aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/zil.c
blob: e549e1895f397929c0ad6522dd86a0431f7ec603 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
 * Copyright (c) 2014 Integros [integros.com]
 * Copyright (c) 2018 Datto Inc.
 */

/* Portions Copyright 2010 Robert Milkowski */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/arc.h>
#include <sys/stat.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/dsl_dataset.h>
#include <sys/vdev_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_pool.h>
#include <sys/metaslab.h>
#include <sys/trace_zfs.h>
#include <sys/abd.h>
#include <sys/brt.h>
#include <sys/wmsum.h>

/*
 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
 * calls that change the file system. Each itx has enough information to
 * be able to replay them after a system crash, power loss, or
 * equivalent failure mode. These are stored in memory until either:
 *
 *   1. they are committed to the pool by the DMU transaction group
 *      (txg), at which point they can be discarded; or
 *   2. they are committed to the on-disk ZIL for the dataset being
 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
 *      requirement).
 *
 * In the event of a crash or power loss, the itxs contained by each
 * dataset's on-disk ZIL will be replayed when that dataset is first
 * instantiated (e.g. if the dataset is a normal filesystem, when it is
 * first mounted).
 *
 * As hinted at above, there is one ZIL per dataset (both the in-memory
 * representation, and the on-disk representation). The on-disk format
 * consists of 3 parts:
 *
 * 	- a single, per-dataset, ZIL header; which points to a chain of
 * 	- zero or more ZIL blocks; each of which contains
 * 	- zero or more ZIL records
 *
 * A ZIL record holds the information necessary to replay a single
 * system call transaction. A ZIL block can hold many ZIL records, and
 * the blocks are chained together, similarly to a singly linked list.
 *
 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
 * block in the chain, and the ZIL header points to the first block in
 * the chain.
 *
 * Note, there is not a fixed place in the pool to hold these ZIL
 * blocks; they are dynamically allocated and freed as needed from the
 * blocks available on the pool, though they can be preferentially
 * allocated from a dedicated "log" vdev.
 */

/*
 * This controls the amount of time that a ZIL block (lwb) will remain
 * "open" when it isn't "full", and it has a thread waiting for it to be
 * committed to stable storage. Please refer to the zil_commit_waiter()
 * function (and the comments within it) for more details.
 */
static uint_t zfs_commit_timeout_pct = 10;

/*
 * See zil.h for more information about these fields.
 */
static zil_kstat_values_t zil_stats = {
	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
};

static zil_sums_t zil_sums_global;
static kstat_t *zil_kstats_global;

/*
 * Disable intent logging replay.  This global ZIL switch affects all pools.
 */
int zil_replay_disable = 0;

/*
 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
 * the disk(s) by the ZIL after an LWB write has completed. Setting this
 * will cause ZIL corruption on power loss if a volatile out-of-order
 * write cache is enabled.
 */
static int zil_nocacheflush = 0;

/*
 * Limit SLOG write size per commit executed with synchronous priority.
 * Any writes above that will be executed with lower (asynchronous) priority
 * to limit potential SLOG device abuse by single active ZIL writer.
 */
static uint64_t zil_slog_bulk = 64 * 1024 * 1024;

static kmem_cache_t *zil_lwb_cache;
static kmem_cache_t *zil_zcw_cache;

static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
static itx_t *zil_itx_clone(itx_t *oitx);
static uint64_t zil_max_waste_space(zilog_t *zilog);

static int
zil_bp_compare(const void *x1, const void *x2)
{
	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;

	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
	if (likely(cmp))
		return (cmp);

	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
}

static void
zil_bp_tree_init(zilog_t *zilog)
{
	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
}

static void
zil_bp_tree_fini(zilog_t *zilog)
{
	avl_tree_t *t = &zilog->zl_bp_tree;
	zil_bp_node_t *zn;
	void *cookie = NULL;

	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
		kmem_free(zn, sizeof (zil_bp_node_t));

	avl_destroy(t);
}

int
zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
{
	avl_tree_t *t = &zilog->zl_bp_tree;
	const dva_t *dva;
	zil_bp_node_t *zn;
	avl_index_t where;

	if (BP_IS_EMBEDDED(bp))
		return (0);

	dva = BP_IDENTITY(bp);

	if (avl_find(t, dva, &where) != NULL)
		return (SET_ERROR(EEXIST));

	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
	zn->zn_dva = *dva;
	avl_insert(t, zn, where);

	return (0);
}

static zil_header_t *
zil_header_in_syncing_context(zilog_t *zilog)
{
	return ((zil_header_t *)zilog->zl_header);
}

static void
zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
{
	zio_cksum_t *zc = &bp->blk_cksum;

	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
}

static int
zil_kstats_global_update(kstat_t *ksp, int rw)
{
	zil_kstat_values_t *zs = ksp->ks_data;
	ASSERT3P(&zil_stats, ==, zs);

	if (rw == KSTAT_WRITE) {
		return (SET_ERROR(EACCES));
	}

	zil_kstat_values_update(zs, &zil_sums_global);

	return (0);
}

/*
 * Read a log block and make sure it's valid.
 */
static int
zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
    blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
{
	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
	arc_flags_t aflags = ARC_FLAG_WAIT;
	zbookmark_phys_t zb;
	int error;

	if (zilog->zl_header->zh_claim_txg == 0)
		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;

	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
		zio_flags |= ZIO_FLAG_SPECULATIVE;

	if (!decrypt)
		zio_flags |= ZIO_FLAG_RAW;

	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);

	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);

	if (error == 0) {
		zio_cksum_t cksum = bp->blk_cksum;

		/*
		 * Validate the checksummed log block.
		 *
		 * Sequence numbers should be... sequential.  The checksum
		 * verifier for the next block should be bp's checksum plus 1.
		 *
		 * Also check the log chain linkage and size used.
		 */
		cksum.zc_word[ZIL_ZC_SEQ]++;

		uint64_t size = BP_GET_LSIZE(bp);
		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
			zil_chain_t *zilc = (*abuf)->b_data;
			char *lr = (char *)(zilc + 1);

			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
			    sizeof (cksum)) ||
			    zilc->zc_nused < sizeof (*zilc) ||
			    zilc->zc_nused > size) {
				error = SET_ERROR(ECKSUM);
			} else {
				*begin = lr;
				*end = lr + zilc->zc_nused - sizeof (*zilc);
				*nbp = zilc->zc_next_blk;
			}
		} else {
			char *lr = (*abuf)->b_data;
			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;

			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
			    sizeof (cksum)) ||
			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
				error = SET_ERROR(ECKSUM);
			} else {
				*begin = lr;
				*end = lr + zilc->zc_nused;
				*nbp = zilc->zc_next_blk;
			}
		}
	}

	return (error);
}

/*
 * Read a TX_WRITE log data block.
 */
static int
zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
{
	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
	const blkptr_t *bp = &lr->lr_blkptr;
	arc_flags_t aflags = ARC_FLAG_WAIT;
	arc_buf_t *abuf = NULL;
	zbookmark_phys_t zb;
	int error;

	if (BP_IS_HOLE(bp)) {
		if (wbuf != NULL)
			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
		return (0);
	}

	if (zilog->zl_header->zh_claim_txg == 0)
		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;

	/*
	 * If we are not using the resulting data, we are just checking that
	 * it hasn't been corrupted so we don't need to waste CPU time
	 * decompressing and decrypting it.
	 */
	if (wbuf == NULL)
		zio_flags |= ZIO_FLAG_RAW;

	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));

	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);

	if (error == 0) {
		if (wbuf != NULL)
			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
		arc_buf_destroy(abuf, &abuf);
	}

	return (error);
}

void
zil_sums_init(zil_sums_t *zs)
{
	wmsum_init(&zs->zil_commit_count, 0);
	wmsum_init(&zs->zil_commit_writer_count, 0);
	wmsum_init(&zs->zil_itx_count, 0);
	wmsum_init(&zs->zil_itx_indirect_count, 0);
	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
	wmsum_init(&zs->zil_itx_copied_count, 0);
	wmsum_init(&zs->zil_itx_copied_bytes, 0);
	wmsum_init(&zs->zil_itx_needcopy_count, 0);
	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
}

void
zil_sums_fini(zil_sums_t *zs)
{
	wmsum_fini(&zs->zil_commit_count);
	wmsum_fini(&zs->zil_commit_writer_count);
	wmsum_fini(&zs->zil_itx_count);
	wmsum_fini(&zs->zil_itx_indirect_count);
	wmsum_fini(&zs->zil_itx_indirect_bytes);
	wmsum_fini(&zs->zil_itx_copied_count);
	wmsum_fini(&zs->zil_itx_copied_bytes);
	wmsum_fini(&zs->zil_itx_needcopy_count);
	wmsum_fini(&zs->zil_itx_needcopy_bytes);
	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
}

void
zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
{
	zs->zil_commit_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_commit_count);
	zs->zil_commit_writer_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_commit_writer_count);
	zs->zil_itx_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_count);
	zs->zil_itx_indirect_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_indirect_count);
	zs->zil_itx_indirect_bytes.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
	zs->zil_itx_copied_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_copied_count);
	zs->zil_itx_copied_bytes.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
	zs->zil_itx_needcopy_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
	zs->zil_itx_needcopy_bytes.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
	zs->zil_itx_metaslab_normal_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
	zs->zil_itx_metaslab_normal_write.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
	zs->zil_itx_metaslab_slog_count.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
	zs->zil_itx_metaslab_slog_write.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
}

/*
 * Parse the intent log, and call parse_func for each valid record within.
 */
int
zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
    boolean_t decrypt)
{
	const zil_header_t *zh = zilog->zl_header;
	boolean_t claimed = !!zh->zh_claim_txg;
	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
	uint64_t max_blk_seq = 0;
	uint64_t max_lr_seq = 0;
	uint64_t blk_count = 0;
	uint64_t lr_count = 0;
	blkptr_t blk, next_blk = {{{{0}}}};
	int error = 0;

	/*
	 * Old logs didn't record the maximum zh_claim_lr_seq.
	 */
	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
		claim_lr_seq = UINT64_MAX;

	/*
	 * Starting at the block pointed to by zh_log we read the log chain.
	 * For each block in the chain we strongly check that block to
	 * ensure its validity.  We stop when an invalid block is found.
	 * For each block pointer in the chain we call parse_blk_func().
	 * For each record in each valid block we call parse_lr_func().
	 * If the log has been claimed, stop if we encounter a sequence
	 * number greater than the highest claimed sequence number.
	 */
	zil_bp_tree_init(zilog);

	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
		int reclen;
		char *lrp, *end;
		arc_buf_t *abuf = NULL;

		if (blk_seq > claim_blk_seq)
			break;

		error = parse_blk_func(zilog, &blk, arg, txg);
		if (error != 0)
			break;
		ASSERT3U(max_blk_seq, <, blk_seq);
		max_blk_seq = blk_seq;
		blk_count++;

		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
			break;

		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
		    &lrp, &end, &abuf);
		if (error != 0) {
			if (abuf)
				arc_buf_destroy(abuf, &abuf);
			if (claimed) {
				char name[ZFS_MAX_DATASET_NAME_LEN];

				dmu_objset_name(zilog->zl_os, name);

				cmn_err(CE_WARN, "ZFS read log block error %d, "
				    "dataset %s, seq 0x%llx\n", error, name,
				    (u_longlong_t)blk_seq);
			}
			break;
		}

		for (; lrp < end; lrp += reclen) {
			lr_t *lr = (lr_t *)lrp;
			reclen = lr->lrc_reclen;
			ASSERT3U(reclen, >=, sizeof (lr_t));
			ASSERT3U(reclen, <=, end - lrp);
			if (lr->lrc_seq > claim_lr_seq) {
				arc_buf_destroy(abuf, &abuf);
				goto done;
			}

			error = parse_lr_func(zilog, lr, arg, txg);
			if (error != 0) {
				arc_buf_destroy(abuf, &abuf);
				goto done;
			}
			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
			max_lr_seq = lr->lrc_seq;
			lr_count++;
		}
		arc_buf_destroy(abuf, &abuf);
	}
done:
	zilog->zl_parse_error = error;
	zilog->zl_parse_blk_seq = max_blk_seq;
	zilog->zl_parse_lr_seq = max_lr_seq;
	zilog->zl_parse_blk_count = blk_count;
	zilog->zl_parse_lr_count = lr_count;

	zil_bp_tree_fini(zilog);

	return (error);
}

static int
zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
    uint64_t first_txg)
{
	(void) tx;
	ASSERT(!BP_IS_HOLE(bp));

	/*
	 * As we call this function from the context of a rewind to a
	 * checkpoint, each ZIL block whose txg is later than the txg
	 * that we rewind to is invalid. Thus, we return -1 so
	 * zil_parse() doesn't attempt to read it.
	 */
	if (bp->blk_birth >= first_txg)
		return (-1);

	if (zil_bp_tree_add(zilog, bp) != 0)
		return (0);

	zio_free(zilog->zl_spa, first_txg, bp);
	return (0);
}

static int
zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
    uint64_t first_txg)
{
	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
	return (0);
}

static int
zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
    uint64_t first_txg)
{
	/*
	 * Claim log block if not already committed and not already claimed.
	 * If tx == NULL, just verify that the block is claimable.
	 */
	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
	    zil_bp_tree_add(zilog, bp) != 0)
		return (0);

	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
}

static int
zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
{
	lr_write_t *lr = (lr_write_t *)lrc;
	int error;

	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));

	/*
	 * If the block is not readable, don't claim it.  This can happen
	 * in normal operation when a log block is written to disk before
	 * some of the dmu_sync() blocks it points to.  In this case, the
	 * transaction cannot have been committed to anyone (we would have
	 * waited for all writes to be stable first), so it is semantically
	 * correct to declare this the end of the log.
	 */
	if (lr->lr_blkptr.blk_birth >= first_txg) {
		error = zil_read_log_data(zilog, lr, NULL);
		if (error != 0)
			return (error);
	}

	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
}

static int
zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
    uint64_t first_txg)
{
	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
	const blkptr_t *bp;
	spa_t *spa = zilog->zl_spa;
	uint_t ii;

	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
	    lr_bps[lr->lr_nbps]));

	if (tx == NULL) {
		return (0);
	}

	/*
	 * XXX: Do we need to byteswap lr?
	 */

	for (ii = 0; ii < lr->lr_nbps; ii++) {
		bp = &lr->lr_bps[ii];

		/*
		 * When data is embedded into the BP there is no need to create
		 * BRT entry as there is no data block.  Just copy the BP as it
		 * contains the data.
		 */
		if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
			continue;

		/*
		 * We can not handle block pointers from the future, since they
		 * are not yet allocated.  It should not normally happen, but
		 * just in case lets be safe and just stop here now instead of
		 * corrupting the pool.
		 */
		if (BP_PHYSICAL_BIRTH(bp) >= first_txg)
			return (SET_ERROR(ENOENT));

