aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/metaslab.c
blob: c624833bc9816e6c08da5a102cace7c5cb541342 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
 * Copyright (c) 2017, Intel Corporation.
 */

#include <sys/zfs_context.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/space_map.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_draid.h>
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zfeature.h>
#include <sys/vdev_indirect_mapping.h>
#include <sys/zap.h>
#include <sys/btree.h>

#define	WITH_DF_BLOCK_ALLOCATOR

#define	GANG_ALLOCATION(flags) \
	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))

/*
 * Metaslab granularity, in bytes. This is roughly similar to what would be
 * referred to as the "stripe size" in traditional RAID arrays. In normal
 * operation, we will try to write this amount of data to each disk before
 * moving on to the next top-level vdev.
 */
static uint64_t metaslab_aliquot = 1024 * 1024;

/*
 * For testing, make some blocks above a certain size be gang blocks.
 */
uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;

/*
 * In pools where the log space map feature is not enabled we touch
 * multiple metaslabs (and their respective space maps) with each
 * transaction group. Thus, we benefit from having a small space map
 * block size since it allows us to issue more I/O operations scattered
 * around the disk. So a sane default for the space map block size
 * is 8~16K.
 */
int zfs_metaslab_sm_blksz_no_log = (1 << 14);

/*
 * When the log space map feature is enabled, we accumulate a lot of
 * changes per metaslab that are flushed once in a while so we benefit
 * from a bigger block size like 128K for the metaslab space maps.
 */
int zfs_metaslab_sm_blksz_with_log = (1 << 17);

/*
 * The in-core space map representation is more compact than its on-disk form.
 * The zfs_condense_pct determines how much more compact the in-core
 * space map representation must be before we compact it on-disk.
 * Values should be greater than or equal to 100.
 */
uint_t zfs_condense_pct = 200;

/*
 * Condensing a metaslab is not guaranteed to actually reduce the amount of
 * space used on disk. In particular, a space map uses data in increments of
 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
 * same number of blocks after condensing. Since the goal of condensing is to
 * reduce the number of IOPs required to read the space map, we only want to
 * condense when we can be sure we will reduce the number of blocks used by the
 * space map. Unfortunately, we cannot precisely compute whether or not this is
 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
 * we apply the following heuristic: do not condense a spacemap unless the
 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
 * blocks.
 */
static const int zfs_metaslab_condense_block_threshold = 4;

/*
 * The zfs_mg_noalloc_threshold defines which metaslab groups should
 * be eligible for allocation. The value is defined as a percentage of
 * free space. Metaslab groups that have more free space than
 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
 * a metaslab group's free space is less than or equal to the
 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
 * groups are allowed to accept allocations. Gang blocks are always
 * eligible to allocate on any metaslab group. The default value of 0 means
 * no metaslab group will be excluded based on this criterion.
 */
static uint_t zfs_mg_noalloc_threshold = 0;

/*
 * Metaslab groups are considered eligible for allocations if their
 * fragmentation metric (measured as a percentage) is less than or
 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
 * exceeds this threshold then it will be skipped unless all metaslab
 * groups within the metaslab class have also crossed this threshold.
 *
 * This tunable was introduced to avoid edge cases where we continue
 * allocating from very fragmented disks in our pool while other, less
 * fragmented disks, exists. On the other hand, if all disks in the
 * pool are uniformly approaching the threshold, the threshold can
 * be a speed bump in performance, where we keep switching the disks
 * that we allocate from (e.g. we allocate some segments from disk A
 * making it bypassing the threshold while freeing segments from disk
 * B getting its fragmentation below the threshold).
 *
 * Empirically, we've seen that our vdev selection for allocations is
 * good enough that fragmentation increases uniformly across all vdevs
 * the majority of the time. Thus we set the threshold percentage high
 * enough to avoid hitting the speed bump on pools that are being pushed
 * to the edge.
 */
static uint_t zfs_mg_fragmentation_threshold = 95;

/*
 * Allow metaslabs to keep their active state as long as their fragmentation
 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
 * active metaslab that exceeds this threshold will no longer keep its active
 * status allowing better metaslabs to be selected.
 */
static uint_t zfs_metaslab_fragmentation_threshold = 70;

/*
 * When set will load all metaslabs when pool is first opened.
 */
int metaslab_debug_load = B_FALSE;

