1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/* ecc_dh.h - TinyCrypt interface to EC-DH implementation */
/*
* =============================================================================
* Copyright (c) 2013, Kenneth MacKay
* All rights reserved.
* https://github.com/kmackay/micro-ecc
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* =============================================================================
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to EC-DH implementation.
*
* Overview: This software is an implementation of EC-DH. This implementation
* uses curve NIST p-256.
*
* Security: The curve NIST p-256 provides approximately 128 bits of security.
*
*/
#ifndef __TC_ECC_DH_H__
#define __TC_ECC_DH_H__
#include <tinycrypt/ecc.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Create a public/private key pair.
* @return returns TC_CRYPTO_SUCCESS (1) if the key pair was generated successfully
* returns TC_CRYPTO_FAIL (0) if:
* the private key is 0
*
* @param p_publicKey OUT -- the point representing the public key.
* @param p_privateKey OUT -- the private key.
* @param p_random IN -- The random number to use to generate the key pair.
*
* @note You must use a new non-predictable random number to generate each
* new key pair.
*
* @note side-channel countermeasure: algorithm strengthened against timing
* attack.
*/
int32_t ecc_make_key(EccPoint *p_publicKey,
uint32_t p_privateKey[NUM_ECC_DIGITS],
uint32_t p_random[NUM_ECC_DIGITS]);
/**
* @brief Determine whether or not a given point is on the chosen elliptic curve
* (ie, is a valid public key).
* @return returns 0 if the given point is valid
* returns -1 if: the point is zero
* returns -2 if: curve_p - p_publicKey->x != 1 or
* curve_p - p_publicKey->y != 1
* returns -3 if: y^2 != x^3 + ax + b
* @param p_publicKey IN -- The point to be checked.
*/
int32_t ecc_valid_public_key(EccPoint *p_publicKey);
/**
* @brief Compute a shared secret given your secret key and someone else's
* public key.
* @return returns TC_CRYPTO_SUCCESS (1) if the shared secret was computed successfully
* returns TC_CRYPTO_FAIL (0) otherwise
*
* @param p_secret OUT -- The shared secret value.
* @param p_publicKey IN -- The public key of the remote party.
* @param p_privateKey IN -- Your private key.
*
* @note Optionally, you can provide a random multiplier for resistance to DPA
* attacks. The random multiplier should probably be different for each
* invocation of ecdh_shared_secret().
*
* @note It is recommended that you hash the result of ecdh_shared_secret before
* using it for symmetric encryption or HMAC. If you do not hash the shared
* secret, you must call ecc_valid_public_key() to verify that the remote side's
* public key is valid. If this is not done, an attacker could create a public
* key that would cause your use of the shared secret to leak information about
* the private key.
*/
int32_t ecdh_shared_secret(uint32_t p_secret[NUM_ECC_DIGITS], EccPoint *p_publicKey,
uint32_t p_privateKey[NUM_ECC_DIGITS]);
#ifdef __cplusplus
}
#endif
#endif
|