		/*
		 * Assert the block is really allocated before we reference it.
		 */
		metaslab_check_free(spa, bp);
	}

	for (ii = 0; ii < lr->lr_nbps; ii++) {
		bp = &lr->lr_bps[ii];
		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
			brt_pending_add(spa, bp, tx);
	}

	return (0);
}

static int
zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
    uint64_t first_txg)
{

	switch (lrc->lrc_txtype) {
	case TX_WRITE:
		return (zil_claim_write(zilog, lrc, tx, first_txg));
	case TX_CLONE_RANGE:
		return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
	default:
		return (0);
	}
}

static int
zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
    uint64_t claim_txg)
{
	(void) claim_txg;

	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);

	return (0);
}

static int
zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
{
	lr_write_t *lr = (lr_write_t *)lrc;
	blkptr_t *bp = &lr->lr_blkptr;

	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));

	/*
	 * If we previously claimed it, we need to free it.
	 */
	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
	    !BP_IS_HOLE(bp)) {
		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
	}

	return (0);
}

static int
zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
{
	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
	const blkptr_t *bp;
	spa_t *spa;
	uint_t ii;

	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
	    lr_bps[lr->lr_nbps]));

	if (tx == NULL) {
		return (0);
	}

	spa = zilog->zl_spa;

	for (ii = 0; ii < lr->lr_nbps; ii++) {
		bp = &lr->lr_bps[ii];

		if (!BP_IS_HOLE(bp)) {
			zio_free(spa, dmu_tx_get_txg(tx), bp);
		}
	}

	return (0);
}

static int
zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
    uint64_t claim_txg)
{

	if (claim_txg == 0) {
		return (0);
	}

	switch (lrc->lrc_txtype) {
	case TX_WRITE:
		return (zil_free_write(zilog, lrc, tx, claim_txg));
	case TX_CLONE_RANGE:
		return (zil_free_clone_range(zilog, lrc, tx));
	default:
		return (0);
	}
}

static int
zil_lwb_vdev_compare(const void *x1, const void *x2)
{
	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;

	return (TREE_CMP(v1, v2));
}

/*
 * Allocate a new lwb.  We may already have a block pointer for it, in which
 * case we get size and version from there.  Or we may not yet, in which case
 * we choose them here and later make the block allocation match.
 */
static lwb_t *
zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
    uint64_t txg, lwb_state_t state)
{
	lwb_t *lwb;

	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
	lwb->lwb_zilog = zilog;
	if (bp) {
		lwb->lwb_blk = *bp;
		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
		sz = BP_GET_LSIZE(bp);
	} else {
		BP_ZERO(&lwb->lwb_blk);
		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
		    SPA_VERSION_SLIM_ZIL);
	}
	lwb->lwb_slog = slog;
	lwb->lwb_error = 0;
	if (lwb->lwb_slim) {
		lwb->lwb_nmax = sz;
		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
	} else {
		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
		lwb->lwb_nused = lwb->lwb_nfilled = 0;
	}
	lwb->lwb_sz = sz;
	lwb->lwb_state = state;
	lwb->lwb_buf = zio_buf_alloc(sz);
	lwb->lwb_child_zio = NULL;
	lwb->lwb_write_zio = NULL;
	lwb->lwb_root_zio = NULL;
	lwb->lwb_issued_timestamp = 0;
	lwb->lwb_issued_txg = 0;
	lwb->lwb_alloc_txg = txg;
	lwb->lwb_max_txg = 0;

	mutex_enter(&zilog->zl_lock);
	list_insert_tail(&zilog->zl_lwb_list, lwb);
	if (state != LWB_STATE_NEW)
		zilog->zl_last_lwb_opened = lwb;
	mutex_exit(&zilog->zl_lock);

	return (lwb);
}

static void
zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
{
	ASSERT(MUTEX_HELD(&zilog->zl_lock));
	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
	VERIFY(list_is_empty(&lwb->lwb_itxs));
	VERIFY(list_is_empty(&lwb->lwb_waiters));
	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));

	/*
	 * Clear the zilog's field to indicate this lwb is no longer
	 * valid, and prevent use-after-free errors.
	 */
	if (zilog->zl_last_lwb_opened == lwb)
		zilog->zl_last_lwb_opened = NULL;

	kmem_cache_free(zil_lwb_cache, lwb);
}

/*
 * Called when we create in-memory log transactions so that we know
 * to cleanup the itxs at the end of spa_sync().
 */
static void
zilog_dirty(zilog_t *zilog, uint64_t txg)
{
	dsl_pool_t *dp = zilog->zl_dmu_pool;
	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);

	ASSERT(spa_writeable(zilog->zl_spa));

	if (ds->ds_is_snapshot)
		panic("dirtying snapshot!");

	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
		/* up the hold count until we can be written out */
		dmu_buf_add_ref(ds->ds_dbuf, zilog);

		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
	}
}

/*
 * Determine if the zil is dirty in the specified txg. Callers wanting to
 * ensure that the dirty state does not change must hold the itxg_lock for
 * the specified txg. Holding the lock will ensure that the zil cannot be
 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
 * state.
 */
static boolean_t __maybe_unused
zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
{
	dsl_pool_t *dp = zilog->zl_dmu_pool;

	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
		return (B_TRUE);
	return (B_FALSE);
}

/*
 * Determine if the zil is dirty. The zil is considered dirty if it has
 * any pending itx records that have not been cleaned by zil_clean().
 */
static boolean_t
zilog_is_dirty(zilog_t *zilog)
{
	dsl_pool_t *dp = zilog->zl_dmu_pool;

	for (int t = 0; t < TXG_SIZE; t++) {
		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
			return (B_TRUE);
	}
	return (B_FALSE);
}

/*
 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
 * zil_commit.
 */
static void
zil_commit_activate_saxattr_feature(zilog_t *zilog)
{
	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
	uint64_t txg = 0;
	dmu_tx_t *tx = NULL;

	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
		tx = dmu_tx_create(zilog->zl_os);
		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
		dsl_dataset_dirty(ds, tx);
		txg = dmu_tx_get_txg(tx);

		mutex_enter(&ds->ds_lock);
		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
		    (void *)B_TRUE;
		mutex_exit(&ds->ds_lock);
		dmu_tx_commit(tx);
		txg_wait_synced(zilog->zl_dmu_pool, txg);
	}
}

/*
 * Create an on-disk intent log.
 */
static lwb_t *
zil_create(zilog_t *zilog)
{
	const zil_header_t *zh = zilog->zl_header;
	lwb_t *lwb = NULL;
	uint64_t txg = 0;
	dmu_tx_t *tx = NULL;
	blkptr_t blk;
	int error = 0;
	boolean_t slog = FALSE;
	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);


	/*
	 * Wait for any previous destroy to complete.
	 */
	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);

	ASSERT(zh->zh_claim_txg == 0);
	ASSERT(zh->zh_replay_seq == 0);

	blk = zh->zh_log;

	/*
	 * Allocate an initial log block if:
	 *    - there isn't one already
	 *    - the existing block is the wrong endianness
	 */
	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
		tx = dmu_tx_create(zilog->zl_os);
		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
		txg = dmu_tx_get_txg(tx);

		if (!BP_IS_HOLE(&blk)) {
			zio_free(zilog->zl_spa, txg, &blk);
			BP_ZERO(&blk);
		}

		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
		    ZIL_MIN_BLKSZ, &slog);
		if (error == 0)
			zil_init_log_chain(zilog, &blk);
	}

	/*
	 * Allocate a log write block (lwb) for the first log block.
	 */
	if (error == 0)
		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);

	/*
	 * If we just allocated the first log block, commit our transaction
	 * and wait for zil_sync() to stuff the block pointer into zh_log.
	 * (zh is part of the MOS, so we cannot modify it in open context.)
	 */
	if (tx != NULL) {
		/*
		 * If "zilsaxattr" feature is enabled on zpool, then activate
		 * it now when we're creating the ZIL chain. We can't wait with
		 * this until we write the first xattr log record because we
		 * need to wait for the feature activation to sync out.
		 */
		if (spa_feature_is_enabled(zilog->zl_spa,
		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
		    DMU_OST_ZVOL) {
			mutex_enter(&ds->ds_lock);
			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
			    (void *)B_TRUE;
			mutex_exit(&ds->ds_lock);
		}

		dmu_tx_commit(tx);
		txg_wait_synced(zilog->zl_dmu_pool, txg);
	} else {
		/*
		 * This branch covers the case where we enable the feature on a
		 * zpool that has existing ZIL headers.
		 */
		zil_commit_activate_saxattr_feature(zilog);
	}
	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));

	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
	IMPLY(error == 0, lwb != NULL);

	return (lwb);
}

/*
 * In one tx, free all log blocks and clear the log header. If keep_first
 * is set, then we're replaying a log with no content. We want to keep the
 * first block, however, so that the first synchronous transaction doesn't
 * require a txg_wait_synced() in zil_create(). We don't need to
 * txg_wait_synced() here either when keep_first is set, because both
 * zil_create() and zil_destroy() will wait for any in-progress destroys
 * to complete.
 * Return B_TRUE if there were any entries to replay.
 */
boolean_t
zil_destroy(zilog_t *zilog, boolean_t keep_first)
{
	const zil_header_t *zh = zilog->zl_header;
	lwb_t *lwb;
	dmu_tx_t *tx;
	uint64_t txg;

	/*
	 * Wait for any previous destroy to complete.
	 */
	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);

	zilog->zl_old_header = *zh;		/* debugging aid */

	if (BP_IS_HOLE(&zh->zh_log))
		return (B_FALSE);

	tx = dmu_tx_create(zilog->zl_os);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
	txg = dmu_tx_get_txg(tx);

	mutex_enter(&zilog->zl_lock);

	ASSERT3U(zilog->zl_destroy_txg, <, txg);
	zilog->zl_destroy_txg = txg;
	zilog->zl_keep_first = keep_first;

	if (!list_is_empty(&zilog->zl_lwb_list)) {
		ASSERT(zh->zh_claim_txg == 0);
		VERIFY(!keep_first);
		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
			if (lwb->lwb_buf != NULL)
				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
			if (!BP_IS_HOLE(&lwb->lwb_blk))
				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
			zil_free_lwb(zilog, lwb);
		}
	} else if (!keep_first) {
		zil_destroy_sync(zilog, tx);
	}
	mutex_exit(&zilog->zl_lock);

	dmu_tx_commit(tx);

	return (B_TRUE);
}

void
zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
{
	ASSERT(list_is_empty(&zilog->zl_lwb_list));
	(void) zil_parse(zilog, zil_free_log_block,
	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
}

int
zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
{
	dmu_tx_t *tx = txarg;
	zilog_t *zilog;
	uint64_t first_txg;
	zil_header_t *zh;
	objset_t *os;
	int error;

	error = dmu_objset_own_obj(dp, ds->ds_object,
	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
	if (error != 0) {
		/*
		 * EBUSY indicates that the objset is inconsistent, in which
		 * case it can not have a ZIL.
		 */
		if (error != EBUSY) {
			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
			    (unsigned long long)ds->ds_object, error);
		}

		return (0);
	}

	zilog = dmu_objset_zil(os);
	zh = zil_header_in_syncing_context(zilog);
	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
	first_txg = spa_min_claim_txg(zilog->zl_spa);

	/*
	 * If the spa_log_state is not set to be cleared, check whether
	 * the current uberblock is a checkpoint one and if the current
	 * header has been claimed before moving on.
	 *
	 * If the current uberblock is a checkpointed uberblock then
	 * one of the following scenarios took place:
	 *
	 * 1] We are currently rewinding to the checkpoint of the pool.
	 * 2] We crashed in the middle of a checkpoint rewind but we
	 *    did manage to write the checkpointed uberblock to the
	 *    vdev labels, so when we tried to import the pool again
	 *    the checkpointed uberblock was selected from the import
	 *    procedure.
	 *
	 * In both cases we want to zero out all the ZIL blocks, except
	 * the ones that have been claimed at the time of the checkpoint
	 * (their zh_claim_txg != 0). The reason is that these blocks
	 * may be corrupted since we may have reused their locations on
	 * disk after we took the checkpoint.
	 *
	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
	 * when we first figure out whether the current uberblock is
	 * checkpointed or not. Unfortunately, that would discard all
	 * the logs, including the ones that are claimed, and we would
	 * leak space.
	 */
	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
	    zh->zh_claim_txg == 0)) {
		if (!BP_IS_HOLE(&zh->zh_log)) {
			(void) zil_parse(zilog, zil_clear_log_block,
			    zil_noop_log_record, tx, first_txg, B_FALSE);
		}
		BP_ZERO(&zh->zh_log);
		if (os->os_encrypted)
			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
		dsl_dataset_dirty(dmu_objset_ds(os), tx);
		dmu_objset_disown(os, B_FALSE, FTAG);
		return (0);
	}

	/*
	 * If we are not rewinding and opening the pool normally, then
	 * the min_claim_txg should be equal to the first txg of the pool.
	 */
	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));

	/*
	 * Claim all log blocks if we haven't already done so, and remember
	 * the highest claimed sequence number.  This ensures that if we can
	 * read only part of the log now (e.g. due to a missing device),
	 * but we can read the entire log later, we will not try to replay
	 * or destroy beyond the last block we successfully claimed.
	 */
	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
		(void) zil_parse(zilog, zil_claim_log_block,
		    zil_claim_log_record, tx, first_txg, B_FALSE);
		zh->zh_claim_txg = first_txg;
		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
			zh->zh_flags |= ZIL_REPLAY_NEEDED;
		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
		if (os->os_encrypted)
			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
		dsl_dataset_dirty(dmu_objset_ds(os), tx);
	}

	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
	dmu_objset_disown(os, B_FALSE, FTAG);
	return (0);
}

/*
 * Check the log by walking the log chain.
 * Checksum errors are ok as they indicate the end of the chain.
 * Any other error (no device or read failure) returns an error.
 */
int
zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
{
	(void) dp;
	zilog_t *zilog;
	objset_t *os;
	blkptr_t *bp;
	int error;

	ASSERT(tx == NULL);

	error = dmu_objset_from_ds(ds, &os);
	if (error != 0) {
		cmn_err(CE_WARN, "can't open objset %llu, error %d",
		    (unsigned long long)ds->ds_object, error);
		return (0);
	}

	zilog = dmu_objset_zil(os);
	bp = (blkptr_t *)&zilog->zl_header->zh_log;

	if (!BP_IS_HOLE(bp)) {
		vdev_t *vd;
		boolean_t valid = B_TRUE;

		/*
		 * Check the first block and determine if it's on a log device
		 * which may have been removed or faulted prior to loading this
		 * pool.  If so, there's no point in checking the rest of the
		 * log as its content should have already been synced to the
		 * pool.
		 */
		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
		if (vd->vdev_islog && vdev_is_dead(vd))
			valid = vdev_log_state_valid(vd);
		spa_config_exit(os->os_spa, SCL_STATE, FTAG);

		if (!valid)
			return (0);

		/*
		 * Check whether the current uberblock is checkpointed (e.g.
		 * we are rewinding) and whether the current header has been
		 * claimed or not. If it hasn't then skip verifying it. We
		 * do this because its ZIL blocks may be part of the pool's
		 * state before the rewind, which is no longer valid.
		 */
		zil_header_t *zh = zil_header_in_syncing_context(zilog);
		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
		    zh->zh_claim_txg == 0)
			return (0);
	}