/*
 * When set will prevent metaslabs from being unloaded.
 */
static int metaslab_debug_unload = B_FALSE;

/*
 * Minimum size which forces the dynamic allocator to change
 * it's allocation strategy.  Once the space map cannot satisfy
 * an allocation of this size then it switches to using more
 * aggressive strategy (i.e search by size rather than offset).
 */
uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;

/*
 * The minimum free space, in percent, which must be available
 * in a space map to continue allocations in a first-fit fashion.
 * Once the space map's free space drops below this level we dynamically
 * switch to using best-fit allocations.
 */
uint_t metaslab_df_free_pct = 4;

/*
 * Maximum distance to search forward from the last offset. Without this
 * limit, fragmented pools can see >100,000 iterations and
 * metaslab_block_picker() becomes the performance limiting factor on
 * high-performance storage.
 *
 * With the default setting of 16MB, we typically see less than 500
 * iterations, even with very fragmented, ashift=9 pools. The maximum number
 * of iterations possible is:
 *     metaslab_df_max_search / (2 * (1<<ashift))
 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
 * 2048 (with ashift=12).
 */
static uint_t metaslab_df_max_search = 16 * 1024 * 1024;

/*
 * Forces the metaslab_block_picker function to search for at least this many
 * segments forwards until giving up on finding a segment that the allocation
 * will fit into.
 */
static const uint32_t metaslab_min_search_count = 100;

/*
 * If we are not searching forward (due to metaslab_df_max_search,
 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
 * controls what segment is used.  If it is set, we will use the largest free
 * segment.  If it is not set, we will use a segment of exactly the requested
 * size (or larger).
 */
static int metaslab_df_use_largest_segment = B_FALSE;

/*
 * Percentage of all cpus that can be used by the metaslab taskq.
 */
int metaslab_load_pct = 50;

/*
 * These tunables control how long a metaslab will remain loaded after the
 * last allocation from it.  A metaslab can't be unloaded until at least
 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
 * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
 * unloaded sooner.  These settings are intended to be generous -- to keep
 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
 */
static uint_t metaslab_unload_delay = 32;
static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */

/*
 * Max number of metaslabs per group to preload.
 */
uint_t metaslab_preload_limit = 10;

/*
 * Enable/disable preloading of metaslab.
 */
static int metaslab_preload_enabled = B_TRUE;

/*
 * Enable/disable fragmentation weighting on metaslabs.
 */
static int metaslab_fragmentation_factor_enabled = B_TRUE;

/*
 * Enable/disable lba weighting (i.e. outer tracks are given preference).
 */
static int metaslab_lba_weighting_enabled = B_TRUE;

/*
 * Enable/disable metaslab group biasing.
 */
static int metaslab_bias_enabled = B_TRUE;

/*
 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
 */
static const boolean_t zfs_remap_blkptr_enable = B_TRUE;

/*
 * Enable/disable segment-based metaslab selection.
 */
static int zfs_metaslab_segment_weight_enabled = B_TRUE;

/*
 * When using segment-based metaslab selection, we will continue
 * allocating from the active metaslab until we have exhausted
 * zfs_metaslab_switch_threshold of its buckets.
 */
static int zfs_metaslab_switch_threshold = 2;

/*
 * Internal switch to enable/disable the metaslab allocation tracing
 * facility.
 */
static const boolean_t metaslab_trace_enabled = B_FALSE;

/*
 * Maximum entries that the metaslab allocation tracing facility will keep
 * in a given list when running in non-debug mode. We limit the number
 * of entries in non-debug mode to prevent us from using up too much memory.
 * The limit should be sufficiently large that we don't expect any allocation
 * to every exceed this value. In debug mode, the system will panic if this
 * limit is ever reached allowing for further investigation.
 */
static const uint64_t metaslab_trace_max_entries = 5000;

/*
 * Maximum number of metaslabs per group that can be disabled
 * simultaneously.
 */
static const int max_disabled_ms = 3;

/*
 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
 * To avoid 64-bit overflow, don't set above UINT32_MAX.
 */
static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */

/*
 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
 * a metaslab would take it over this percentage, the oldest selected metaslab
 * is automatically unloaded.
 */
static uint_t zfs_metaslab_mem_limit = 25;

/*
 * Force the per-metaslab range trees to use 64-bit integers to store
 * segments. Used for debugging purposes.
 */
static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;

