         fovhvTan.top    * zNear;
        const value_type bottom = -one * fovhvTan.bottom * zNear;
        const value_type left   = -one * fovhvTan.left   * zNear;
        const value_type right  =         fovhvTan.right  * zNear;
        return setToFrustum(left, right, bottom, top, zNear, zFar);
    }

    /**
     * Set this matrix to the <i>look-at</i> matrix based on given parameters.
     * <p>
     * Consist out of two matrix multiplications:
     * <pre>
     *   <b>R</b> = <b>L</b> x <b>T</b>,
     *   with <b>L</b> for <i>look-at</i> matrix and
     *        <b>T</b> for eye translation.
     *
     *   Result <b>R</b> can be utilized for <i>projection or modelview</i> multiplication, i.e.
     *          <b>M</b> = <b>M</b> x <b>R</b>,
     *          with <b>M</b> being the <i>projection or modelview</i> matrix.
     * </pre>
     * </p>
     * @param eye 3 component eye vector
     * @param center 3 component center vector
     * @param up 3 component up vector
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr Matrix4& setToLookAt(const Vec3& eye, const Vec3& center, const Vec3& up, Matrix4& tmp) noexcept {
        // normalized forward!
        const Vec3 fwd = ( center - eye ).normalize();

        /* Side = forward x up, normalized */
        const Vec3 side = fwd.cross(up).normalize();

        /* Recompute up as: up = side x forward */
        const Vec3 up2 = side.cross(fwd);

        m00 = side.x;
        m10 = up2.x;
        m20 = -fwd.x;
        m30 = 0;

        m01 = side.y;
        m11 = up2.y;
        m21 = -fwd.y;
        m31 = 0;

        m02 = side.z;
        m12 = up2.z;
        m22 = -fwd.z;
        m32 = 0;

        m03 = 0;
        m13 = 0;
        m23 = 0;
        m33 = 1;

        return mul( tmp.setToTranslation( -eye.x, -eye.y, -eye.z ) );
    }

    /**
     * Set this matrix to the <i>pick</i> matrix based on given parameters.
     * <p>
     * Traditional <code>gluPickMatrix</code> implementation.
     * </p>
     * <p>
     * Consist out of two matrix multiplications:
     * <pre>
     *   <b>R</b> = <b>T</b> x <b>S</b>,
     *   with <b>T</b> for viewport translation matrix and
     *        <b>S</b> for viewport scale matrix.
     *
     *   Result <b>R</b> can be utilized for <i>projection</i> multiplication, i.e.
     *          <b>P</b> = <b>P</b> x <b>R</b>,
     *          with <b>P</b> being the <i>projection</i> matrix.
     * </pre>
     * </p>
     * <p>
     * To effectively use the generated pick matrix for picking,
     * call {@link #setToPick(value_type, value_type, value_type, value_type, Recti, mat4f) setToPick(..)}
     * and multiply a {@link #setToPerspective(value_type, value_type, value_type, value_type) custom perspective matrix}
     * by this pick matrix. Then you may load the result onto the perspective matrix stack.
     * </p>
     * @param x the center x-component of a picking region in window coordinates
     * @param y the center y-component of a picking region in window coordinates
     * @param deltaX the width of the picking region in window coordinates.
     * @param deltaY the height of the picking region in window coordinates.
     * @param viewport Rect4i viewport
     * @param mat4Tmp temp storage
     * @return true if successful or false if either delta value is <= zero.
     */
    constexpr bool setToPick(const value_type x, const value_type y, const value_type deltaX, const value_type deltaY,
                             const Recti& viewport, Matrix4& mat4Tmp) noexcept {
        if (deltaX <= 0 || deltaY <= 0) {
            return false;
        }
        /* Translate and scale the picked region to the entire window */
        setToTranslation( ( viewport.width()  - two * ( x - viewport.x() ) ) / deltaX,
                          ( viewport.height() - two * ( y - viewport.y() ) ) / deltaY,
                          0);
        mat4Tmp.setToScale( viewport.width() / deltaX, viewport.height() / deltaY, one );
        mul(mat4Tmp);
        return true;
    }