	/*
	 * Because tx == NULL, zil_claim_log_block() will not actually claim
	 * any blocks, but just determine whether it is possible to do so.
	 * In addition to checking the log chain, zil_claim_log_block()
	 * will invoke zio_claim() with a done func of spa_claim_notify(),
	 * which will update spa_max_claim_txg.  See spa_load() for details.
	 */
	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
	    zilog->zl_header->zh_claim_txg ? -1ULL :
	    spa_min_claim_txg(os->os_spa), B_FALSE);

	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
}

/*
 * When an itx is "skipped", this function is used to properly mark the
 * waiter as "done, and signal any thread(s) waiting on it. An itx can
 * be skipped (and not committed to an lwb) for a variety of reasons,
 * one of them being that the itx was committed via spa_sync(), prior to
 * it being committed to an lwb; this can happen if a thread calling
 * zil_commit() is racing with spa_sync().
 */
static void
zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
{
	mutex_enter(&zcw->zcw_lock);
	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
	zcw->zcw_done = B_TRUE;
	cv_broadcast(&zcw->zcw_cv);
	mutex_exit(&zcw->zcw_lock);
}

/*
 * This function is used when the given waiter is to be linked into an
 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
 * At this point, the waiter will no longer be referenced by the itx,
 * and instead, will be referenced by the lwb.
 */
static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
{
	/*
	 * The lwb_waiters field of the lwb is protected by the zilog's
	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
	 * zl_issuer_lock also protects leaving the open state.
	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
	 * flush_done, which transition is protected by zl_lock.
	 */
	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);

	ASSERT(!list_link_active(&zcw->zcw_node));
	list_insert_tail(&lwb->lwb_waiters, zcw);
	ASSERT3P(zcw->zcw_lwb, ==, NULL);
	zcw->zcw_lwb = lwb;
}

/*
 * This function is used when zio_alloc_zil() fails to allocate a ZIL
 * block, and the given waiter must be linked to the "nolwb waiters"
 * list inside of zil_process_commit_list().
 */
static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
{
	ASSERT(!list_link_active(&zcw->zcw_node));
	list_insert_tail(nolwb, zcw);
	ASSERT3P(zcw->zcw_lwb, ==, NULL);
}

void
zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
{
	avl_tree_t *t = &lwb->lwb_vdev_tree;
	avl_index_t where;
	zil_vdev_node_t *zv, zvsearch;
	int ndvas = BP_GET_NDVAS(bp);
	int i;

	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);

	if (zil_nocacheflush)
		return;

	mutex_enter(&lwb->lwb_vdev_lock);
	for (i = 0; i < ndvas; i++) {
		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
		if (avl_find(t, &zvsearch, &where) == NULL) {
			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
			zv->zv_vdev = zvsearch.zv_vdev;
			avl_insert(t, zv, where);
		}
	}
	mutex_exit(&lwb->lwb_vdev_lock);
}

static void
zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
{
	avl_tree_t *src = &lwb->lwb_vdev_tree;
	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
	void *cookie = NULL;
	zil_vdev_node_t *zv;

	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);

	/*
	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
	 * not need the protection of lwb_vdev_lock (it will only be modified
	 * while holding zilog->zl_lock) as its writes and those of its
	 * children have all completed.  The younger 'nlwb' may be waiting on
	 * future writes to additional vdevs.
	 */
	mutex_enter(&nlwb->lwb_vdev_lock);
	/*
	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
	 */
	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
		avl_index_t where;

		if (avl_find(dst, zv, &where) == NULL) {
			avl_insert(dst, zv, where);
		} else {
			kmem_free(zv, sizeof (*zv));
		}
	}
	mutex_exit(&nlwb->lwb_vdev_lock);
}

void
zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
{
	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
}

/*
 * This function is a called after all vdevs associated with a given lwb
 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
 * all "previous" lwb's will have completed before this function is
 * called; i.e. this function is called for all previous lwbs before
 * it's called for "this" lwb (enforced via zio the dependencies
 * configured in zil_lwb_set_zio_dependency()).
 *
 * The intention is for this function to be called as soon as the
 * contents of an lwb are considered "stable" on disk, and will survive
 * any sudden loss of power. At this point, any threads waiting for the
 * lwb to reach this state are signalled, and the "waiter" structures
 * are marked "done".
 */
static void
zil_lwb_flush_vdevs_done(zio_t *zio)
{
	lwb_t *lwb = zio->io_private;
	zilog_t *zilog = lwb->lwb_zilog;
	zil_commit_waiter_t *zcw;
	itx_t *itx;

	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);

	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;

	mutex_enter(&zilog->zl_lock);

	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;

	lwb->lwb_root_zio = NULL;

	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
	lwb->lwb_state = LWB_STATE_FLUSH_DONE;

	if (zilog->zl_last_lwb_opened == lwb) {
		/*
		 * Remember the highest committed log sequence number
		 * for ztest. We only update this value when all the log
		 * writes succeeded, because ztest wants to ASSERT that
		 * it got the whole log chain.
		 */
		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
	}

	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
		zil_itx_destroy(itx);

	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
		mutex_enter(&zcw->zcw_lock);

		ASSERT3P(zcw->zcw_lwb, ==, lwb);
		zcw->zcw_lwb = NULL;
		/*
		 * We expect any ZIO errors from child ZIOs to have been
		 * propagated "up" to this specific LWB's root ZIO, in
		 * order for this error handling to work correctly. This
		 * includes ZIO errors from either this LWB's write or
		 * flush, as well as any errors from other dependent LWBs
		 * (e.g. a root LWB ZIO that might be a child of this LWB).
		 *
		 * With that said, it's important to note that LWB flush
		 * errors are not propagated up to the LWB root ZIO.
		 * This is incorrect behavior, and results in VDEV flush
		 * errors not being handled correctly here. See the
		 * comment above the call to "zio_flush" for details.
		 */

		zcw->zcw_zio_error = zio->io_error;

		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
		zcw->zcw_done = B_TRUE;
		cv_broadcast(&zcw->zcw_cv);

		mutex_exit(&zcw->zcw_lock);
	}

	uint64_t txg = lwb->lwb_issued_txg;

	/* Once we drop the lock, lwb may be freed by zil_sync(). */
	mutex_exit(&zilog->zl_lock);

	mutex_enter(&zilog->zl_lwb_io_lock);
	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
		cv_broadcast(&zilog->zl_lwb_io_cv);
	mutex_exit(&zilog->zl_lwb_io_lock);
}

/*
 * Wait for the completion of all issued write/flush of that txg provided.
 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
 */
static void
zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
{
	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));

	mutex_enter(&zilog->zl_lwb_io_lock);
	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
	mutex_exit(&zilog->zl_lwb_io_lock);

#ifdef ZFS_DEBUG
	mutex_enter(&zilog->zl_lock);
	mutex_enter(&zilog->zl_lwb_io_lock);
	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
	while (lwb != NULL) {
		if (lwb->lwb_issued_txg <= txg) {
			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
			IMPLY(lwb->lwb_issued_txg > 0,
			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
		}
		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
		    lwb->lwb_buf == NULL);
		lwb = list_next(&zilog->zl_lwb_list, lwb);
	}
	mutex_exit(&zilog->zl_lwb_io_lock);
	mutex_exit(&zilog->zl_lock);
#endif
}

/*
 * This is called when an lwb's write zio completes. The callback's
 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
 * in writing out this specific lwb's data, and in the case that cache
 * flushes have been deferred, vdevs involved in writing the data for
 * previous lwbs. The writes corresponding to all the vdevs in the
 * lwb_vdev_tree will have completed by the time this is called, due to
 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
 * which takes deferred flushes into account. The lwb will be "done"
 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
 * completion callback for the lwb's root zio.
 */
static void
zil_lwb_write_done(zio_t *zio)
{
	lwb_t *lwb = zio->io_private;
	spa_t *spa = zio->io_spa;
	zilog_t *zilog = lwb->lwb_zilog;
	avl_tree_t *t = &lwb->lwb_vdev_tree;
	void *cookie = NULL;
	zil_vdev_node_t *zv;
	lwb_t *nlwb;

	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);

	abd_free(zio->io_abd);
	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
	lwb->lwb_buf = NULL;

	mutex_enter(&zilog->zl_lock);
	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
	lwb->lwb_state = LWB_STATE_WRITE_DONE;
	lwb->lwb_child_zio = NULL;
	lwb->lwb_write_zio = NULL;

	/*
	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
	 * called for it yet, and when it will be, it won't be able to make
	 * its write ZIO a parent this ZIO.  In such case we can not defer
	 * our flushes or below may be a race between the done callbacks.
	 */
	nlwb = list_next(&zilog->zl_lwb_list, lwb);
	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
		nlwb = NULL;
	mutex_exit(&zilog->zl_lock);

	if (avl_numnodes(t) == 0)
		return;

	/*
	 * If there was an IO error, we're not going to call zio_flush()
	 * on these vdevs, so we simply empty the tree and free the
	 * nodes. We avoid calling zio_flush() since there isn't any
	 * good reason for doing so, after the lwb block failed to be
	 * written out.
	 *
	 * Additionally, we don't perform any further error handling at
	 * this point (e.g. setting "zcw_zio_error" appropriately), as
	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
	 * we expect any error seen here, to have been propagated to
	 * that function).
	 */
	if (zio->io_error != 0) {
		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
			kmem_free(zv, sizeof (*zv));
		return;
	}

	/*
	 * If this lwb does not have any threads waiting for it to
	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
	 * command to the vdevs written to by "this" lwb, and instead
	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
	 * command for those vdevs. Thus, we merge the vdev tree of
	 * "this" lwb with the vdev tree of the "next" lwb in the list,
	 * and assume the "next" lwb will handle flushing the vdevs (or
	 * deferring the flush(s) again).
	 *
	 * This is a useful performance optimization, especially for
	 * workloads with lots of async write activity and few sync
	 * write and/or fsync activity, as it has the potential to
	 * coalesce multiple flush commands to a vdev into one.
	 */
	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
		zil_lwb_flush_defer(lwb, nlwb);
		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
		return;
	}

	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
		if (vd != NULL) {
			/*
			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
			 * always used within "zio_flush". This means,
			 * any errors when flushing the vdev(s), will
			 * (unfortunately) not be handled correctly,
			 * since these "zio_flush" errors will not be
			 * propagated up to "zil_lwb_flush_vdevs_done".
			 */
			zio_flush(lwb->lwb_root_zio, vd);
		}
		kmem_free(zv, sizeof (*zv));
	}
}

/*
 * Build the zio dependency chain, which is used to preserve the ordering of
 * lwb completions that is required by the semantics of the ZIL. Each new lwb
 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
 * cannot complete until the previous lwb's zio completes.
 *
 * This is required by the semantics of zil_commit(): the commit waiters
 * attached to the lwbs will be woken in the lwb zio's completion callback,
 * so this zio dependency graph ensures the waiters are woken in the correct
 * order (the same order the lwbs were created).
 */
static void
zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
{
	ASSERT(MUTEX_HELD(&zilog->zl_lock));

	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
	if (prev_lwb == NULL ||
	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
		return;

	/*
	 * If the previous lwb's write hasn't already completed, we also want
	 * to order the completion of the lwb write zios (above, we only order
	 * the completion of the lwb root zios). This is required because of
	 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
	 *
	 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
	 * lwb will rely on this lwb to flush the vdevs written to by that
	 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
	 * flush until after the previous lwb's write completes. We ensure
	 * this ordering by setting the zio parent/child relationship here.
	 *
	 * Without this relationship on the lwb's write zio, it's possible
	 * for this lwb's write to complete prior to the previous lwb's write
	 * completing; and thus, the vdevs for the previous lwb would be
	 * flushed prior to that lwb's data being written to those vdevs (the
	 * vdevs are flushed in the lwb write zio's completion handler,
	 * zil_lwb_write_done()).
	 */
	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
	} else {
		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
	}

	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
}


/*
 * This function's purpose is to "open" an lwb such that it is ready to
 * accept new itxs being committed to it. This function is idempotent; if
 * the passed in lwb has already been opened, it is essentially a no-op.
 */
static void
zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
{
	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	if (lwb->lwb_state != LWB_STATE_NEW) {
		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
		return;
	}

	mutex_enter(&zilog->zl_lock);
	lwb->lwb_state = LWB_STATE_OPENED;
	zilog->zl_last_lwb_opened = lwb;
	mutex_exit(&zilog->zl_lock);
}

/*
 * Maximum block size used by the ZIL.  This is picked up when the ZIL is
 * initialized.  Otherwise this should not be used directly; see
 * zl_max_block_size instead.
 */
static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;

/*
 * Plan splitting of the provided burst size between several blocks.
 */
static uint_t
zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
{
	uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);

	if (size <= md) {
		/*
		 * Small bursts are written as-is in one block.
		 */
		*minsize = size;
		return (size);
	} else if (size > 8 * md) {
		/*
		 * Big bursts use maximum blocks.  The first block size
		 * is hard to predict, but it does not really matter.
		 */
		*minsize = 0;
		return (md);
	}

	/*
	 * Medium bursts try to divide evenly to better utilize several SLOG
	 * VDEVs.  The first block size we predict assuming the worst case of
	 * maxing out others.  Fall back to using maximum blocks if due to
	 * large records or wasted space we can not predict anything better.
	 */
	uint_t s = size;
	uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
	uint_t chunk = DIV_ROUND_UP(s, n);
	uint_t waste = zil_max_waste_space(zilog);
	waste = MAX(waste, zilog->zl_cur_max);
	if (chunk <= md - waste) {
		*minsize = MAX(s - (md - waste) * (n - 1), waste);
		return (chunk);
	} else {
		*minsize = 0;
		return (md);
	}
}

/*
 * Try to predict next block size based on previous history.  Make prediction
 * sufficient for 7 of 8 previous bursts.  Don't try to save if the saving is
 * less then 50%, extra writes may cost more, but we don't want single spike
 * to badly affect our predictions.
 */
static uint_t
zil_lwb_predict(zilog_t *zilog)
{
	uint_t m, o;

	/* If we are in the middle of a burst, take it into account also. */
	if (zilog->zl_cur_size > 0) {
		o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
	} else {
		o = UINT_MAX;
		m = 0;
	}

	/* Find minimum optimal size.  We don't need to go below that. */
	for (int i = 0; i < ZIL_BURSTS; i++)
		o = MIN(o, zilog->zl_prev_opt[i]);

	/* Find two biggest minimal first block sizes above the optimal. */
	uint_t m1 = MAX(m, o), m2 = o;
	for (int i = 0; i < ZIL_BURSTS; i++) {
		m = zilog->zl_prev_min[i];
		if (m >= m1) {
			m2 = m1;
			m1 = m;
		} else if (m > m2) {
			m2 = m;
		}
	}

	/*
	 * If second minimum size gives 50% saving -- use it.  It may cost us
	 * one additional write later, but the space saving is just too big.
	 */
	return ((m1 < m2 * 2) ? m1 : m2);
}

/*
 * Close the log block for being issued and allocate the next one.
 * Has to be called under zl_issuer_lock to chain more lwbs.
 */
static lwb_t *
zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
{
	uint64_t blksz, plan, plan2;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
	lwb->lwb_state = LWB_STATE_CLOSED;