/*
 * By default we only store segments over a certain size in the size-sorted
 * metaslab trees (ms_allocatable_by_size and
 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
 * improves load and unload times at the cost of causing us to use slightly
 * larger segments than we would otherwise in some cases.
 */
static const uint32_t metaslab_by_size_min_shift = 14;

/*
 * If not set, we will first try normal allocation.  If that fails then
 * we will do a gang allocation.  If that fails then we will do a "try hard"
 * gang allocation.  If that fails then we will have a multi-layer gang
 * block.
 *
 * If set, we will first try normal allocation.  If that fails then
 * we will do a "try hard" allocation.  If that fails we will do a gang
 * allocation.  If that fails we will do a "try hard" gang allocation.  If
 * that fails then we will have a multi-layer gang block.
 */
static int zfs_metaslab_try_hard_before_gang = B_FALSE;

/*
 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
 * metaslabs.  This improves performance, especially when there are many
 * metaslabs per vdev and the allocation can't actually be satisfied (so we
 * would otherwise iterate all the metaslabs).  If there is a metaslab with a
 * worse weight but it can actually satisfy the allocation, we won't find it
 * until trying hard.  This may happen if the worse metaslab is not loaded
 * (and the true weight is better than we have calculated), or due to weight
 * bucketization.  E.g. we are looking for a 60K segment, and the best
 * metaslabs all have free segments in the 32-63K bucket, but the best
 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
 * bucket, and therefore a lower weight).
 */
static uint_t zfs_metaslab_find_max_tries = 100;

static uint64_t metaslab_weight(metaslab_t *, boolean_t);
static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);

static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
static unsigned int metaslab_idx_func(multilist_t *, void *);
static void metaslab_evict(metaslab_t *, uint64_t);
static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
kmem_cache_t *metaslab_alloc_trace_cache;

typedef struct metaslab_stats {
	kstat_named_t metaslabstat_trace_over_limit;
	kstat_named_t metaslabstat_reload_tree;
	kstat_named_t metaslabstat_too_many_tries;
	kstat_named_t metaslabstat_try_hard;
} metaslab_stats_t;

static metaslab_stats_t metaslab_stats = {
	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
	{ "reload_tree",		KSTAT_DATA_UINT64 },
	{ "too_many_tries",		KSTAT_DATA_UINT64 },
	{ "try_hard",			KSTAT_DATA_UINT64 },
};

#define	METASLABSTAT_BUMP(stat) \
	atomic_inc_64(&metaslab_stats.stat.value.ui64);


static kstat_t *metaslab_ksp;

void
metaslab_stat_init(void)
{
	ASSERT(metaslab_alloc_trace_cache == NULL);
	metaslab_alloc_trace_cache = kmem_cache_create(
	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
	    0, NULL, NULL, NULL, NULL, NULL, 0);
	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
	if (metaslab_ksp != NULL) {
		metaslab_ksp->ks_data = &metaslab_stats;
		kstat_install(metaslab_ksp);
	}
}

void
metaslab_stat_fini(void)
{
	if (metaslab_ksp != NULL) {
		kstat_delete(metaslab_ksp);
		metaslab_ksp = NULL;
	}

	kmem_cache_destroy(metaslab_alloc_trace_cache);
	metaslab_alloc_trace_cache = NULL;
}

/*
 * ==========================================================================
 * Metaslab classes
 * ==========================================================================
 */
metaslab_class_t *
metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
{
	metaslab_class_t *mc;

	mc = kmem_zalloc(offsetof(metaslab_class_t,
	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);

	mc->mc_spa = spa;
	mc->mc_ops = ops;
	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
	for (int i = 0; i < spa->spa_alloc_count; i++) {
		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
		mca->mca_rotor = NULL;
		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
	}

	return (mc);
}

void
metaslab_class_destroy(metaslab_class_t *mc)
{
	spa_t *spa = mc->mc_spa;

	ASSERT(mc->mc_alloc == 0);
	ASSERT(mc->mc_deferred == 0);
	ASSERT(mc->mc_space == 0);
	ASSERT(mc->mc_dspace == 0);

	for (int i = 0; i < spa->spa_alloc_count; i++) {
		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
		ASSERT(mca->mca_rotor == NULL);
		zfs_refcount_destroy(&mca->mca_alloc_slots);
	}
	mutex_destroy(&mc->mc_lock);
	multilist_destroy(&mc->mc_metaslab_txg_list);
	kmem_free(mc, offsetof(metaslab_class_t,
	    mc_allocator[spa->spa_alloc_count]));
}

int
metaslab_class_validate(metaslab_class_t *mc)
{
	metaslab_group_t *mg;
	vdev_t *vd;