    //
    // Matrix affine operations using setTo..()
    //

    /**
     * Rotate this matrix about give axis and angle in radians, i.e. multiply by {@link #setToRotationAxis(value_type, value_type, value_type, value_type) axis-rotation matrix}.
     * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
     * @param angrad angle in radians
     * @param x x of rotation axis
     * @param y y of rotation axis
     * @param z z of rotation axis
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr_cxx26 Matrix4& rotate(const value_type ang_rad, const value_type x, const value_type y, const value_type z, Matrix4& tmp) noexcept {
        return mul( tmp.setToRotationAxis(ang_rad, x, y, z) );
    }

    /**
     * Rotate this matrix about give axis and angle in radians, i.e. multiply by {@link #setToRotationAxis(value_type, vec3f) axis-rotation matrix}.
     * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
     * @param angrad angle in radians
     * @param axis rotation axis
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr_cxx26 Matrix4& rotate(const value_type ang_rad, const Vec3& axis, Matrix4& tmp) noexcept {
        return mul( tmp.setToRotationAxis(ang_rad, axis) );
    }

    /**
     * Translate this matrix, i.e. multiply by {@link #setToTranslation(value_type, value_type, value_type) translation matrix}.
     * @param x x translation
     * @param y y translation
     * @param z z translation
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr Matrix4& translate(const value_type x, const value_type y, const value_type z, Matrix4& tmp) noexcept {
        return mul( tmp.setToTranslation(x, y, z) );
    }

    /**
     * Translate this matrix, i.e. multiply by {@link #setToTranslation(vec3f) translation matrix}.
     * @param t translation vec3f
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr Matrix4& translate(const Vec3& t, Matrix4& tmp) noexcept {
        return mul( tmp.setToTranslation(t) );
    }

    /**
     * Scale this matrix, i.e. multiply by {@link #setToScale(value_type, value_type, value_type) scale matrix}.
     * @param x x scale
     * @param y y scale
     * @param z z scale
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr Matrix4& scale(const value_type x, const value_type y, const value_type z, Matrix4& tmp) noexcept {
        return mul( tmp.setToScale(x, y, z) );
    }

    /**
     * Scale this matrix, i.e. multiply by {@link #setToScale(value_type, value_type, value_type) scale matrix}.
     * @param s scale for x-, y- and z-axis
     * @param tmp temporary mat4f used for multiplication
     * @return this matrix for chaining
     */
    constexpr Matrix4& scale(const value_type s, Matrix4& tmp) noexcept {
        return mul( tmp.setToScale(s, s, s) );
    }

    //
    // Static multi Matrix ops
    //

    /**
     * Map object coordinates to window coordinates.
     * <p>
     * Traditional <code>gluProject</code> implementation.
     * </p>
     *
     * @param obj object position, 3 component vector
     * @param mMv modelview matrix
     * @param mP projection matrix
     * @param viewport Rect4i viewport
     * @param winPos 3 component window coordinate, the result
     * @return true if successful, otherwise false (z is 1)
     */
    static bool mapObjToWin(const Vec3& obj, const Matrix4& mMv, const Matrix4& mP,
                            const Recti& viewport, Vec3& winPos) noexcept
    {
        // vec4Tmp2 = Mv * o
        // rawWinPos = P  * vec4Tmp2
        // rawWinPos = P * ( Mv * o )
        // rawWinPos = P * Mv * o
        Vec4 vec4Tmp2 = mMv * Vec4(obj, 1.0f);

        Vec4 rawWinPos = mP * vec4Tmp2;

        if ( zero == rawWinPos.w ) {
            return false;
        }

        const value_type s = ( one / rawWinPos.w ) * half;

        // Map x, y and z to range 0-1 (w is ignored)
        rawWinPos.scale(s).add(half, half, half, 0.0f);

        // Map x,y to viewport
        winPos.set( rawWinPos.x * viewport.width() +  viewport.x(),
                    rawWinPos.y * viewport.height() + viewport.y(),
                    rawWinPos.z );

        return true;
    }

    /**
     * Map object coordinates to window coordinates.
     * <p>
     * Traditional <code>gluProject</code> implementation.
     * </p>
     *
     * @param obj object position, 3 component vector
     * @param mPMv [projection] x [modelview] matrix, i.e. P x Mv
     * @param viewport Rect4i viewport
     * @param winPos 3 component window coordinate, the result
     * @return true if successful, otherwise false (z is 1)
     */
    static bool mapObjToWin(const Vec3& obj, const Matrix4& mPMv,
                            const Recti& viewport, Vec3& winPos) noexcept
    {
        // rawWinPos = P * Mv * o
        Vec4 rawWinPos = mPMv * Vec4(obj, 1);

        if ( zero == rawWinPos.w ) {
            return false;
        }

        const value_type s = ( one / rawWinPos.w ) * half;