	/*
	 * If there was an allocation failure then returned NULL will trigger
	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
	 * since allocation may not have happened yet.
	 */
	if (lwb->lwb_error != 0)
		return (NULL);

	/*
	 * Log blocks are pre-allocated.  Here we select the size of the next
	 * block, based on what's left of this burst and the previous history.
	 * While we try to only write used part of the block, we can't just
	 * always allocate the maximum block size because we can exhaust all
	 * available pool log space, so we try to be reasonable.
	 */
	if (zilog->zl_cur_left > 0) {
		/*
		 * We are in the middle of a burst and know how much is left.
		 * But if workload is multi-threaded there may be more soon.
		 * Try to predict what can it be and plan for the worst case.
		 */
		uint_t m;
		plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
		if (zilog->zl_parallel) {
			plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
			    zil_lwb_predict(zilog), &m);
			if (plan < plan2)
				plan = plan2;
		}
	} else {
		/*
		 * The previous burst is done and we can only predict what
		 * will come next.
		 */
		plan = zil_lwb_predict(zilog);
	}
	blksz = plan + sizeof (zil_chain_t);
	blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
	blksz = MIN(blksz, zilog->zl_max_block_size);
	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
	    uint64_t, plan);

	return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
}

/*
 * Finalize previously closed block and issue the write zio.
 */
static void
zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
{
	spa_t *spa = zilog->zl_spa;
	zil_chain_t *zilc;
	boolean_t slog;
	zbookmark_phys_t zb;
	zio_priority_t prio;
	int error;

	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);

	/* Actually fill the lwb with the data. */
	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
	    itx = list_next(&lwb->lwb_itxs, itx))
		zil_lwb_commit(zilog, lwb, itx);
	lwb->lwb_nused = lwb->lwb_nfilled;
	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);

	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
	    ZIO_FLAG_CANFAIL);

	/*
	 * The lwb is now ready to be issued, but it can be only if it already
	 * got its block pointer allocated or the allocation has failed.
	 * Otherwise leave it as-is, relying on some other thread to issue it
	 * after allocating its block pointer via calling zil_lwb_write_issue()
	 * for the previous lwb(s) in the chain.
	 */
	mutex_enter(&zilog->zl_lock);
	lwb->lwb_state = LWB_STATE_READY;
	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
		mutex_exit(&zilog->zl_lock);
		return;
	}
	mutex_exit(&zilog->zl_lock);

next_lwb:
	if (lwb->lwb_slim)
		zilc = (zil_chain_t *)lwb->lwb_buf;
	else
		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
	int wsz = lwb->lwb_sz;
	if (lwb->lwb_error == 0) {
		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
		if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
			prio = ZIO_PRIORITY_SYNC_WRITE;
		else
			prio = ZIO_PRIORITY_ASYNC_WRITE;
		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
		zil_lwb_add_block(lwb, &lwb->lwb_blk);

		if (lwb->lwb_slim) {
			/* For Slim ZIL only write what is used. */
			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
			    int);
			ASSERT3S(wsz, <=, lwb->lwb_sz);
			zio_shrink(lwb->lwb_write_zio, wsz);
			wsz = lwb->lwb_write_zio->io_size;
		}
		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
		zilc->zc_pad = 0;
		zilc->zc_nused = lwb->lwb_nused;
		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
	} else {
		/*
		 * We can't write the lwb if there was an allocation failure,
		 * so create a null zio instead just to maintain dependencies.
		 */
		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
		lwb->lwb_write_zio->io_error = lwb->lwb_error;
	}
	if (lwb->lwb_child_zio)
		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);

	/*
	 * Open transaction to allocate the next block pointer.
	 */
	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
	uint64_t txg = dmu_tx_get_txg(tx);

	/*
	 * Allocate next the block pointer unless we are already in error.
	 */
	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
	blkptr_t *bp = &zilc->zc_next_blk;
	BP_ZERO(bp);
	error = lwb->lwb_error;
	if (error == 0) {
		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
		    &slog);
	}
	if (error == 0) {
		ASSERT3U(bp->blk_birth, ==, txg);
		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
		    ZIO_CHECKSUM_ZILOG);
		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
	}

	/*
	 * Reduce TXG open time by incrementing inflight counter and committing
	 * the transaciton.  zil_sync() will wait for it to return to zero.
	 */
	mutex_enter(&zilog->zl_lwb_io_lock);
	lwb->lwb_issued_txg = txg;
	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
	mutex_exit(&zilog->zl_lwb_io_lock);
	dmu_tx_commit(tx);

	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);

	/*
	 * We've completed all potentially blocking operations.  Update the
	 * nlwb and allow it proceed without possible lock order reversals.
	 */
	mutex_enter(&zilog->zl_lock);
	zil_lwb_set_zio_dependency(zilog, lwb);
	lwb->lwb_state = LWB_STATE_ISSUED;

	if (nlwb) {
		nlwb->lwb_blk = *bp;
		nlwb->lwb_error = error;
		nlwb->lwb_slog = slog;
		nlwb->lwb_alloc_txg = txg;
		if (nlwb->lwb_state != LWB_STATE_READY)
			nlwb = NULL;
	}
	mutex_exit(&zilog->zl_lock);

	if (lwb->lwb_slog) {
		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
		    lwb->lwb_nused);
		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
		    wsz);
		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
		    BP_GET_LSIZE(&lwb->lwb_blk));
	} else {
		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
		    lwb->lwb_nused);
		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
		    wsz);
		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
		    BP_GET_LSIZE(&lwb->lwb_blk));
	}
	lwb->lwb_issued_timestamp = gethrtime();
	if (lwb->lwb_child_zio)
		zio_nowait(lwb->lwb_child_zio);
	zio_nowait(lwb->lwb_write_zio);
	zio_nowait(lwb->lwb_root_zio);

	/*
	 * If nlwb was ready when we gave it the block pointer,
	 * it is on us to issue it and possibly following ones.
	 */
	lwb = nlwb;
	if (lwb)
		goto next_lwb;
}

/*
 * Maximum amount of data that can be put into single log block.
 */
uint64_t
zil_max_log_data(zilog_t *zilog, size_t hdrsize)
{
	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
}

/*
 * Maximum amount of log space we agree to waste to reduce number of
 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
 */
static inline uint64_t
zil_max_waste_space(zilog_t *zilog)
{
	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
}

/*
 * Maximum amount of write data for WR_COPIED.  For correctness, consumers
 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
 * maximum sized log block, because each WR_COPIED record must fit in a
 * single log block.  Below that it is a tradeoff of additional memory copy
 * and possibly worse log space efficiency vs additional range lock/unlock.
 */
static uint_t zil_maxcopied = 7680;

uint64_t
zil_max_copied_data(zilog_t *zilog)
{
	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
	return (MIN(max_data, zil_maxcopied));
}

static uint64_t
zil_itx_record_size(itx_t *itx)
{
	lr_t *lr = &itx->itx_lr;

	if (lr->lrc_txtype == TX_COMMIT)
		return (0);
	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
	return (lr->lrc_reclen);
}

static uint64_t
zil_itx_data_size(itx_t *itx)
{
	lr_t *lr = &itx->itx_lr;
	lr_write_t *lrw = (lr_write_t *)lr;

	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
		ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
		return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
		    uint64_t));
	}
	return (0);
}

static uint64_t
zil_itx_full_size(itx_t *itx)
{
	lr_t *lr = &itx->itx_lr;

	if (lr->lrc_txtype == TX_COMMIT)
		return (0);
	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
	return (lr->lrc_reclen + zil_itx_data_size(itx));
}

/*
 * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
 * split the itx as needed, but don't touch the actual transaction data.
 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
 * to chain more lwbs.
 */
static lwb_t *
zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
{
	itx_t *citx;
	lr_t *lr, *clr;
	lr_write_t *lrw;
	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT3P(lwb, !=, NULL);
	ASSERT3P(lwb->lwb_buf, !=, NULL);

	zil_lwb_write_open(zilog, lwb);

	lr = &itx->itx_lr;
	lrw = (lr_write_t *)lr;

	/*
	 * A commit itx doesn't represent any on-disk state; instead
	 * it's simply used as a place holder on the commit list, and
	 * provides a mechanism for attaching a "commit waiter" onto the
	 * correct lwb (such that the waiter can be signalled upon
	 * completion of that lwb). Thus, we don't process this itx's
	 * log record if it's a commit itx (these itx's don't have log
	 * records), and instead link the itx's waiter onto the lwb's
	 * list of waiters.
	 *
	 * For more details, see the comment above zil_commit().
	 */
	if (lr->lrc_txtype == TX_COMMIT) {
		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
		list_insert_tail(&lwb->lwb_itxs, itx);
		return (lwb);
	}

	reclen = lr->lrc_reclen;
	ASSERT3U(reclen, >=, sizeof (lr_t));
	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
	dlen = zil_itx_data_size(itx);

cont:
	/*
	 * If this record won't fit in the current log block, start a new one.
	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
	 */
	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
	    lwb_sp < zil_max_waste_space(zilog) &&
	    (dlen % max_log_data == 0 ||
	    lwb_sp < reclen + dlen % max_log_data))) {
		list_insert_tail(ilwbs, lwb);
		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
		if (lwb == NULL)
			return (NULL);
		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
	}

	/*
	 * There must be enough space in the log block to hold reclen.
	 * For WR_COPIED, we need to fit the whole record in one block,
	 * and reclen is the write record header size + the data size.
	 * For WR_NEED_COPY, we can create multiple records, splitting
	 * the data into multiple blocks, so we only need to fit one
	 * word of data per block; in this case reclen is just the header
	 * size (no data).
	 */
	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);

	dnow = MIN(dlen, lwb_sp - reclen);
	if (dlen > dnow) {
		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
		citx = zil_itx_clone(itx);
		clr = &citx->itx_lr;
		lr_write_t *clrw = (lr_write_t *)clr;
		clrw->lr_length = dnow;
		lrw->lr_offset += dnow;
		lrw->lr_length -= dnow;
		zilog->zl_cur_left -= dnow;
	} else {
		citx = itx;
		clr = lr;
	}

	/*
	 * We're actually making an entry, so update lrc_seq to be the
	 * log record sequence number.  Note that this is generally not
	 * equal to the itx sequence number because not all transactions
	 * are synchronous, and sometimes spa_sync() gets there first.
	 */
	clr->lrc_seq = ++zilog->zl_lr_seq;

	lwb->lwb_nused += reclen + dnow;
	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));

	zil_lwb_add_txg(lwb, lr->lrc_txg);
	list_insert_tail(&lwb->lwb_itxs, citx);

	dlen -= dnow;
	if (dlen > 0)
		goto cont;

	if (lr->lrc_txtype == TX_WRITE &&
	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);

	return (lwb);
}

/*
 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
 * Does not require locking.
 */
static void
zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
{
	lr_t *lr, *lrb;
	lr_write_t *lrw, *lrwb;
	char *lr_buf;
	uint64_t dlen, reclen;

	lr = &itx->itx_lr;
	lrw = (lr_write_t *)lr;

	if (lr->lrc_txtype == TX_COMMIT)
		return;

	reclen = lr->lrc_reclen;
	dlen = zil_itx_data_size(itx);
	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);

	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
	memcpy(lr_buf, lr, reclen);
	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */

	ZIL_STAT_BUMP(zilog, zil_itx_count);

	/*
	 * If it's a write, fetch the data or get its blkptr as appropriate.
	 */
	if (lr->lrc_txtype == TX_WRITE) {
		if (itx->itx_wr_state == WR_COPIED) {
			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
			    lrw->lr_length);
		} else {
			char *dbuf;
			int error;

			if (itx->itx_wr_state == WR_NEED_COPY) {
				dbuf = lr_buf + reclen;
				lrb->lrc_reclen += dlen;
				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
				    dlen);
			} else {
				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
				dbuf = NULL;
				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
				    lrw->lr_length);
				if (lwb->lwb_child_zio == NULL) {
					lwb->lwb_child_zio = zio_null(NULL,
					    zilog->zl_spa, NULL, NULL, NULL,
					    ZIO_FLAG_CANFAIL);
				}
			}

			/*
			 * The "lwb_child_zio" we pass in will become a child of
			 * "lwb_write_zio", when one is created, so one will be
			 * a parent of any zio's created by the "zl_get_data".
			 * This way "lwb_write_zio" will first wait for children
			 * block pointers before own writing, and then for their
			 * writing completion before the vdev cache flushing.
			 */
			error = zilog->zl_get_data(itx->itx_private,
			    itx->itx_gen, lrwb, dbuf, lwb,
			    lwb->lwb_child_zio);
			if (dbuf != NULL && error == 0) {
				/* Zero any padding bytes in the last block. */
				memset((char *)dbuf + lrwb->lr_length, 0,
				    dlen - lrwb->lr_length);
			}

			/*
			 * Typically, the only return values we should see from
			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
			 *  EALREADY. However, it is also possible to see other
			 *  error values such as ENOSPC or EINVAL from
			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
			 *  ENXIO as well as a multitude of others from the
			 *  block layer through dmu_buf_hold() -> dbuf_read()
			 *  -> zio_wait(), as well as through dmu_read() ->
			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
			 *  zio_wait(). When these errors happen, we can assume
			 *  that neither an immediate write nor an indirect
			 *  write occurred, so we need to fall back to
			 *  txg_wait_synced(). This is unusual, so we print to
			 *  dmesg whenever one of these errors occurs.
			 */
			switch (error) {
			case 0:
				break;
			default:
				cmn_err(CE_WARN, "zil_lwb_commit() received "
				    "unexpected error %d from ->zl_get_data()"
				    ". Falling back to txg_wait_synced().",
				    error);
				zfs_fallthrough;
			case EIO:
				txg_wait_synced(zilog->zl_dmu_pool,
				    lr->lrc_txg);
				zfs_fallthrough;
			case ENOENT:
				zfs_fallthrough;
			case EEXIST:
				zfs_fallthrough;
			case EALREADY:
				return;
			}
		}
	}

	lwb->lwb_nfilled += reclen + dlen;
	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
}

itx_t *
zil_itx_create(uint64_t txtype, size_t olrsize)
{
	size_t itxsize, lrsize;
	itx_t *itx;

	ASSERT3U(olrsize, >=, sizeof (lr_t));
	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
	ASSERT3U(lrsize, >=, olrsize);
	itxsize = offsetof(itx_t, itx_lr) + lrsize;

	itx = zio_data_buf_alloc(itxsize);
	itx->itx_lr.lrc_txtype = txtype;
	itx->itx_lr.lrc_reclen = lrsize;
	itx->itx_lr.lrc_seq = 0;	/* defensive */
	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
	itx->itx_sync = B_TRUE;		/* default is synchronous */
	itx->itx_callback = NULL;
	itx->itx_callback_data = NULL;
	itx->itx_size = itxsize;

	return (itx);
}

static itx_t *
zil_itx_clone(itx_t *oitx)
{
	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
	ASSERT3U(oitx->itx_size, ==,
	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);