	/*
	 * Must hold one of the spa_config locks.
	 */
	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));

	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
		return (0);

	do {
		vd = mg->mg_vd;
		ASSERT(vd->vdev_mg != NULL);
		ASSERT3P(vd->vdev_top, ==, vd);
		ASSERT3P(mg->mg_class, ==, mc);
		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);

	return (0);
}

static void
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
{
	atomic_add_64(&mc->mc_alloc, alloc_delta);
	atomic_add_64(&mc->mc_deferred, defer_delta);
	atomic_add_64(&mc->mc_space, space_delta);
	atomic_add_64(&mc->mc_dspace, dspace_delta);
}

uint64_t
metaslab_class_get_alloc(metaslab_class_t *mc)
{
	return (mc->mc_alloc);
}

uint64_t
metaslab_class_get_deferred(metaslab_class_t *mc)
{
	return (mc->mc_deferred);
}

uint64_t
metaslab_class_get_space(metaslab_class_t *mc)
{
	return (mc->mc_space);
}

uint64_t
metaslab_class_get_dspace(metaslab_class_t *mc)
{
	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
}

void
metaslab_class_histogram_verify(metaslab_class_t *mc)
{
	spa_t *spa = mc->mc_spa;
	vdev_t *rvd = spa->spa_root_vdev;
	uint64_t *mc_hist;
	int i;

	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
		return;

	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
	    KM_SLEEP);

	mutex_enter(&mc->mc_lock);
	for (int c = 0; c < rvd->vdev_children; c++) {
		vdev_t *tvd = rvd->vdev_child[c];
		metaslab_group_t *mg = vdev_get_mg(tvd, mc);

		/*
		 * Skip any holes, uninitialized top-levels, or
		 * vdevs that are not in this metalab class.
		 */
		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
		    mg->mg_class != mc) {
			continue;
		}

		IMPLY(mg == mg->mg_vd->vdev_log_mg,
		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));

		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
			mc_hist[i] += mg->mg_histogram[i];
	}

	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
	}

	mutex_exit(&mc->mc_lock);
	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
}

/*
 * Calculate the metaslab class's fragmentation metric. The metric
 * is weighted based on the space contribution of each metaslab group.
 * The return value will be a number between 0 and 100 (inclusive), or
 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
 * zfs_frag_table for more information about the metric.
 */
uint64_t
metaslab_class_fragmentation(metaslab_class_t *mc)
{
	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
	uint64_t fragmentation = 0;

	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);

	for (int c = 0; c < rvd->vdev_children; c++) {
		vdev_t *tvd = rvd->vdev_child[c];
		metaslab_group_t *mg = tvd->vdev_mg;

		/*
		 * Skip any holes, uninitialized top-levels,
		 * or vdevs that are not in this metalab class.
		 */
		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
		    mg->mg_class != mc) {
			continue;
		}

		/*
		 * If a metaslab group does not contain a fragmentation
		 * metric then just bail out.
		 */
		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
			return (ZFS_FRAG_INVALID);
		}

		/*
		 * Determine how much this metaslab_group is contributing
		 * to the overall pool fragmentation metric.
		 */
		fragmentation += mg->mg_fragmentation *
		    metaslab_group_get_space(mg);
	}
	fragmentation /= metaslab_class_get_space(mc);

	ASSERT3U(fragmentation, <=, 100);
	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
	return (fragmentation);
}

/*
 * Calculate the amount of expandable space that is available in
 * this metaslab class. If a device is expanded then its expandable
 * space will be the amount of allocatable space that is currently not
 * part of this metaslab class.
 */
uint64_t
metaslab_class_expandable_space(metaslab_class_t *mc)
{
	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
	uint64_t space = 0;

	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
	for (int c = 0; c < rvd->vdev_children; c++) {
		vdev_t *tvd = rvd->vdev_child[c];
		metaslab_group_t *mg = tvd->vdev_mg;

		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
		    mg->mg_class != mc) {
			continue;
		}