        // Map x, y and z to range 0-1 (w is ignored)
        rawWinPos.scale(s).add(half, half, half, 0.0f);

        // Map x,y to viewport
        winPos.set( rawWinPos.x * viewport.width() +  viewport.x(),
                    rawWinPos.y * viewport.height() + viewport.y(),
                    rawWinPos.z );

        return true;
    }

    /**
     * Map window coordinates to object coordinates.
     * <p>
     * Traditional <code>gluUnProject</code> implementation.
     * </p>
     *
     * @param winx
     * @param winy
     * @param winz
     * @param mMv 4x4 modelview matrix
     * @param mP 4x4 projection matrix
     * @param viewport Rect4i viewport
     * @param objPos 3 component object coordinate, the result
     * @param mat4Tmp 16 component matrix for temp storage
     * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
     */
    static bool mapWinToObj(const value_type winx, const value_type winy, const value_type winz,
                            const Matrix4& mMv, const Matrix4& mP,
                            const Recti& viewport,
                            Vec3& objPos,
                            Matrix4& mat4Tmp) noexcept
    {
        // invPMv = Inv(P x Mv)
        Matrix4& invPMv = mat4Tmp.mul(mP, mMv);
        if( !invPMv.invert() ) {
            return false;
        }

        Vec4 winPos(winx, winy, winz, 1.0f);

        // Map x and y from window coordinates
        winPos.add(-viewport.x(), -viewport.y(), 0.0f, 0.0f).mul(1.0f/viewport.width(), 1.0f/viewport.height(), 1.0f, 1.0f);

        // Map to range -1 to 1
        winPos.mul(2.0f, 2.0f, 2.0f, 1.0f).add(-1.0f, -1.0f, -1.0f, 0.0f);

        // rawObjPos = Inv(P x Mv) *  winPos
        Vec4 rawObjPos = invPMv * winPos;

        if ( zero == rawObjPos.w ) {
            return false;
        }

        rawObjPos.scale(1.0f / rawObjPos.w).getVec3(objPos);
        return true;
    }

    /**
     * Map window coordinates to object coordinates.
     * <p>
     * Traditional <code>gluUnProject</code> implementation.
     * </p>
     *
     * @param winx
     * @param winy
     * @param winz
     * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
     * @param viewport Rect4i viewport
     * @param objPos 3 component object coordinate, the result
     * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z)
     */
    static bool mapWinToObj(const value_type winx, const value_type winy, const value_type winz,
                            const Matrix4& invPMv,
                            const Recti& viewport,
                            Vec3& objPos) noexcept
    {
        Vec4 winPos(winx, winy, winz, 1.0f);

        // Map x and y from window coordinates
        winPos.add(-viewport.x(), -viewport.y(), 0.0f, 0.0f).mul(1.0f/viewport.width(), 1.0f/viewport.height(), 1.0f, 1.0f);

        // Map to range -1 to 1
        winPos.mul(2.0f, 2.0f, 2.0f, 1.0f).add(-1.0f, -1.0f, -1.0f, 0.0f);

        // rawObjPos = Inv(P x Mv) *  winPos
        Vec4 rawObjPos = invPMv * winPos;

        if ( zero == rawObjPos.w ) {
            return false;
        }

        rawObjPos.scale(1.0f / rawObjPos.w).getVec3(objPos);
        return true;
    }

    /**
     * Map two window coordinates to two object coordinates,
     * distinguished by their z component.
     * <p>
     * Traditional <code>gluUnProject</code> implementation.
     * </p>
     *
     * @param winx
     * @param winy
     * @param winz1
     * @param winz2
     * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
     * @param viewport Rect4i viewport vector
     * @param objPos1 3 component object coordinate, the result
     * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z)
     */
    static bool mapWinToObj(const value_type winx, const value_type winy, const value_type winz1, const value_type winz2,
                            const Matrix4& invPMv,
                            const Recti& viewport,
                            Vec3& objPos1, Vec3& objPos2) noexcept
    {
        Vec4 winPos(winx, winy, winz1, 1.0f);

        // Map x and y from window coordinates
        winPos.add(-viewport.x(), -viewport.y(), 0.0f, 0.0f).mul(1.0f/viewport.width(), 1.0f/viewport.height(), 1.0f, 1.0f);