	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
	memcpy(itx, oitx, oitx->itx_size);
	itx->itx_callback = NULL;
	itx->itx_callback_data = NULL;
	return (itx);
}

void
zil_itx_destroy(itx_t *itx)
{
	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
	    itx->itx_size - offsetof(itx_t, itx_lr));
	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);

	if (itx->itx_callback != NULL)
		itx->itx_callback(itx->itx_callback_data);

	zio_data_buf_free(itx, itx->itx_size);
}

/*
 * Free up the sync and async itxs. The itxs_t has already been detached
 * so no locks are needed.
 */
static void
zil_itxg_clean(void *arg)
{
	itx_t *itx;
	list_t *list;
	avl_tree_t *t;
	void *cookie;
	itxs_t *itxs = arg;
	itx_async_node_t *ian;

	list = &itxs->i_sync_list;
	while ((itx = list_remove_head(list)) != NULL) {
		/*
		 * In the general case, commit itxs will not be found
		 * here, as they'll be committed to an lwb via
		 * zil_lwb_assign(), and free'd in that function. Having
		 * said that, it is still possible for commit itxs to be
		 * found here, due to the following race:
		 *
		 *	- a thread calls zil_commit() which assigns the
		 *	  commit itx to a per-txg i_sync_list
		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
		 *	  while the waiter is still on the i_sync_list
		 *
		 * There's nothing to prevent syncing the txg while the
		 * waiter is on the i_sync_list. This normally doesn't
		 * happen because spa_sync() is slower than zil_commit(),
		 * but if zil_commit() calls txg_wait_synced() (e.g.
		 * because zil_create() or zil_commit_writer_stall() is
		 * called) we will hit this case.
		 */
		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
			zil_commit_waiter_skip(itx->itx_private);

		zil_itx_destroy(itx);
	}

	cookie = NULL;
	t = &itxs->i_async_tree;
	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
		list = &ian->ia_list;
		while ((itx = list_remove_head(list)) != NULL) {
			/* commit itxs should never be on the async lists. */
			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
			zil_itx_destroy(itx);
		}
		list_destroy(list);
		kmem_free(ian, sizeof (itx_async_node_t));
	}
	avl_destroy(t);

	kmem_free(itxs, sizeof (itxs_t));
}

static int
zil_aitx_compare(const void *x1, const void *x2)
{
	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;

	return (TREE_CMP(o1, o2));
}

/*
 * Remove all async itx with the given oid.
 */
void
zil_remove_async(zilog_t *zilog, uint64_t oid)
{
	uint64_t otxg, txg;
	itx_async_node_t *ian, ian_search;
	avl_tree_t *t;
	avl_index_t where;
	list_t clean_list;
	itx_t *itx;

	ASSERT(oid != 0);
	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
		otxg = ZILTEST_TXG;
	else
		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

		mutex_enter(&itxg->itxg_lock);
		if (itxg->itxg_txg != txg) {
			mutex_exit(&itxg->itxg_lock);
			continue;
		}

		/*
		 * Locate the object node and append its list.
		 */
		t = &itxg->itxg_itxs->i_async_tree;
		ian_search.ia_foid = oid;
		ian = avl_find(t, &ian_search, &where);
		if (ian != NULL)
			list_move_tail(&clean_list, &ian->ia_list);
		mutex_exit(&itxg->itxg_lock);
	}
	while ((itx = list_remove_head(&clean_list)) != NULL) {
		/* commit itxs should never be on the async lists. */
		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
		zil_itx_destroy(itx);
	}
	list_destroy(&clean_list);
}

void
zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
{
	uint64_t txg;
	itxg_t *itxg;
	itxs_t *itxs, *clean = NULL;

	/*
	 * Ensure the data of a renamed file is committed before the rename.
	 */
	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
		zil_async_to_sync(zilog, itx->itx_oid);

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
		txg = ZILTEST_TXG;
	else
		txg = dmu_tx_get_txg(tx);

	itxg = &zilog->zl_itxg[txg & TXG_MASK];
	mutex_enter(&itxg->itxg_lock);
	itxs = itxg->itxg_itxs;
	if (itxg->itxg_txg != txg) {
		if (itxs != NULL) {
			/*
			 * The zil_clean callback hasn't got around to cleaning
			 * this itxg. Save the itxs for release below.
			 * This should be rare.
			 */
			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
			clean = itxg->itxg_itxs;
		}
		itxg->itxg_txg = txg;
		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
		    KM_SLEEP);

		list_create(&itxs->i_sync_list, sizeof (itx_t),
		    offsetof(itx_t, itx_node));
		avl_create(&itxs->i_async_tree, zil_aitx_compare,
		    sizeof (itx_async_node_t),
		    offsetof(itx_async_node_t, ia_node));
	}
	if (itx->itx_sync) {
		list_insert_tail(&itxs->i_sync_list, itx);
	} else {
		avl_tree_t *t = &itxs->i_async_tree;
		uint64_t foid =
		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
		itx_async_node_t *ian;
		avl_index_t where;

		ian = avl_find(t, &foid, &where);
		if (ian == NULL) {
			ian = kmem_alloc(sizeof (itx_async_node_t),
			    KM_SLEEP);
			list_create(&ian->ia_list, sizeof (itx_t),
			    offsetof(itx_t, itx_node));
			ian->ia_foid = foid;
			avl_insert(t, ian, where);
		}
		list_insert_tail(&ian->ia_list, itx);
	}

	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);

	/*
	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
	 * need to be careful to always dirty the ZIL using the "real"
	 * TXG (not itxg_txg) even when the SPA is frozen.
	 */
	zilog_dirty(zilog, dmu_tx_get_txg(tx));
	mutex_exit(&itxg->itxg_lock);

	/* Release the old itxs now we've dropped the lock */
	if (clean != NULL)
		zil_itxg_clean(clean);
}

/*
 * If there are any in-memory intent log transactions which have now been
 * synced then start up a taskq to free them. We should only do this after we
 * have written out the uberblocks (i.e. txg has been committed) so that
 * don't inadvertently clean out in-memory log records that would be required
 * by zil_commit().
 */
void
zil_clean(zilog_t *zilog, uint64_t synced_txg)
{
	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
	itxs_t *clean_me;

	ASSERT3U(synced_txg, <, ZILTEST_TXG);

	mutex_enter(&itxg->itxg_lock);
	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
		mutex_exit(&itxg->itxg_lock);
		return;
	}
	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
	ASSERT3U(itxg->itxg_txg, !=, 0);
	clean_me = itxg->itxg_itxs;
	itxg->itxg_itxs = NULL;
	itxg->itxg_txg = 0;
	mutex_exit(&itxg->itxg_lock);
	/*
	 * Preferably start a task queue to free up the old itxs but
	 * if taskq_dispatch can't allocate resources to do that then
	 * free it in-line. This should be rare. Note, using TQ_SLEEP
	 * created a bad performance problem.
	 */
	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
	if (id == TASKQID_INVALID)
		zil_itxg_clean(clean_me);
}

/*
 * This function will traverse the queue of itxs that need to be
 * committed, and move them onto the ZIL's zl_itx_commit_list.
 */
static uint64_t
zil_get_commit_list(zilog_t *zilog)
{
	uint64_t otxg, txg, wtxg = 0;
	list_t *commit_list = &zilog->zl_itx_commit_list;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
		otxg = ZILTEST_TXG;
	else
		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

	/*
	 * This is inherently racy, since there is nothing to prevent
	 * the last synced txg from changing. That's okay since we'll
	 * only commit things in the future.
	 */
	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

		mutex_enter(&itxg->itxg_lock);
		if (itxg->itxg_txg != txg) {
			mutex_exit(&itxg->itxg_lock);
			continue;
		}

		/*
		 * If we're adding itx records to the zl_itx_commit_list,
		 * then the zil better be dirty in this "txg". We can assert
		 * that here since we're holding the itxg_lock which will
		 * prevent spa_sync from cleaning it. Once we add the itxs
		 * to the zl_itx_commit_list we must commit it to disk even
		 * if it's unnecessary (i.e. the txg was synced).
		 */
		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
		itx_t *itx = NULL;
		if (unlikely(zilog->zl_suspend > 0)) {
			/*
			 * ZIL was just suspended, but we lost the race.
			 * Allow all earlier itxs to be committed, but ask
			 * caller to do txg_wait_synced(txg) for any new.
			 */
			if (!list_is_empty(sync_list))
				wtxg = MAX(wtxg, txg);
		} else {
			itx = list_head(sync_list);
			list_move_tail(commit_list, sync_list);
		}

		mutex_exit(&itxg->itxg_lock);

		while (itx != NULL) {
			uint64_t s = zil_itx_full_size(itx);
			zilog->zl_cur_size += s;
			zilog->zl_cur_left += s;
			s = zil_itx_record_size(itx);
			zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
			itx = list_next(commit_list, itx);
		}
	}
	return (wtxg);
}

/*
 * Move the async itxs for a specified object to commit into sync lists.
 */
void
zil_async_to_sync(zilog_t *zilog, uint64_t foid)
{
	uint64_t otxg, txg;
	itx_async_node_t *ian, ian_search;
	avl_tree_t *t;
	avl_index_t where;

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
		otxg = ZILTEST_TXG;
	else
		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

	/*
	 * This is inherently racy, since there is nothing to prevent
	 * the last synced txg from changing.
	 */
	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

		mutex_enter(&itxg->itxg_lock);
		if (itxg->itxg_txg != txg) {
			mutex_exit(&itxg->itxg_lock);
			continue;
		}

		/*
		 * If a foid is specified then find that node and append its
		 * list. Otherwise walk the tree appending all the lists
		 * to the sync list. We add to the end rather than the
		 * beginning to ensure the create has happened.
		 */
		t = &itxg->itxg_itxs->i_async_tree;
		if (foid != 0) {
			ian_search.ia_foid = foid;
			ian = avl_find(t, &ian_search, &where);
			if (ian != NULL) {
				list_move_tail(&itxg->itxg_itxs->i_sync_list,
				    &ian->ia_list);
			}
		} else {
			void *cookie = NULL;

			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
				list_move_tail(&itxg->itxg_itxs->i_sync_list,
				    &ian->ia_list);
				list_destroy(&ian->ia_list);
				kmem_free(ian, sizeof (itx_async_node_t));
			}
		}
		mutex_exit(&itxg->itxg_lock);
	}
}

/*
 * This function will prune commit itxs that are at the head of the
 * commit list (it won't prune past the first non-commit itx), and
 * either: a) attach them to the last lwb that's still pending
 * completion, or b) skip them altogether.
 *
 * This is used as a performance optimization to prevent commit itxs
 * from generating new lwbs when it's unnecessary to do so.
 */
static void
zil_prune_commit_list(zilog_t *zilog)
{
	itx_t *itx;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
		lr_t *lrc = &itx->itx_lr;
		if (lrc->lrc_txtype != TX_COMMIT)
			break;

		mutex_enter(&zilog->zl_lock);

		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
		if (last_lwb == NULL ||
		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
			/*
			 * All of the itxs this waiter was waiting on
			 * must have already completed (or there were
			 * never any itx's for it to wait on), so it's
			 * safe to skip this waiter and mark it done.
			 */
			zil_commit_waiter_skip(itx->itx_private);
		} else {
			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
		}

		mutex_exit(&zilog->zl_lock);

		list_remove(&zilog->zl_itx_commit_list, itx);
		zil_itx_destroy(itx);
	}

	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
}

static void
zil_commit_writer_stall(zilog_t *zilog)
{
	/*
	 * When zio_alloc_zil() fails to allocate the next lwb block on
	 * disk, we must call txg_wait_synced() to ensure all of the
	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
	 * to zil_process_commit_list()) will have to call zil_create(),
	 * and start a new ZIL chain.
	 *
	 * Since zil_alloc_zil() failed, the lwb that was previously
	 * issued does not have a pointer to the "next" lwb on disk.
	 * Thus, if another ZIL writer thread was to allocate the "next"
	 * on-disk lwb, that block could be leaked in the event of a
	 * crash (because the previous lwb on-disk would not point to
	 * it).
	 *
	 * We must hold the zilog's zl_issuer_lock while we do this, to
	 * ensure no new threads enter zil_process_commit_list() until
	 * all lwb's in the zl_lwb_list have been synced and freed
	 * (which is achieved via the txg_wait_synced() call).
	 */
	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	txg_wait_synced(zilog->zl_dmu_pool, 0);
	ASSERT(list_is_empty(&zilog->zl_lwb_list));
}

static void
zil_burst_done(zilog_t *zilog)
{
	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
	    zilog->zl_cur_size == 0)
		return;

	if (zilog->zl_parallel)
		zilog->zl_parallel--;

	uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
	zilog->zl_prev_rotor = r;
	zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
	    &zilog->zl_prev_min[r]);

	zilog->zl_cur_size = 0;
	zilog->zl_cur_max = 0;
	zilog->zl_cur_left = 0;
}

/*
 * This function will traverse the commit list, creating new lwbs as
 * needed, and committing the itxs from the commit list to these newly
 * created lwbs. Additionally, as a new lwb is created, the previous
 * lwb will be issued to the zio layer to be written to disk.
 */
static void
zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
{
	spa_t *spa = zilog->zl_spa;
	list_t nolwb_itxs;
	list_t nolwb_waiters;
	lwb_t *lwb, *plwb;
	itx_t *itx;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	/*
	 * Return if there's nothing to commit before we dirty the fs by
	 * calling zil_create().
	 */
	if (list_is_empty(&zilog->zl_itx_commit_list))
		return;

	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
	    offsetof(zil_commit_waiter_t, zcw_node));

	lwb = list_tail(&zilog->zl_lwb_list);
	if (lwb == NULL) {
		lwb = zil_create(zilog);
	} else {
		/*
		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
		 * have already been created (zl_lwb_list not empty).
		 */
		zil_commit_activate_saxattr_feature(zilog);
		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
		    lwb->lwb_state == LWB_STATE_OPENED);

		/*
		 * If the lwb is still opened, it means the workload is really
		 * multi-threaded and we won the chance of write aggregation.
		 * If it is not opened yet, but previous lwb is still not
		 * flushed, it still means the workload is multi-threaded, but
		 * there was too much time between the commits to aggregate, so
		 * we try aggregation next times, but without too much hopes.
		 */
		if (lwb->lwb_state == LWB_STATE_OPENED) {
			zilog->zl_parallel = ZIL_BURSTS;
		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
			zilog->zl_parallel = MAX(zilog->zl_parallel,
			    ZIL_BURSTS / 2);
		}
	}

	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
		lr_t *lrc = &itx->itx_lr;
		uint64_t txg = lrc->lrc_txg;

		ASSERT3U(txg, !=, 0);

		if (lrc->lrc_txtype == TX_COMMIT) {
			DTRACE_PROBE2(zil__process__commit__itx,
			    zilog_t *, zilog, itx_t *, itx);
		} else {
			DTRACE_PROBE2(zil__process__normal__itx,
			    zilog_t *, zilog, itx_t *, itx);
		}

		boolean_t synced = txg <= spa_last_synced_txg(spa);
		boolean_t frozen = txg > spa_freeze_txg(spa);