		/*
		 * Calculate if we have enough space to add additional
		 * metaslabs. We report the expandable space in terms
		 * of the metaslab size since that's the unit of expansion.
		 */
		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
		    1ULL << tvd->vdev_ms_shift);
	}
	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
	return (space);
}

void
metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
{
	multilist_t *ml = &mc->mc_metaslab_txg_list;
	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
		metaslab_t *msp = multilist_sublist_head(mls);
		multilist_sublist_unlock(mls);
		while (msp != NULL) {
			mutex_enter(&msp->ms_lock);

			/*
			 * If the metaslab has been removed from the list
			 * (which could happen if we were at the memory limit
			 * and it was evicted during this loop), then we can't
			 * proceed and we should restart the sublist.
			 */
			if (!multilist_link_active(&msp->ms_class_txg_node)) {
				mutex_exit(&msp->ms_lock);
				i--;
				break;
			}
			mls = multilist_sublist_lock(ml, i);
			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
			multilist_sublist_unlock(mls);
			if (txg >
			    msp->ms_selected_txg + metaslab_unload_delay &&
			    gethrtime() > msp->ms_selected_time +
			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
				metaslab_evict(msp, txg);
			} else {
				/*
				 * Once we've hit a metaslab selected too
				 * recently to evict, we're done evicting for
				 * now.
				 */
				mutex_exit(&msp->ms_lock);
				break;
			}
			mutex_exit(&msp->ms_lock);
			msp = next_msp;
		}
	}
}

static int
metaslab_compare(const void *x1, const void *x2)
{
	const metaslab_t *m1 = (const metaslab_t *)x1;
	const metaslab_t *m2 = (const metaslab_t *)x2;

	int sort1 = 0;
	int sort2 = 0;
	if (m1->ms_allocator != -1 && m1->ms_primary)
		sort1 = 1;
	else if (m1->ms_allocator != -1 && !m1->ms_primary)
		sort1 = 2;
	if (m2->ms_allocator != -1 && m2->ms_primary)
		sort2 = 1;
	else if (m2->ms_allocator != -1 && !m2->ms_primary)
		sort2 = 2;

	/*
	 * Sort inactive metaslabs first, then primaries, then secondaries. When
	 * selecting a metaslab to allocate from, an allocator first tries its
	 * primary, then secondary active metaslab. If it doesn't have active
	 * metaslabs, or can't allocate from them, it searches for an inactive
	 * metaslab to activate. If it can't find a suitable one, it will steal
	 * a primary or secondary metaslab from another allocator.
	 */
	if (sort1 < sort2)
		return (-1);
	if (sort1 > sort2)
		return (1);

	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
	if (likely(cmp))
		return (cmp);

	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);

	return (TREE_CMP(m1->ms_start, m2->ms_start));
}

/*
 * ==========================================================================
 * Metaslab groups
 * ==========================================================================
 */
/*
 * Update the allocatable flag and the metaslab group's capacity.
 * The allocatable flag is set to true if the capacity is below
 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
 * transitions from allocatable to non-allocatable or vice versa then the
 * metaslab group's class is updated to reflect the transition.
 */
static void
metaslab_group_alloc_update(metaslab_group_t *mg)
{
	vdev_t *vd = mg->mg_vd;
	metaslab_class_t *mc = mg->mg_class;
	vdev_stat_t *vs = &vd->vdev_stat;
	boolean_t was_allocatable;
	boolean_t was_initialized;

	ASSERT(vd == vd->vdev_top);
	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
	    SCL_ALLOC);

	mutex_enter(&mg->mg_lock);
	was_allocatable = mg->mg_allocatable;
	was_initialized = mg->mg_initialized;

	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
	    (vs->vs_space + 1);

	mutex_enter(&mc->mc_lock);

	/*
	 * If the metaslab group was just added then it won't
	 * have any space until we finish syncing out this txg.
	 * At that point we will consider it initialized and available
	 * for allocations.  We also don't consider non-activated
	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
	 * to be initialized, because they can't be used for allocation.
	 */
	mg->mg_initialized = metaslab_group_initialized(mg);
	if (!was_initialized && mg->mg_initialized) {
		mc->mc_groups++;
	} else if (was_initialized && !mg->mg_initialized) {
		ASSERT3U(mc->mc_groups, >, 0);
		mc->mc_groups--;
	}
	if (mg->mg_initialized)
		mg->mg_no_free_space = B_FALSE;