        // Map to range -1 to 1
        winPos.mul(2.0f, 2.0f, 2.0f, 1.0f).add(-1.0f, -1.0f, -1.0f, 0.0f);

        // rawObjPos = Inv(P x Mv) *  winPos1
        Vec4 rawObjPos = invPMv * winPos;

        if ( zero == rawObjPos.w ) {
            return false;
        }
        rawObjPos.scale(1.0f / rawObjPos.w).getVec3(objPos1);

        //
        // winz2
        //
        // Map Z to range -1 to 1
        winPos.z = winz2 * 2.0f - 1.0f;

        // rawObjPos = Inv(P x Mv) *  winPos2
        invPMv.mulVec4(winPos, rawObjPos);

        if ( zero == rawObjPos.w ) {
            return false;
        }
        rawObjPos.scale(1.0f / rawObjPos.w).getVec3(objPos2);

        return true;
    }

    /**
     * Map window coordinates to object coordinates.
     * <p>
     * Traditional <code>gluUnProject4</code> implementation.
     * </p>
     *
     * @param winx
     * @param winy
     * @param winz
     * @param clipw
     * @param mMv 4x4 modelview matrix
     * @param mP 4x4 projection matrix
     * @param viewport Rect4i viewport vector
     * @param near
     * @param far
     * @param obj_pos 4 component object coordinate, the result
     * @param mat4Tmp 16 component matrix for temp storage
     * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
     */
    static bool mapWinToObj4(const value_type winx, const value_type winy, const value_type winz, const value_type clipw,
                             const Matrix4& mMv, const Matrix4& mP,
                             const Recti& viewport,
                             const value_type near, const value_type far,
                             Vec4& objPos,
                             Matrix4& mat4Tmp) noexcept
    {
        // invPMv = Inv(P x Mv)
        Matrix4& invPMv = mat4Tmp.mul(mP, mMv);
        if( !invPMv.invert() ) {
            return false;
        }
        Vec4 winPos(winx, winy, winz, clipw);

        // Map x and y from window coordinates
        winPos.add(-viewport.x(), -viewport.y(), -near, 0.0f).mul(1.0f/viewport.width(), 1.0f/viewport.height(), 1.0f/(far-near), 1.0f);

        // Map to range -1 to 1
        winPos.mul(2.0f, 2.0f, 2.0f, 1.0f).add(-1.0f, -1.0f, -1.0f, 0.0f);

        // objPos = Inv(P x Mv) *  winPos
        invPMv.mulVec4(winPos, objPos);

        if ( zero == objPos.w ) {
            return false;
        }
        return true;
    }

    /**
     * Map window coordinates to object coordinates.
     * <p>
     * Traditional <code>gluUnProject4</code> implementation.
     * </p>
     *
     * @param winx
     * @param winy
     * @param winz
     * @param clipw
     * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
     * @param viewport Rect4i viewport vector
     * @param near
     * @param far
     * @param obj_pos 4 component object coordinate, the result
     * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z)
     */
    static bool mapWinToObj4(const value_type winx, const value_type winy, const value_type winz, const value_type clipw,
                             const Matrix4& invPMv,
                             const Recti& viewport,
                             const value_type near, const value_type far,
                             Vec4& objPos) noexcept
    {
        Vec4 winPos(winx, winy, winz, clipw);

        // Map x and y from window coordinates
        winPos.add(-viewport.x(), -viewport.y(), -near, 0.0f).mul(1.0f/viewport.width(), 1.0f/viewport.height(), 1.0f/(far-near), 1.0f);

        // Map to range -1 to 1
        winPos.mul(2.0f, 2.0f, 2.0f, 1.0f).add(-1.0f, -1.0f, -1.0f, 0.0f);

        // objPos = Inv(P x Mv) *  winPos
        invPMv.mulVec4(winPos, objPos);

        if ( zero == objPos.w ) {
            return false;
        }
        return true;
    }