		/*
		 * If the txg of this itx has already been synced out, then
		 * we don't need to commit this itx to an lwb. This is
		 * because the data of this itx will have already been
		 * written to the main pool. This is inherently racy, and
		 * it's still ok to commit an itx whose txg has already
		 * been synced; this will result in a write that's
		 * unnecessary, but will do no harm.
		 *
		 * With that said, we always want to commit TX_COMMIT itxs
		 * to an lwb, regardless of whether or not that itx's txg
		 * has been synced out. We do this to ensure any OPENED lwb
		 * will always have at least one zil_commit_waiter_t linked
		 * to the lwb.
		 *
		 * As a counter-example, if we skipped TX_COMMIT itx's
		 * whose txg had already been synced, the following
		 * situation could occur if we happened to be racing with
		 * spa_sync:
		 *
		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
		 *    itx's txg is 10 and the last synced txg is 9.
		 * 2. spa_sync finishes syncing out txg 10.
		 * 3. We move to the next itx in the list, it's a TX_COMMIT
		 *    whose txg is 10, so we skip it rather than committing
		 *    it to the lwb used in (1).
		 *
		 * If the itx that is skipped in (3) is the last TX_COMMIT
		 * itx in the commit list, than it's possible for the lwb
		 * used in (1) to remain in the OPENED state indefinitely.
		 *
		 * To prevent the above scenario from occurring, ensuring
		 * that once an lwb is OPENED it will transition to ISSUED
		 * and eventually DONE, we always commit TX_COMMIT itx's to
		 * an lwb here, even if that itx's txg has already been
		 * synced.
		 *
		 * Finally, if the pool is frozen, we _always_ commit the
		 * itx.  The point of freezing the pool is to prevent data
		 * from being written to the main pool via spa_sync, and
		 * instead rely solely on the ZIL to persistently store the
		 * data; i.e.  when the pool is frozen, the last synced txg
		 * value can't be trusted.
		 */
		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
			if (lwb != NULL) {
				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
				if (lwb == NULL) {
					list_insert_tail(&nolwb_itxs, itx);
				} else if ((zcw->zcw_lwb != NULL &&
				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
					/*
					 * Our lwb is done, leave the rest of
					 * itx list to somebody else who care.
					 */
					zilog->zl_parallel = ZIL_BURSTS;
					zilog->zl_cur_left -=
					    zil_itx_full_size(itx);
					break;
				}
			} else {
				if (lrc->lrc_txtype == TX_COMMIT) {
					zil_commit_waiter_link_nolwb(
					    itx->itx_private, &nolwb_waiters);
				}
				list_insert_tail(&nolwb_itxs, itx);
			}
			zilog->zl_cur_left -= zil_itx_full_size(itx);
		} else {
			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
			zilog->zl_cur_left -= zil_itx_full_size(itx);
			zil_itx_destroy(itx);
		}
	}

	if (lwb == NULL) {
		/*
		 * This indicates zio_alloc_zil() failed to allocate the
		 * "next" lwb on-disk. When this happens, we must stall
		 * the ZIL write pipeline; see the comment within
		 * zil_commit_writer_stall() for more details.
		 */
		while ((lwb = list_remove_head(ilwbs)) != NULL)
			zil_lwb_write_issue(zilog, lwb);
		zil_commit_writer_stall(zilog);

		/*
		 * Additionally, we have to signal and mark the "nolwb"
		 * waiters as "done" here, since without an lwb, we
		 * can't do this via zil_lwb_flush_vdevs_done() like
		 * normal.
		 */
		zil_commit_waiter_t *zcw;
		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
			zil_commit_waiter_skip(zcw);

		/*
		 * And finally, we have to destroy the itx's that
		 * couldn't be committed to an lwb; this will also call
		 * the itx's callback if one exists for the itx.
		 */
		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
			zil_itx_destroy(itx);
	} else {
		ASSERT(list_is_empty(&nolwb_waiters));
		ASSERT3P(lwb, !=, NULL);
		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
		    lwb->lwb_state == LWB_STATE_OPENED);

		/*
		 * At this point, the ZIL block pointed at by the "lwb"
		 * variable is in "new" or "opened" state.
		 *
		 * If it's "new", then no itxs have been committed to it, so
		 * there's no point in issuing its zio (i.e. it's "empty").
		 *
		 * If it's "opened", then it contains one or more itxs that
		 * eventually need to be committed to stable storage. In
		 * this case we intentionally do not issue the lwb's zio
		 * to disk yet, and instead rely on one of the following
		 * two mechanisms for issuing the zio:
		 *
		 * 1. Ideally, there will be more ZIL activity occurring on
		 * the system, such that this function will be immediately
		 * called again by different thread and this lwb will be
		 * closed by zil_lwb_assign().  This way, the lwb will be
		 * "full" when it is issued to disk, and we'll make use of
		 * the lwb's size the best we can.
		 *
		 * 2. If there isn't sufficient ZIL activity occurring on
		 * the system, zil_commit_waiter() will close it and issue
		 * the zio.  If this occurs, the lwb is not guaranteed
		 * to be "full" by the time its zio is issued, and means
		 * the size of the lwb was "too large" given the amount
		 * of ZIL activity occurring on the system at that time.
		 *
		 * We do this for a couple of reasons:
		 *
		 * 1. To try and reduce the number of IOPs needed to
		 * write the same number of itxs. If an lwb has space
		 * available in its buffer for more itxs, and more itxs
		 * will be committed relatively soon (relative to the
		 * latency of performing a write), then it's beneficial
		 * to wait for these "next" itxs. This way, more itxs
		 * can be committed to stable storage with fewer writes.
		 *
		 * 2. To try and use the largest lwb block size that the
		 * incoming rate of itxs can support. Again, this is to
		 * try and pack as many itxs into as few lwbs as
		 * possible, without significantly impacting the latency
		 * of each individual itx.
		 */
		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
			zil_burst_done(zilog);
			list_insert_tail(ilwbs, lwb);
			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
			if (lwb == NULL) {
				while ((lwb = list_remove_head(ilwbs)) != NULL)
					zil_lwb_write_issue(zilog, lwb);
				zil_commit_writer_stall(zilog);
			}
		}
	}
}

/*
 * This function is responsible for ensuring the passed in commit waiter
 * (and associated commit itx) is committed to an lwb. If the waiter is
 * not already committed to an lwb, all itxs in the zilog's queue of
 * itxs will be processed. The assumption is the passed in waiter's
 * commit itx will found in the queue just like the other non-commit
 * itxs, such that when the entire queue is processed, the waiter will
 * have been committed to an lwb.
 *
 * The lwb associated with the passed in waiter is not guaranteed to
 * have been issued by the time this function completes. If the lwb is
 * not issued, we rely on future calls to zil_commit_writer() to issue
 * the lwb, or the timeout mechanism found in zil_commit_waiter().
 */
static uint64_t
zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	list_t ilwbs;
	lwb_t *lwb;
	uint64_t wtxg = 0;

	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
	ASSERT(spa_writeable(zilog->zl_spa));

	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
	mutex_enter(&zilog->zl_issuer_lock);

	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
		/*
		 * It's possible that, while we were waiting to acquire
		 * the "zl_issuer_lock", another thread committed this
		 * waiter to an lwb. If that occurs, we bail out early,
		 * without processing any of the zilog's queue of itxs.
		 *
		 * On certain workloads and system configurations, the
		 * "zl_issuer_lock" can become highly contended. In an
		 * attempt to reduce this contention, we immediately drop
		 * the lock if the waiter has already been processed.
		 *
		 * We've measured this optimization to reduce CPU spent
		 * contending on this lock by up to 5%, using a system
		 * with 32 CPUs, low latency storage (~50 usec writes),
		 * and 1024 threads performing sync writes.
		 */
		goto out;
	}

	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);

	wtxg = zil_get_commit_list(zilog);
	zil_prune_commit_list(zilog);
	zil_process_commit_list(zilog, zcw, &ilwbs);

out:
	mutex_exit(&zilog->zl_issuer_lock);
	while ((lwb = list_remove_head(&ilwbs)) != NULL)
		zil_lwb_write_issue(zilog, lwb);
	list_destroy(&ilwbs);
	return (wtxg);
}

static void
zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
	ASSERT3B(zcw->zcw_done, ==, B_FALSE);

	lwb_t *lwb = zcw->zcw_lwb;
	ASSERT3P(lwb, !=, NULL);
	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);

	/*
	 * If the lwb has already been issued by another thread, we can
	 * immediately return since there's no work to be done (the
	 * point of this function is to issue the lwb). Additionally, we
	 * do this prior to acquiring the zl_issuer_lock, to avoid
	 * acquiring it when it's not necessary to do so.
	 */
	if (lwb->lwb_state != LWB_STATE_OPENED)
		return;

	/*
	 * In order to call zil_lwb_write_close() we must hold the
	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
	 * since we're already holding the commit waiter's "zcw_lock",
	 * and those two locks are acquired in the opposite order
	 * elsewhere.
	 */
	mutex_exit(&zcw->zcw_lock);
	mutex_enter(&zilog->zl_issuer_lock);
	mutex_enter(&zcw->zcw_lock);

	/*
	 * Since we just dropped and re-acquired the commit waiter's
	 * lock, we have to re-check to see if the waiter was marked
	 * "done" during that process. If the waiter was marked "done",
	 * the "lwb" pointer is no longer valid (it can be free'd after
	 * the waiter is marked "done"), so without this check we could
	 * wind up with a use-after-free error below.
	 */
	if (zcw->zcw_done) {
		mutex_exit(&zilog->zl_issuer_lock);
		return;
	}

	ASSERT3P(lwb, ==, zcw->zcw_lwb);

	/*
	 * We've already checked this above, but since we hadn't acquired
	 * the zilog's zl_issuer_lock, we have to perform this check a
	 * second time while holding the lock.
	 *
	 * We don't need to hold the zl_lock since the lwb cannot transition
	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
	 * _can_ transition from CLOSED to DONE, but it's OK to race with
	 * that transition since we treat the lwb the same, whether it's in
	 * the CLOSED, ISSUED or DONE states.
	 *
	 * The important thing, is we treat the lwb differently depending on
	 * if it's OPENED or CLOSED, and block any other threads that might
	 * attempt to close/issue this lwb. For that reason we hold the
	 * zl_issuer_lock when checking the lwb_state; we must not call
	 * zil_lwb_write_close() if the lwb had already been closed/issued.
	 *
	 * See the comment above the lwb_state_t structure definition for
	 * more details on the lwb states, and locking requirements.
	 */
	if (lwb->lwb_state != LWB_STATE_OPENED) {
		mutex_exit(&zilog->zl_issuer_lock);
		return;
	}

	/*
	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
	 * is still open.  But we have to drop it to avoid a deadlock in case
	 * callback of zio issued by zil_lwb_write_issue() try to get it,
	 * while zil_lwb_write_issue() is blocked on attempt to issue next
	 * lwb it found in LWB_STATE_READY state.
	 */
	mutex_exit(&zcw->zcw_lock);

	/*
	 * As described in the comments above zil_commit_waiter() and
	 * zil_process_commit_list(), we need to issue this lwb's zio
	 * since we've reached the commit waiter's timeout and it still
	 * hasn't been issued.
	 */
	zil_burst_done(zilog);
	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);

	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);

	if (nlwb == NULL) {
		/*
		 * When zil_lwb_write_close() returns NULL, this
		 * indicates zio_alloc_zil() failed to allocate the
		 * "next" lwb on-disk. When this occurs, the ZIL write
		 * pipeline must be stalled; see the comment within the
		 * zil_commit_writer_stall() function for more details.
		 */
		zil_lwb_write_issue(zilog, lwb);
		zil_commit_writer_stall(zilog);
		mutex_exit(&zilog->zl_issuer_lock);
	} else {
		mutex_exit(&zilog->zl_issuer_lock);
		zil_lwb_write_issue(zilog, lwb);
	}
	mutex_enter(&zcw->zcw_lock);
}

/*
 * This function is responsible for performing the following two tasks:
 *
 * 1. its primary responsibility is to block until the given "commit
 *    waiter" is considered "done".
 *
 * 2. its secondary responsibility is to issue the zio for the lwb that
 *    the given "commit waiter" is waiting on, if this function has
 *    waited "long enough" and the lwb is still in the "open" state.
 *
 * Given a sufficient amount of itxs being generated and written using
 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
 * function. If this does not occur, this secondary responsibility will
 * ensure the lwb is issued even if there is not other synchronous
 * activity on the system.
 *
 * For more details, see zil_process_commit_list(); more specifically,
 * the comment at the bottom of that function.
 */
static void
zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT(spa_writeable(zilog->zl_spa));

	mutex_enter(&zcw->zcw_lock);

	/*
	 * The timeout is scaled based on the lwb latency to avoid
	 * significantly impacting the latency of each individual itx.
	 * For more details, see the comment at the bottom of the
	 * zil_process_commit_list() function.
	 */
	int pct = MAX(zfs_commit_timeout_pct, 1);
	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
	hrtime_t wakeup = gethrtime() + sleep;
	boolean_t timedout = B_FALSE;

	while (!zcw->zcw_done) {
		ASSERT(MUTEX_HELD(&zcw->zcw_lock));

		lwb_t *lwb = zcw->zcw_lwb;

		/*
		 * Usually, the waiter will have a non-NULL lwb field here,
		 * but it's possible for it to be NULL as a result of
		 * zil_commit() racing with spa_sync().
		 *
		 * When zil_clean() is called, it's possible for the itxg
		 * list (which may be cleaned via a taskq) to contain
		 * commit itxs. When this occurs, the commit waiters linked
		 * off of these commit itxs will not be committed to an
		 * lwb.  Additionally, these commit waiters will not be
		 * marked done until zil_commit_waiter_skip() is called via
		 * zil_itxg_clean().
		 *
		 * Thus, it's possible for this commit waiter (i.e. the
		 * "zcw" variable) to be found in this "in between" state;
		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
		 * been skipped, so it's "zcw_done" field is still B_FALSE.
		 */
		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);

		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
			ASSERT3B(timedout, ==, B_FALSE);

			/*
			 * If the lwb hasn't been issued yet, then we
			 * need to wait with a timeout, in case this
			 * function needs to issue the lwb after the
			 * timeout is reached; responsibility (2) from
			 * the comment above this function.
			 */
			int rc = cv_timedwait_hires(&zcw->zcw_cv,
			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
			    CALLOUT_FLAG_ABSOLUTE);

			if (rc != -1 || zcw->zcw_done)
				continue;

			timedout = B_TRUE;
			zil_commit_waiter_timeout(zilog, zcw);

			if (!zcw->zcw_done) {
				/*
				 * If the commit waiter has already been
				 * marked "done", it's possible for the
				 * waiter's lwb structure to have already
				 * been freed.  Thus, we can only reliably
				 * make these assertions if the waiter
				 * isn't done.
				 */
				ASSERT3P(lwb, ==, zcw->zcw_lwb);
				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
			}
		} else {
			/*
			 * If the lwb isn't open, then it must have already
			 * been issued. In that case, there's no need to
			 * use a timeout when waiting for the lwb to
			 * complete.
			 *
			 * Additionally, if the lwb is NULL, the waiter
			 * will soon be signaled and marked done via
			 * zil_clean() and zil_itxg_clean(), so no timeout
			 * is required.
			 */