	/*
	 * A metaslab group is considered allocatable if it has plenty
	 * of free space or is not heavily fragmented. We only take
	 * fragmentation into account if the metaslab group has a valid
	 * fragmentation metric (i.e. a value between 0 and 100).
	 */
	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));

	/*
	 * The mc_alloc_groups maintains a count of the number of
	 * groups in this metaslab class that are still above the
	 * zfs_mg_noalloc_threshold. This is used by the allocating
	 * threads to determine if they should avoid allocations to
	 * a given group. The allocator will avoid allocations to a group
	 * if that group has reached or is below the zfs_mg_noalloc_threshold
	 * and there are still other groups that are above the threshold.
	 * When a group transitions from allocatable to non-allocatable or
	 * vice versa we update the metaslab class to reflect that change.
	 * When the mc_alloc_groups value drops to 0 that means that all
	 * groups have reached the zfs_mg_noalloc_threshold making all groups
	 * eligible for allocations. This effectively means that all devices
	 * are balanced again.
	 */
	if (was_allocatable && !mg->mg_allocatable)
		mc->mc_alloc_groups--;
	else if (!was_allocatable && mg->mg_allocatable)
		mc->mc_alloc_groups++;
	mutex_exit(&mc->mc_lock);

	mutex_exit(&mg->mg_lock);
}

int
metaslab_sort_by_flushed(const void *va, const void *vb)
{
	const metaslab_t *a = va;
	const metaslab_t *b = vb;

	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
	if (likely(cmp))
		return (cmp);

	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
	if (cmp)
		return (cmp);

	return (TREE_CMP(a->ms_id, b->ms_id));
}

metaslab_group_t *
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
{
	metaslab_group_t *mg;

	mg = kmem_zalloc(offsetof(metaslab_group_t,
	    mg_allocator[allocators]), KM_SLEEP);
	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
	mg->mg_vd = vd;
	mg->mg_class = mc;
	mg->mg_activation_count = 0;
	mg->mg_initialized = B_FALSE;
	mg->mg_no_free_space = B_TRUE;
	mg->mg_allocators = allocators;

	for (int i = 0; i < allocators; i++) {
		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
	}

	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);

	return (mg);
}

void
metaslab_group_destroy(metaslab_group_t *mg)
{
	ASSERT(mg->mg_prev == NULL);
	ASSERT(mg->mg_next == NULL);
	/*
	 * We may have gone below zero with the activation count
	 * either because we never activated in the first place or
	 * because we're done, and possibly removing the vdev.
	 */
	ASSERT(mg->mg_activation_count <= 0);

	taskq_destroy(mg->mg_taskq);
	avl_destroy(&mg->mg_metaslab_tree);
	mutex_destroy(&mg->mg_lock);
	mutex_destroy(&mg->mg_ms_disabled_lock);
	cv_destroy(&mg->mg_ms_disabled_cv);

	for (int i = 0; i < mg->mg_allocators; i++) {
		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
	}
	kmem_free(mg, offsetof(metaslab_group_t,
	    mg_allocator[mg->mg_allocators]));
}

void
metaslab_group_activate(metaslab_group_t *mg)
{
	metaslab_class_t *mc = mg->mg_class;
	spa_t *spa = mc->mc_spa;
	metaslab_group_t *mgprev, *mgnext;

	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);

	ASSERT(mg->mg_prev == NULL);
	ASSERT(mg->mg_next == NULL);
	ASSERT(mg->mg_activation_count <= 0);

	if (++mg->mg_activation_count <= 0)
		return;

	mg->mg_aliquot = metaslab_aliquot * MAX(1,
	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
	metaslab_group_alloc_update(mg);

	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
		mg->mg_prev = mg;
		mg->mg_next = mg;
	} else {
		mgnext = mgprev->mg_next;
		mg->mg_prev = mgprev;
		mg->mg_next = mgnext;
		mgprev->mg_next = mg;
		mgnext->mg_prev = mg;
	}
	for (int i = 0; i < spa->spa_alloc_count; i++) {
		mc->mc_allocator[i].mca_rotor = mg;
		mg = mg->mg_next;
	}
}

