aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_raidz_math_scalar.c
blob: 9e9c15ff4ba2362e76a450a98eba816ab675f74e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
 */

#include <sys/vdev_raidz_impl.h>

/*
 * Provide native CPU scalar routines.
 * Support 32bit and 64bit CPUs.
 */
#if ((~(0x0ULL)) >> 24) == 0xffULL
#define	ELEM_SIZE	4
typedef uint32_t iv_t;
#elif ((~(0x0ULL)) >> 56) == 0xffULL
#define	ELEM_SIZE	8
typedef uint64_t iv_t;
#endif

/*
 * Vector type used in scalar implementation
 *
 * The union is expected to be of native CPU register size. Since addition
 * uses XOR operation, it can be performed an all byte elements at once.
 * Multiplication requires per byte access.
 */
typedef union {
	iv_t e;
	uint8_t b[ELEM_SIZE];
} v_t;

/*
 * Precomputed lookup tables for multiplication by a constant
 *
 * Reconstruction path requires multiplication by a constant factors. Instead of
 * performing two step lookup (log & exp tables), a direct lookup can be used
 * instead. Multiplication of element 'a' by a constant 'c' is obtained as:
 *
 * 	r = vdev_raidz_mul_lt[c_log][a];
 *
 * where c_log = vdev_raidz_log2[c]. Log of coefficient factors is used because
 * they are faster to obtain while solving the syndrome equations.
 *
 * PERFORMANCE NOTE:
 * Even though the complete lookup table uses 64kiB, only relatively small
 * portion of it is used at the same time. Following shows number of accessed
 * bytes for different cases:
 * 	- 1 failed disk: 256B (1 mul. coefficient)
 * 	- 2 failed disks: 512B (2 mul. coefficients)
 * 	- 3 failed disks: 1536B (6 mul. coefficients)
 *
 * Size of actually accessed lookup table regions is only larger for
 * reconstruction of 3 failed disks, when compared to traditional log/exp
 * method. But since the result is obtained in one lookup step performance is
 * doubled.
 */
static uint8_t vdev_raidz_mul_lt[256][256] __attribute__((aligned(256)));

static void
raidz_init_scalar(void)
{
	int c, i;
	for (c = 0; c < 256; c++)
		for (i = 0; i < 256; i++)
			vdev_raidz_mul_lt[c][i] = gf_mul(c, i);

}

#define	PREFETCHNTA(ptr, offset)	{}
#define	PREFETCH(ptr, offset) 		{}

#define	XOR_ACC(src, acc)	acc.e ^= ((v_t *)src)[0].e
#define	XOR(src, acc)		acc.e ^= src.e
#define	ZERO(acc)		acc.e = 0
#define	COPY(src, dst)		dst = src
#define	LOAD(src, val) 		val = ((v_t *)src)[0]
#define	STORE(dst, val)		((v_t *)dst)[0] = val

/*
 * Constants used for optimized multiplication by 2.
 */
static const struct {
	iv_t mod;
	iv_t mask;
	iv_t msb;
} scalar_mul2_consts = {
#if ELEM_SIZE == 8
	.mod	= 0x1d1d1d1d1d1d1d1dULL,
	.mask	= 0xfefefefefefefefeULL,
	.msb	= 0x8080808080808080ULL,
#else
	.mod	= 0x1d1d1d1dULL,
	.mask	= 0xfefefefeULL,
	.msb	= 0x80808080ULL,
#endif
};

#define	MUL2_SETUP() {}

#define	MUL2(a)								\
{									\
	iv_t _mask;							\
									\
	_mask = (a).e & scalar_mul2_consts.msb;				\
	_mask = (_mask << 1) - (_mask >> 7);				\
	(a).e = ((a).e << 1) & scalar_mul2_consts.mask;			\
	(a).e = (a).e ^ (_mask & scalar_mul2_consts.mod);		\
}

#define	MUL4(a) 							\
{									\
	MUL2(a);							\
	MUL2(a);							\
}

#define	MUL(c, a)							\
{									\
	const uint8_t *mul_lt = vdev_raidz_mul_lt[c];			\
	switch (ELEM_SIZE) {						\
	case 8:								\
		a.b[7] = mul_lt[a.b[7]];				\
		a.b[6] = mul_lt[a.b[6]];				\
		a.b[5] = mul_lt[a.b[5]];				\
		a.b[4] = mul_lt[a.b[4]];				\
		fallthrough;						\
	case 4:								\
		a.b[3] = mul_lt[a.b[3]];				\
		a.b[2] = mul_lt[a.b[2]];				\
		a.b[1] = mul_lt[a.b[1]];				\
		a.b[0] = mul_lt[a.b[0]];				\
		break;							\
	}								\
}