			IMPLY(lwb != NULL,
			    lwb->lwb_state == LWB_STATE_CLOSED ||
			    lwb->lwb_state == LWB_STATE_READY ||
			    lwb->lwb_state == LWB_STATE_ISSUED ||
			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
		}
	}

	mutex_exit(&zcw->zcw_lock);
}

static zil_commit_waiter_t *
zil_alloc_commit_waiter(void)
{
	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);

	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
	list_link_init(&zcw->zcw_node);
	zcw->zcw_lwb = NULL;
	zcw->zcw_done = B_FALSE;
	zcw->zcw_zio_error = 0;

	return (zcw);
}

static void
zil_free_commit_waiter(zil_commit_waiter_t *zcw)
{
	ASSERT(!list_link_active(&zcw->zcw_node));
	ASSERT3P(zcw->zcw_lwb, ==, NULL);
	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
	mutex_destroy(&zcw->zcw_lock);
	cv_destroy(&zcw->zcw_cv);
	kmem_cache_free(zil_zcw_cache, zcw);
}

/*
 * This function is used to create a TX_COMMIT itx and assign it. This
 * way, it will be linked into the ZIL's list of synchronous itxs, and
 * then later committed to an lwb (or skipped) when
 * zil_process_commit_list() is called.
 */
static void
zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);

	/*
	 * Since we are not going to create any new dirty data, and we
	 * can even help with clearing the existing dirty data, we
	 * should not be subject to the dirty data based delays. We
	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
	 */
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));

	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
	itx->itx_sync = B_TRUE;
	itx->itx_private = zcw;

	zil_itx_assign(zilog, itx, tx);

	dmu_tx_commit(tx);
}

/*
 * Commit ZFS Intent Log transactions (itxs) to stable storage.
 *
 * When writing ZIL transactions to the on-disk representation of the
 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
 * itxs can be committed to a single lwb. Once a lwb is written and
 * committed to stable storage (i.e. the lwb is written, and vdevs have
 * been flushed), each itx that was committed to that lwb is also
 * considered to be committed to stable storage.
 *
 * When an itx is committed to an lwb, the log record (lr_t) contained
 * by the itx is copied into the lwb's zio buffer, and once this buffer
 * is written to disk, it becomes an on-disk ZIL block.
 *
 * As itxs are generated, they're inserted into the ZIL's queue of
 * uncommitted itxs. The semantics of zil_commit() are such that it will
 * block until all itxs that were in the queue when it was called, are
 * committed to stable storage.
 *
 * If "foid" is zero, this means all "synchronous" and "asynchronous"
 * itxs, for all objects in the dataset, will be committed to stable
 * storage prior to zil_commit() returning. If "foid" is non-zero, all
 * "synchronous" itxs for all objects, but only "asynchronous" itxs
 * that correspond to the foid passed in, will be committed to stable
 * storage prior to zil_commit() returning.
 *
 * Generally speaking, when zil_commit() is called, the consumer doesn't
 * actually care about _all_ of the uncommitted itxs. Instead, they're
 * simply trying to waiting for a specific itx to be committed to disk,
 * but the interface(s) for interacting with the ZIL don't allow such
 * fine-grained communication. A better interface would allow a consumer
 * to create and assign an itx, and then pass a reference to this itx to
 * zil_commit(); such that zil_commit() would return as soon as that
 * specific itx was committed to disk (instead of waiting for _all_
 * itxs to be committed).
 *
 * When a thread calls zil_commit() a special "commit itx" will be
 * generated, along with a corresponding "waiter" for this commit itx.
 * zil_commit() will wait on this waiter's CV, such that when the waiter
 * is marked done, and signaled, zil_commit() will return.
 *
 * This commit itx is inserted into the queue of uncommitted itxs. This
 * provides an easy mechanism for determining which itxs were in the
 * queue prior to zil_commit() having been called, and which itxs were
 * added after zil_commit() was called.
 *
 * The commit itx is special; it doesn't have any on-disk representation.
 * When a commit itx is "committed" to an lwb, the waiter associated
 * with it is linked onto the lwb's list of waiters. Then, when that lwb
 * completes, each waiter on the lwb's list is marked done and signaled
 * -- allowing the thread waiting on the waiter to return from zil_commit().
 *
 * It's important to point out a few critical factors that allow us
 * to make use of the commit itxs, commit waiters, per-lwb lists of
 * commit waiters, and zio completion callbacks like we're doing:
 *
 *   1. The list of waiters for each lwb is traversed, and each commit
 *      waiter is marked "done" and signaled, in the zio completion
 *      callback of the lwb's zio[*].
 *
 *      * Actually, the waiters are signaled in the zio completion
 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
 *        that are sent to the vdevs upon completion of the lwb zio.
 *
 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
 *      itxs, the order in which they are inserted is preserved[*]; as
 *      itxs are added to the queue, they are added to the tail of
 *      in-memory linked lists.
 *
 *      When committing the itxs to lwbs (to be written to disk), they
 *      are committed in the same order in which the itxs were added to
 *      the uncommitted queue's linked list(s); i.e. the linked list of
 *      itxs to commit is traversed from head to tail, and each itx is
 *      committed to an lwb in that order.
 *
 *      * To clarify:
 *
 *        - the order of "sync" itxs is preserved w.r.t. other
 *          "sync" itxs, regardless of the corresponding objects.
 *        - the order of "async" itxs is preserved w.r.t. other
 *          "async" itxs corresponding to the same object.
 *        - the order of "async" itxs is *not* preserved w.r.t. other
 *          "async" itxs corresponding to different objects.
 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
 *          versa) is *not* preserved, even for itxs that correspond
 *          to the same object.
 *
 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
 *      zil_get_commit_list(), and zil_process_commit_list().
 *
 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
 *      lwb cannot be considered committed to stable storage, until its
 *      "previous" lwb is also committed to stable storage. This fact,
 *      coupled with the fact described above, means that itxs are
 *      committed in (roughly) the order in which they were generated.
 *      This is essential because itxs are dependent on prior itxs.
 *      Thus, we *must not* deem an itx as being committed to stable
 *      storage, until *all* prior itxs have also been committed to
 *      stable storage.
 *
 *      To enforce this ordering of lwb zio's, while still leveraging as
 *      much of the underlying storage performance as possible, we rely
 *      on two fundamental concepts:
 *
 *          1. The creation and issuance of lwb zio's is protected by
 *             the zilog's "zl_issuer_lock", which ensures only a single
 *             thread is creating and/or issuing lwb's at a time
 *          2. The "previous" lwb is a child of the "current" lwb
 *             (leveraging the zio parent-child dependency graph)
 *
 *      By relying on this parent-child zio relationship, we can have
 *      many lwb zio's concurrently issued to the underlying storage,
 *      but the order in which they complete will be the same order in
 *      which they were created.
 */
void
zil_commit(zilog_t *zilog, uint64_t foid)
{
	/*
	 * We should never attempt to call zil_commit on a snapshot for
	 * a couple of reasons:
	 *
	 * 1. A snapshot may never be modified, thus it cannot have any
	 *    in-flight itxs that would have modified the dataset.
	 *
	 * 2. By design, when zil_commit() is called, a commit itx will
	 *    be assigned to this zilog; as a result, the zilog will be
	 *    dirtied. We must not dirty the zilog of a snapshot; there's
	 *    checks in the code that enforce this invariant, and will
	 *    cause a panic if it's not upheld.
	 */
	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);

	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
		return;

	if (!spa_writeable(zilog->zl_spa)) {
		/*
		 * If the SPA is not writable, there should never be any
		 * pending itxs waiting to be committed to disk. If that
		 * weren't true, we'd skip writing those itxs out, and
		 * would break the semantics of zil_commit(); thus, we're
		 * verifying that truth before we return to the caller.
		 */
		ASSERT(list_is_empty(&zilog->zl_lwb_list));
		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
		for (int i = 0; i < TXG_SIZE; i++)
			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
		return;
	}

	/*
	 * If the ZIL is suspended, we don't want to dirty it by calling
	 * zil_commit_itx_assign() below, nor can we write out
	 * lwbs like would be done in zil_commit_write(). Thus, we
	 * simply rely on txg_wait_synced() to maintain the necessary
	 * semantics, and avoid calling those functions altogether.
	 */
	if (zilog->zl_suspend > 0) {
		txg_wait_synced(zilog->zl_dmu_pool, 0);
		return;
	}

	zil_commit_impl(zilog, foid);
}

void
zil_commit_impl(zilog_t *zilog, uint64_t foid)
{
	ZIL_STAT_BUMP(zilog, zil_commit_count);

	/*
	 * Move the "async" itxs for the specified foid to the "sync"
	 * queues, such that they will be later committed (or skipped)
	 * to an lwb when zil_process_commit_list() is called.
	 *
	 * Since these "async" itxs must be committed prior to this
	 * call to zil_commit returning, we must perform this operation
	 * before we call zil_commit_itx_assign().
	 */
	zil_async_to_sync(zilog, foid);

	/*
	 * We allocate a new "waiter" structure which will initially be
	 * linked to the commit itx using the itx's "itx_private" field.
	 * Since the commit itx doesn't represent any on-disk state,
	 * when it's committed to an lwb, rather than copying the its
	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
	 * added to the lwb's list of waiters. Then, when the lwb is
	 * committed to stable storage, each waiter in the lwb's list of
	 * waiters will be marked "done", and signalled.
	 *
	 * We must create the waiter and assign the commit itx prior to
	 * calling zil_commit_writer(), or else our specific commit itx
	 * is not guaranteed to be committed to an lwb prior to calling
	 * zil_commit_waiter().
	 */
	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
	zil_commit_itx_assign(zilog, zcw);

	uint64_t wtxg = zil_commit_writer(zilog, zcw);
	zil_commit_waiter(zilog, zcw);

	if (zcw->zcw_zio_error != 0) {
		/*
		 * If there was an error writing out the ZIL blocks that
		 * this thread is waiting on, then we fallback to
		 * relying on spa_sync() to write out the data this
		 * thread is waiting on. Obviously this has performance
		 * implications, but the expectation is for this to be
		 * an exceptional case, and shouldn't occur often.
		 */
		DTRACE_PROBE2(zil__commit__io__error,
		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
		txg_wait_synced(zilog->zl_dmu_pool, 0);
	} else if (wtxg != 0) {
		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
	}

	zil_free_commit_waiter(zcw);
}

/*
 * Called in syncing context to free committed log blocks and update log header.
 */
void
zil_sync(zilog_t *zilog, dmu_tx_t *tx)
{
	zil_header_t *zh = zil_header_in_syncing_context(zilog);
	uint64_t txg = dmu_tx_get_txg(tx);
	spa_t *spa = zilog->zl_spa;
	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
	lwb_t *lwb;

	/*
	 * We don't zero out zl_destroy_txg, so make sure we don't try
	 * to destroy it twice.
	 */
	if (spa_sync_pass(spa) != 1)
		return;

	zil_lwb_flush_wait_all(zilog, txg);

	mutex_enter(&zilog->zl_lock);

	ASSERT(zilog->zl_stop_sync == 0);

	if (*replayed_seq != 0) {
		ASSERT(zh->zh_replay_seq < *replayed_seq);
		zh->zh_replay_seq = *replayed_seq;
		*replayed_seq = 0;
	}

	if (zilog->zl_destroy_txg == txg) {
		blkptr_t blk = zh->zh_log;
		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);

		ASSERT(list_is_empty(&zilog->zl_lwb_list));

		memset(zh, 0, sizeof (zil_header_t));
		memset(zilog->zl_replayed_seq, 0,
		    sizeof (zilog->zl_replayed_seq));

		if (zilog->zl_keep_first) {
			/*
			 * If this block was part of log chain that couldn't
			 * be claimed because a device was missing during
			 * zil_claim(), but that device later returns,
			 * then this block could erroneously appear valid.
			 * To guard against this, assign a new GUID to the new
			 * log chain so it doesn't matter what blk points to.
			 */
			zil_init_log_chain(zilog, &blk);
			zh->zh_log = blk;
		} else {
			/*
			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
			 * records. So, deactivate the feature for this dataset.
			 * We activate it again when we start a new ZIL chain.
			 */
			if (dsl_dataset_feature_is_active(ds,
			    SPA_FEATURE_ZILSAXATTR))
				dsl_dataset_deactivate_feature(ds,
				    SPA_FEATURE_ZILSAXATTR, tx);
		}
	}

	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
		zh->zh_log = lwb->lwb_blk;
		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
			break;
		list_remove(&zilog->zl_lwb_list, lwb);
		if (!BP_IS_HOLE(&lwb->lwb_blk))
			zio_free(spa, txg, &lwb->lwb_blk);
		zil_free_lwb(zilog, lwb);

		/*
		 * If we don't have anything left in the lwb list then
		 * we've had an allocation failure and we need to zero
		 * out the zil_header blkptr so that we don't end
		 * up freeing the same block twice.
		 */
		if (list_is_empty(&zilog->zl_lwb_list))
			BP_ZERO(&zh->zh_log);
	}

	mutex_exit(&zilog->zl_lock);
}

static int
zil_lwb_cons(void *vbuf, void *unused, int kmflag)
{
	(void) unused, (void) kmflag;
	lwb_t *lwb = vbuf;
	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
	    offsetof(zil_commit_waiter_t, zcw_node));
	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
	return (0);
}

static void
zil_lwb_dest(void *vbuf, void *unused)
{
	(void) unused;
	lwb_t *lwb = vbuf;
	mutex_destroy(&lwb->lwb_vdev_lock);
	avl_destroy(&lwb->lwb_vdev_tree);
	list_destroy(&lwb->lwb_waiters);
	list_destroy(&lwb->lwb_itxs);
}

void
zil_init(void)
{
	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);

	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);

	zil_sums_init(&zil_sums_global);
	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
	    KSTAT_FLAG_VIRTUAL);

	if (zil_kstats_global != NULL) {
		zil_kstats_global->ks_data = &zil_stats;
		zil_kstats_global->ks_update = zil_kstats_global_update;
		zil_kstats_global->ks_private = NULL;
		kstat_install(zil_kstats_global);
	}
}

void
zil_fini(void)
{
	kmem_cache_destroy(zil_zcw_cache);
	kmem_cache_destroy(zil_lwb_cache);

	if (zil_kstats_global != NULL) {
		kstat_delete(zil_kstats_global);
		zil_kstats_global = NULL;
	}

	zil_sums_fini(&zil_sums_global);
}

void
zil_set_sync(zilog_t *zilog, uint64_t sync)
{
	zilog->zl_sync = sync;
}

void
zil_set_logbias(zilog_t *zilog, uint64_t logbias)
{
	zilog->zl_logbias = logbias;
}

zilog_t *
zil_alloc(objset_t *os, zil_header_t *zh_phys)
{
	zilog_t *zilog;