    /**
     * Map two window coordinates w/ shared X/Y and distinctive Z
     * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i>
     * using a {@link AABBox#getRayIntersection(vec3f, Ray, value_type, boolean)}.
     * <p>
     * Notes for picking <i>winz0</i> and <i>winz1</i>:
     * <ul>
     *   <li>see {@link FloatUtil#getZBufferEpsilon(int, value_type, value_type)}</li>
     *   <li>see {@link FloatUtil#getZBufferValue(int, value_type, value_type, value_type)}</li>
     *   <li>see {@link FloatUtil#getOrthoWinZ(value_type, value_type, value_type)}</li>
     * </ul>
     * </p>
     * @param winx
     * @param winy
     * @param winz0
     * @param winz1
     * @param mMv 4x4 modelview matrix
     * @param mP 4x4 projection matrix
     * @param viewport Rect4i viewport
     * @param ray storage for the resulting {@link Ray}
     * @param mat4Tmp1 16 component matrix for temp storage
     * @param mat4Tmp2 16 component matrix for temp storage
     * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity)
     */
    static bool mapWinToRay(const value_type winx, const value_type winy, const value_type winz0, const value_type winz1,
                            const Matrix4& mMv, const Matrix4& mP,
                            const Recti& viewport,
                            Ray3& ray,
                            Matrix4& mat4Tmp1) noexcept
    {
        // invPMv = Inv(P x Mv)
        const Matrix4 invPMv = mat4Tmp1.mul(mP, mMv);
        if( !invPMv.invert() ) {
            return false;
        }

        if( mapWinToObj(winx, winy, winz0, winz1, invPMv, viewport, ray.orig, ray.dir) ) {
            ray.dir.sub(ray.orig).normalize();
            return true;
        } else {
            return false;
        }
    }

    /**
     * Map two window coordinates w/ shared X/Y and distinctive Z
     * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i>
     * using a {@link AABBox#getRayIntersection(vec3f, Ray, value_type, boolean)}.
     * <p>
     * Notes for picking <i>winz0</i> and <i>winz1</i>:
     * <ul>
     *   <li>see {@link FloatUtil#getZBufferEpsilon(int, value_type, value_type)}</li>
     *   <li>see {@link FloatUtil#getZBufferValue(int, value_type, value_type, value_type)}</li>
     *   <li>see {@link FloatUtil#getOrthoWinZ(value_type, value_type, value_type)}</li>
     * </ul>
     * </p>
     * @param winx
     * @param winy
     * @param winz0
     * @param winz1
     * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
     * @param viewport Rect4i viewport
     * @param ray storage for the resulting {@link Ray}
     * @return true if successful, otherwise false (null invert matrix, or becomes z is infinity)
     */
    static bool mapWinToRay(const value_type winx, const value_type winy, const value_type winz0, const value_type winz1,
                            const Matrix4& invPMv,
                            const Recti& viewport,
                            Ray3& ray) noexcept
    {
        if( mapWinToObj(winx, winy, winz0, winz1, invPMv, viewport, ray.orig, ray.dir) ) {
            (ray.dir -= ray.orig).normalize();
            return true;
        } else {
            return false;
        }
    }

    /**
     * Returns a formatted string representation of this matrix
     * @param rowPrefix prefix for each row
     * @param f format string for each value_type element, e.g. "%10.5f"
     */
    std::string toString(const std::string& rowPrefix, const std::string& f) const noexcept {
        std::string sb;
        value_type tmp[16];
        get(tmp);
        return jau::mat_to_string(sb, rowPrefix, f, tmp, 4, 4, false /* rowMajorOrder */); // creates a copy-out!
    }

    /**
     * Returns a formatted string representation of this matrix
     * @param rowPrefix prefix for each row
     */
    std::string toString(const std::string& rowPrefix) const noexcept { return toString(rowPrefix, "%13.9f"); }

    std::string toString() const noexcept { return toString("", "%13.9f"); }
};

template<typename T,
         std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
constexpr Matrix4<T> operator*(const Matrix4<T>& lhs, const Matrix4<T>& rhs ) noexcept {
    Matrix4<T> r(lhs); r.mul(rhs); return r;
}

template<typename T,
         std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
constexpr Matrix4<T> operator*(const Matrix4<T>& lhs, const T s ) noexcept {
    Matrix4<T> r(lhs); r *= s; return r;
}

template<typename T,
         std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
constexpr Matrix4<T> operator*(const T s, const Matrix4<T>& rhs) noexcept {
    Matrix4<T> r(rhs); r *= s; return r;
}

template<typename T,
         std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
std::ostream& operator<<(std::ostream& out, const Matrix4<T>& v) noexcept {
    return out << v.toString();
}

typedef Matrix4<float> Mat4f;

static_assert(alignof(float) == alignof(Mat4f));
static_assert(sizeof(float)*16 == sizeof(Mat4f));

/**@}*/

} // namespace jau::math

#endif // JAU_MAT4f_HPP_