/*
 * Passivate a metaslab group and remove it from the allocation rotor.
 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
 * a metaslab group. This function will momentarily drop spa_config_locks
 * that are lower than the SCL_ALLOC lock (see comment below).
 */
void
metaslab_group_passivate(metaslab_group_t *mg)
{
	metaslab_class_t *mc = mg->mg_class;
	spa_t *spa = mc->mc_spa;
	metaslab_group_t *mgprev, *mgnext;
	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);

	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
	    (SCL_ALLOC | SCL_ZIO));

	if (--mg->mg_activation_count != 0) {
		for (int i = 0; i < spa->spa_alloc_count; i++)
			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
		ASSERT(mg->mg_prev == NULL);
		ASSERT(mg->mg_next == NULL);
		ASSERT(mg->mg_activation_count < 0);
		return;
	}

	/*
	 * The spa_config_lock is an array of rwlocks, ordered as
	 * follows (from highest to lowest):
	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
	 * (For more information about the spa_config_lock see spa_misc.c)
	 * The higher the lock, the broader its coverage. When we passivate
	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
	 * config locks. However, the metaslab group's taskq might be trying
	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
	 * lower locks to allow the I/O to complete. At a minimum,
	 * we continue to hold the SCL_ALLOC lock, which prevents any future
	 * allocations from taking place and any changes to the vdev tree.
	 */
	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
	taskq_wait_outstanding(mg->mg_taskq, 0);
	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
	metaslab_group_alloc_update(mg);
	for (int i = 0; i < mg->mg_allocators; i++) {
		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
		metaslab_t *msp = mga->mga_primary;
		if (msp != NULL) {
			mutex_enter(&msp->ms_lock);
			metaslab_passivate(msp,
			    metaslab_weight_from_range_tree(msp));
			mutex_exit(&msp->ms_lock);
		}
		msp = mga->mga_secondary;
		if (msp != NULL) {
			mutex_enter(&msp->ms_lock);
			metaslab_passivate(msp,
			    metaslab_weight_from_range_tree(msp));
			mutex_exit(&msp->ms_lock);
		}
	}

	mgprev = mg->mg_prev;
	mgnext = mg->mg_next;

	if (mg == mgnext) {
		mgnext = NULL;
	} else {
		mgprev->mg_next = mgnext;
		mgnext->mg_prev = mgprev;
	}
	for (int i = 0; i < spa->spa_alloc_count; i++) {
		if (mc->mc_allocator[i].mca_rotor == mg)
			mc->mc_allocator[i].mca_rotor = mgnext;
	}

	mg->mg_prev = NULL;
	mg->mg_next = NULL;
}

boolean_t
metaslab_group_initialized(metaslab_group_t *mg)
{
	vdev_t *vd = mg->mg_vd;
	vdev_stat_t *vs = &vd->vdev_stat;

	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
}

uint64_t
metaslab_group_get_space(metaslab_group_t *mg)
{
	/*
	 * Note that the number of nodes in mg_metaslab_tree may be one less
	 * than vdev_ms_count, due to the embedded log metaslab.
	 */
	mutex_enter(&mg->mg_lock);
	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
	mutex_exit(&mg->mg_lock);
	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
}

void
metaslab_group_histogram_verify(metaslab_group_t *mg)
{
	uint64_t *mg_hist;
	avl_tree_t *t = &mg->mg_metaslab_tree;
	uint64_t ashift = mg->mg_vd->vdev_ashift;

	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
		return;

	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
	    KM_SLEEP);

	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
	    SPACE_MAP_HISTOGRAM_SIZE + ashift);

	mutex_enter(&mg->mg_lock);
	for (metaslab_t *msp = avl_first(t);
	    msp != NULL; msp = AVL_NEXT(t, msp)) {
		VERIFY3P(msp->ms_group, ==, mg);
		/* skip if not active */
		if (msp->ms_sm == NULL)
			continue;

		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
			mg_hist[i + ashift] +=
			    msp->ms_sm->sm_phys->smp_histogram[i];
		}
	}

	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);

	mutex_exit(&mg->mg_lock);