	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);

	zilog->zl_header = zh_phys;
	zilog->zl_os = os;
	zilog->zl_spa = dmu_objset_spa(os);
	zilog->zl_dmu_pool = dmu_objset_pool(os);
	zilog->zl_destroy_txg = TXG_INITIAL - 1;
	zilog->zl_logbias = dmu_objset_logbias(os);
	zilog->zl_sync = dmu_objset_syncprop(os);
	zilog->zl_dirty_max_txg = 0;
	zilog->zl_last_lwb_opened = NULL;
	zilog->zl_last_lwb_latency = 0;
	zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
	    ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
	    spa_maxblocksize(dmu_objset_spa(os)));

	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);

	for (int i = 0; i < TXG_SIZE; i++) {
		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
		    MUTEX_DEFAULT, NULL);
	}

	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
	    offsetof(lwb_t, lwb_node));

	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
	    offsetof(itx_t, itx_node));

	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);

	for (int i = 0; i < ZIL_BURSTS; i++) {
		zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
		    sizeof (zil_chain_t);
	}

	return (zilog);
}

void
zil_free(zilog_t *zilog)
{
	int i;

	zilog->zl_stop_sync = 1;

	ASSERT0(zilog->zl_suspend);
	ASSERT0(zilog->zl_suspending);

	ASSERT(list_is_empty(&zilog->zl_lwb_list));
	list_destroy(&zilog->zl_lwb_list);

	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
	list_destroy(&zilog->zl_itx_commit_list);

	for (i = 0; i < TXG_SIZE; i++) {
		/*
		 * It's possible for an itx to be generated that doesn't dirty
		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
		 * callback to remove the entry. We remove those here.
		 *
		 * Also free up the ziltest itxs.
		 */
		if (zilog->zl_itxg[i].itxg_itxs)
			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
	}

	mutex_destroy(&zilog->zl_issuer_lock);
	mutex_destroy(&zilog->zl_lock);
	mutex_destroy(&zilog->zl_lwb_io_lock);

	cv_destroy(&zilog->zl_cv_suspend);
	cv_destroy(&zilog->zl_lwb_io_cv);

	kmem_free(zilog, sizeof (zilog_t));
}

/*
 * Open an intent log.
 */
zilog_t *
zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
{
	zilog_t *zilog = dmu_objset_zil(os);

	ASSERT3P(zilog->zl_get_data, ==, NULL);
	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
	ASSERT(list_is_empty(&zilog->zl_lwb_list));

	zilog->zl_get_data = get_data;
	zilog->zl_sums = zil_sums;

	return (zilog);
}

/*
 * Close an intent log.
 */
void
zil_close(zilog_t *zilog)
{
	lwb_t *lwb;
	uint64_t txg;

	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
		zil_commit(zilog, 0);
	} else {
		ASSERT(list_is_empty(&zilog->zl_lwb_list));
		ASSERT0(zilog->zl_dirty_max_txg);
		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
	}

	mutex_enter(&zilog->zl_lock);
	txg = zilog->zl_dirty_max_txg;
	lwb = list_tail(&zilog->zl_lwb_list);
	if (lwb != NULL) {
		txg = MAX(txg, lwb->lwb_alloc_txg);
		txg = MAX(txg, lwb->lwb_max_txg);
	}
	mutex_exit(&zilog->zl_lock);

	/*
	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
	 * on the time when the dmu_tx transaction is assigned in
	 * zil_lwb_write_issue().
	 */
	mutex_enter(&zilog->zl_lwb_io_lock);
	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
	mutex_exit(&zilog->zl_lwb_io_lock);

	/*
	 * We need to use txg_wait_synced() to wait until that txg is synced.
	 * zil_sync() will guarantee all lwbs up to that txg have been
	 * written out, flushed, and cleaned.
	 */
	if (txg != 0)
		txg_wait_synced(zilog->zl_dmu_pool, txg);

	if (zilog_is_dirty(zilog))
		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
		    (u_longlong_t)txg);
	if (txg < spa_freeze_txg(zilog->zl_spa))
		VERIFY(!zilog_is_dirty(zilog));

	zilog->zl_get_data = NULL;

	/*
	 * We should have only one lwb left on the list; remove it now.
	 */
	mutex_enter(&zilog->zl_lock);
	lwb = list_remove_head(&zilog->zl_lwb_list);
	if (lwb != NULL) {
		ASSERT(list_is_empty(&zilog->zl_lwb_list));
		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
		zil_free_lwb(zilog, lwb);
	}
	mutex_exit(&zilog->zl_lock);
}

static const char *suspend_tag = "zil suspending";

/*
 * Suspend an intent log.  While in suspended mode, we still honor
 * synchronous semantics, but we rely on txg_wait_synced() to do it.
 * On old version pools, we suspend the log briefly when taking a
 * snapshot so that it will have an empty intent log.
 *
 * Long holds are not really intended to be used the way we do here --
 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
 * could fail.  Therefore we take pains to only put a long hold if it is
 * actually necessary.  Fortunately, it will only be necessary if the
 * objset is currently mounted (or the ZVOL equivalent).  In that case it
 * will already have a long hold, so we are not really making things any worse.
 *
 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
 * zvol_state_t), and use their mechanism to prevent their hold from being
 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
 * very little gain.
 *
 * if cookiep == NULL, this does both the suspend & resume.
 * Otherwise, it returns with the dataset "long held", and the cookie
 * should be passed into zil_resume().
 */
int
zil_suspend(const char *osname, void **cookiep)
{
	objset_t *os;
	zilog_t *zilog;
	const zil_header_t *zh;
	int error;

	error = dmu_objset_hold(osname, suspend_tag, &os);
	if (error != 0)
		return (error);
	zilog = dmu_objset_zil(os);

	mutex_enter(&zilog->zl_lock);
	zh = zilog->zl_header;

	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
		mutex_exit(&zilog->zl_lock);
		dmu_objset_rele(os, suspend_tag);
		return (SET_ERROR(EBUSY));
	}

	/*
	 * Don't put a long hold in the cases where we can avoid it.  This
	 * is when there is no cookie so we are doing a suspend & resume
	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
	 * for the suspend because it's already suspended, or there's no ZIL.
	 */
	if (cookiep == NULL && !zilog->zl_suspending &&
	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
		mutex_exit(&zilog->zl_lock);
		dmu_objset_rele(os, suspend_tag);
		return (0);
	}

	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);

	zilog->zl_suspend++;

	if (zilog->zl_suspend > 1) {
		/*
		 * Someone else is already suspending it.
		 * Just wait for them to finish.
		 */

		while (zilog->zl_suspending)
			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
		mutex_exit(&zilog->zl_lock);

		if (cookiep == NULL)
			zil_resume(os);
		else
			*cookiep = os;
		return (0);
	}

	/*
	 * If there is no pointer to an on-disk block, this ZIL must not
	 * be active (e.g. filesystem not mounted), so there's nothing
	 * to clean up.
	 */
	if (BP_IS_HOLE(&zh->zh_log)) {
		ASSERT(cookiep != NULL); /* fast path already handled */

		*cookiep = os;
		mutex_exit(&zilog->zl_lock);
		return (0);
	}

	/*
	 * The ZIL has work to do. Ensure that the associated encryption
	 * key will remain mapped while we are committing the log by
	 * grabbing a reference to it. If the key isn't loaded we have no
	 * choice but to return an error until the wrapping key is loaded.
	 */
	if (os->os_encrypted &&
	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
		zilog->zl_suspend--;
		mutex_exit(&zilog->zl_lock);
		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
		return (SET_ERROR(EACCES));
	}

	zilog->zl_suspending = B_TRUE;
	mutex_exit(&zilog->zl_lock);

	/*
	 * We need to use zil_commit_impl to ensure we wait for all
	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
	 * to disk before proceeding. If we used zil_commit instead, it
	 * would just call txg_wait_synced(), because zl_suspend is set.
	 * txg_wait_synced() doesn't wait for these lwb's to be
	 * LWB_STATE_FLUSH_DONE before returning.
	 */
	zil_commit_impl(zilog, 0);

	/*
	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
	 * use txg_wait_synced() to ensure the data from the zilog has
	 * migrated to the main pool before calling zil_destroy().
	 */
	txg_wait_synced(zilog->zl_dmu_pool, 0);

	zil_destroy(zilog, B_FALSE);

	mutex_enter(&zilog->zl_lock);
	zilog->zl_suspending = B_FALSE;
	cv_broadcast(&zilog->zl_cv_suspend);
	mutex_exit(&zilog->zl_lock);

	if (os->os_encrypted)
		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));

	if (cookiep == NULL)
		zil_resume(os);
	else
		*cookiep = os;
	return (0);
}

void
zil_resume(void *cookie)
{
	objset_t *os = cookie;
	zilog_t *zilog = dmu_objset_zil(os);

	mutex_enter(&zilog->zl_lock);
	ASSERT(zilog->zl_suspend != 0);
	zilog->zl_suspend--;
	mutex_exit(&zilog->zl_lock);
	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
}

typedef struct zil_replay_arg {
	zil_replay_func_t *const *zr_replay;
	void		*zr_arg;
	boolean_t	zr_byteswap;
	char		*zr_lr;
} zil_replay_arg_t;

static int
zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
{
	char name[ZFS_MAX_DATASET_NAME_LEN];

	zilog->zl_replaying_seq--;	/* didn't actually replay this one */

	dmu_objset_name(zilog->zl_os, name);

	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
	    (u_longlong_t)lr->lrc_seq,
	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
	    (lr->lrc_txtype & TX_CI) ? "CI" : "");

	return (error);
}

static int
zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
    uint64_t claim_txg)
{
	zil_replay_arg_t *zr = zra;
	const zil_header_t *zh = zilog->zl_header;
	uint64_t reclen = lr->lrc_reclen;
	uint64_t txtype = lr->lrc_txtype;
	int error = 0;

	zilog->zl_replaying_seq = lr->lrc_seq;

	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
		return (0);

	if (lr->lrc_txg < claim_txg)		/* already committed */
		return (0);

	/* Strip case-insensitive bit, still present in log record */
	txtype &= ~TX_CI;

	if (txtype == 0 || txtype >= TX_MAX_TYPE)
		return (zil_replay_error(zilog, lr, EINVAL));

	/*
	 * If this record type can be logged out of order, the object
	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
	 */
	if (TX_OOO(txtype)) {
		error = dmu_object_info(zilog->zl_os,
		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
		if (error == ENOENT || error == EEXIST)
			return (0);
	}

	/*
	 * Make a copy of the data so we can revise and extend it.
	 */
	memcpy(zr->zr_lr, lr, reclen);

	/*
	 * If this is a TX_WRITE with a blkptr, suck in the data.
	 */
	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
		error = zil_read_log_data(zilog, (lr_write_t *)lr,
		    zr->zr_lr + reclen);
		if (error != 0)
			return (zil_replay_error(zilog, lr, error));
	}

	/*
	 * The log block containing this lr may have been byteswapped
	 * so that we can easily examine common fields like lrc_txtype.
	 * However, the log is a mix of different record types, and only the
	 * replay vectors know how to byteswap their records.  Therefore, if
	 * the lr was byteswapped, undo it before invoking the replay vector.
	 */
	if (zr->zr_byteswap)
		byteswap_uint64_array(zr->zr_lr, reclen);

	/*
	 * We must now do two things atomically: replay this log record,
	 * and update the log header sequence number to reflect the fact that
	 * we did so. At the end of each replay function the sequence number
	 * is updated if we are in replay mode.
	 */
	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
	if (error != 0) {
		/*
		 * The DMU's dnode layer doesn't see removes until the txg
		 * commits, so a subsequent claim can spuriously fail with
		 * EEXIST. So if we receive any error we try syncing out
		 * any removes then retry the transaction.  Note that we
		 * specify B_FALSE for byteswap now, so we don't do it twice.
		 */
		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
		if (error != 0)
			return (zil_replay_error(zilog, lr, error));
	}
	return (0);
}

static int
zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
{
	(void) bp, (void) arg, (void) claim_txg;

	zilog->zl_replay_blks++;

	return (0);
}

/*
 * If this dataset has a non-empty intent log, replay it and destroy it.
 * Return B_TRUE if there were any entries to replay.
 */
boolean_t
zil_replay(objset_t *os, void *arg,
    zil_replay_func_t *const replay_func[TX_MAX_TYPE])
{
	zilog_t *zilog = dmu_objset_zil(os);
	const zil_header_t *zh = zilog->zl_header;
	zil_replay_arg_t zr;

	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
		return (zil_destroy(zilog, B_TRUE));
	}

	zr.zr_replay = replay_func;
	zr.zr_arg = arg;
	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);

	/*
	 * Wait for in-progress removes to sync before starting replay.
	 */
	txg_wait_synced(zilog->zl_dmu_pool, 0);

	zilog->zl_replay = B_TRUE;
	zilog->zl_replay_time = ddi_get_lbolt();
	ASSERT(zilog->zl_replay_blks == 0);
	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
	    zh->zh_claim_txg, B_TRUE);
	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);

	zil_destroy(zilog, B_FALSE);
	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
	zilog->zl_replay = B_FALSE;

	return (B_TRUE);
}

boolean_t
zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
{
	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
		return (B_TRUE);

	if (zilog->zl_replay) {
		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
		    zilog->zl_replaying_seq;
		return (B_TRUE);
	}

	return (B_FALSE);
}

int
zil_reset(const char *osname, void *arg)
{
	(void) arg;

	int error = zil_suspend(osname, NULL);
	/* EACCES means crypto key not loaded */
	if ((error == EACCES) || (error == EBUSY))
		return (SET_ERROR(error));
	if (error != 0)
		return (SET_ERROR(EEXIST));
	return (0);
}

EXPORT_SYMBOL(zil_alloc);
EXPORT_SYMBOL(zil_free);
EXPORT_SYMBOL(zil_open);
EXPORT_SYMBOL(zil_close);
EXPORT_SYMBOL(zil_replay);
EXPORT_SYMBOL(zil_replaying);
EXPORT_SYMBOL(zil_destroy);
EXPORT_SYMBOL(zil_destroy_sync);
EXPORT_SYMBOL(zil_itx_create);
EXPORT_SYMBOL(zil_itx_destroy);
EXPORT_SYMBOL(zil_itx_assign);
EXPORT_SYMBOL(zil_commit);
EXPORT_SYMBOL(zil_claim);
EXPORT_SYMBOL(zil_check_log_chain);
EXPORT_SYMBOL(zil_sync);
EXPORT_SYMBOL(zil_clean);
EXPORT_SYMBOL(zil_suspend);
EXPORT_SYMBOL(zil_resume);
EXPORT_SYMBOL(zil_lwb_add_block);
EXPORT_SYMBOL(zil_bp_tree_add);
EXPORT_SYMBOL(zil_set_sync);
EXPORT_SYMBOL(zil_set_logbias);
EXPORT_SYMBOL(zil_sums_init);
EXPORT_SYMBOL(zil_sums_fini);
EXPORT_SYMBOL(zil_kstat_values_update);

ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
	"ZIL block open timeout percentage");

ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
	"Disable intent logging replay");

ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
	"Disable ZIL cache flushes");

ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
	"Limit in bytes slog sync writes per commit");

ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
	"Limit in bytes of ZIL log block size");

ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
	"Limit in bytes WR_COPIED size");