#define	raidz_math_begin()	{}
#define	raidz_math_end()	{}

#define	SYN_STRIDE		1

#define	ZERO_DEFINE()		v_t d0
#define	ZERO_STRIDE		1
#define	ZERO_D			d0

#define	COPY_DEFINE()		v_t d0
#define	COPY_STRIDE		1
#define	COPY_D			d0

#define	ADD_DEFINE()		v_t d0
#define	ADD_STRIDE		1
#define	ADD_D			d0

#define	MUL_DEFINE()		v_t d0
#define	MUL_STRIDE		1
#define	MUL_D			d0

#define	GEN_P_STRIDE		1
#define	GEN_P_DEFINE()		v_t p0
#define	GEN_P_P			p0

#define	GEN_PQ_STRIDE		1
#define	GEN_PQ_DEFINE()		v_t d0, c0
#define	GEN_PQ_D		d0
#define	GEN_PQ_C		c0

#define	GEN_PQR_STRIDE		1
#define	GEN_PQR_DEFINE()	v_t d0, c0
#define	GEN_PQR_D		d0
#define	GEN_PQR_C		c0

#define	SYN_Q_DEFINE()		v_t d0, x0
#define	SYN_Q_D			d0
#define	SYN_Q_X			x0


#define	SYN_R_DEFINE()		v_t d0, x0
#define	SYN_R_D			d0
#define	SYN_R_X			x0


#define	SYN_PQ_DEFINE()		v_t d0, x0
#define	SYN_PQ_D		d0
#define	SYN_PQ_X		x0


#define	REC_PQ_STRIDE		1
#define	REC_PQ_DEFINE()		v_t x0, y0, t0
#define	REC_PQ_X		x0
#define	REC_PQ_Y		y0
#define	REC_PQ_T		t0


#define	SYN_PR_DEFINE()		v_t d0, x0
#define	SYN_PR_D		d0
#define	SYN_PR_X		x0

#define	REC_PR_STRIDE		1
#define	REC_PR_DEFINE()		v_t x0, y0, t0
#define	REC_PR_X		x0
#define	REC_PR_Y		y0
#define	REC_PR_T		t0


#define	SYN_QR_DEFINE()		v_t d0, x0
#define	SYN_QR_D		d0
#define	SYN_QR_X		x0


#define	REC_QR_STRIDE		1
#define	REC_QR_DEFINE()		v_t x0, y0, t0
#define	REC_QR_X		x0
#define	REC_QR_Y		y0
#define	REC_QR_T		t0


#define	SYN_PQR_DEFINE()	v_t d0, x0
#define	SYN_PQR_D		d0
#define	SYN_PQR_X		x0

#define	REC_PQR_STRIDE		1
#define	REC_PQR_DEFINE()	v_t x0, y0, z0, xs0, ys0
#define	REC_PQR_X		x0
#define	REC_PQR_Y		y0
#define	REC_PQR_Z		z0
#define	REC_PQR_XS		xs0
#define	REC_PQR_YS		ys0

#include "vdev_raidz_math_impl.h"

DEFINE_GEN_METHODS(scalar);
DEFINE_REC_METHODS(scalar);

boolean_t
raidz_will_scalar_work(void)
{
	return (B_TRUE); /* always */
}

const raidz_impl_ops_t vdev_raidz_scalar_impl = {
	.init = raidz_init_scalar,
	.fini = NULL,
	.gen = RAIDZ_GEN_METHODS(scalar),
	.rec = RAIDZ_REC_METHODS(scalar),
	.is_supported = &raidz_will_scalar_work,
	.name = "scalar"
};

/* Powers of 2 in the RAID-Z Galois field. */
const uint8_t vdev_raidz_pow2[256] __attribute__((aligned(256))) = {
	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
	0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
	0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
	0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
	0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
	0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
	0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
	0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
	0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
	0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
	0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
	0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
	0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
	0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
	0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
	0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
	0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
	0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
	0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
	0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
	0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
	0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
	0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
	0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
	0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
	0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
	0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
	0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
	0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
	0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
	0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
	0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
};

/* Logs of 2 in the RAID-Z Galois field. */
const uint8_t vdev_raidz_log2[256] __attribute__((aligned(256))) = {
	0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
	0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
	0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
	0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
	0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
	0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
	0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
	0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
	0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
	0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
	0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
	0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
	0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
	0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
	0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
	0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
	0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
	0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
	0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
	0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
	0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
	0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
	0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
	0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
	0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
	0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
	0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
	0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
	0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
	0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
	0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
	0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
};