	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
}

static void
metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
{
	metaslab_class_t *mc = mg->mg_class;
	uint64_t ashift = mg->mg_vd->vdev_ashift;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	if (msp->ms_sm == NULL)
		return;

	mutex_enter(&mg->mg_lock);
	mutex_enter(&mc->mc_lock);
	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
		IMPLY(mg == mg->mg_vd->vdev_log_mg,
		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
		mg->mg_histogram[i + ashift] +=
		    msp->ms_sm->sm_phys->smp_histogram[i];
		mc->mc_histogram[i + ashift] +=
		    msp->ms_sm->sm_phys->smp_histogram[i];
	}
	mutex_exit(&mc->mc_lock);
	mutex_exit(&mg->mg_lock);
}

void
metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
{
	metaslab_class_t *mc = mg->mg_class;
	uint64_t ashift = mg->mg_vd->vdev_ashift;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	if (msp->ms_sm == NULL)
		return;

	mutex_enter(&mg->mg_lock);
	mutex_enter(&mc->mc_lock);
	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
		ASSERT3U(mg->mg_histogram[i + ashift], >=,
		    msp->ms_sm->sm_phys->smp_histogram[i]);
		ASSERT3U(mc->mc_histogram[i + ashift], >=,
		    msp->ms_sm->sm_phys->smp_histogram[i]);
		IMPLY(mg == mg->mg_vd->vdev_log_mg,
		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));

		mg->mg_histogram[i + ashift] -=
		    msp->ms_sm->sm_phys->smp_histogram[i];
		mc->mc_histogram[i + ashift] -=
		    msp->ms_sm->sm_phys->smp_histogram[i];
	}
	mutex_exit(&mc->mc_lock);
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
{
	ASSERT(msp->ms_group == NULL);
	mutex_enter(&mg->mg_lock);
	msp->ms_group = mg;
	msp->ms_weight = 0;
	avl_add(&mg->mg_metaslab_tree, msp);
	mutex_exit(&mg->mg_lock);

	mutex_enter(&msp->ms_lock);
	metaslab_group_histogram_add(mg, msp);
	mutex_exit(&msp->ms_lock);
}

static void
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
{
	mutex_enter(&msp->ms_lock);
	metaslab_group_histogram_remove(mg, msp);
	mutex_exit(&msp->ms_lock);

	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == mg);
	avl_remove(&mg->mg_metaslab_tree, msp);

	metaslab_class_t *mc = msp->ms_group->mg_class;
	multilist_sublist_t *mls =
	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
	if (multilist_link_active(&msp->ms_class_txg_node))
		multilist_sublist_remove(mls, msp);
	multilist_sublist_unlock(mls);

	msp->ms_group = NULL;
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(MUTEX_HELD(&mg->mg_lock));
	ASSERT(msp->ms_group == mg);

	avl_remove(&mg->mg_metaslab_tree, msp);
	msp->ms_weight = weight;
	avl_add(&mg->mg_metaslab_tree, msp);

}

static void
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
{
	/*
	 * Although in principle the weight can be any value, in
	 * practice we do not use values in the range [1, 511].
	 */
	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	mutex_enter(&mg->mg_lock);
	metaslab_group_sort_impl(mg, msp, weight);
	mutex_exit(&mg->mg_lock);
}

/*
 * Calculate the fragmentation for a given metaslab group. We can use
 * a simple average here since all metaslabs within the group must have
 * the same size. The return value will be a value between 0 and 100
 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
 * group have a fragmentation metric.
 */
uint64_t
metaslab_group_fragmentation(metaslab_group_t *mg)
{
	vdev_t *vd = mg->mg_vd;
	uint64_t fragmentation = 0;
	uint64_t valid_ms = 0;

	for (int m = 0; m < vd->vdev_ms_count; m++) {
		metaslab_t *msp = vd->vdev_ms[m];

		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
			continue;
		if (msp->ms_group != mg)
			continue;

		valid_ms++;
		fragmentation += msp->ms_fragmentation;
	}

	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
		return (ZFS_FRAG_INVALID);

	fragmentation /= valid_ms;
	ASSERT3U(fragmentation, <=, 100);
	return (fragmentation);
}

/*
 * Determine if a given metaslab group should skip allocations. A metaslab
 * group should avoid allocations if its free capacity is less than the
 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
 * that can still handle allocations. If the allocation throttle is enabled
 * then we skip allocations to devices that have reached their maximum
 * allocation queue depth unless the selected metaslab group is the only
 * eligible group remaining.
 */
static boolean_t
metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
    uint64_t psize, int allocator, int d)
{
	spa_t *spa = mg->mg_vd->vdev_spa;
	metaslab_class_t *mc = mg->mg_class;

	/*
	 * We can only consider skipping this metaslab group if it's
	 * in the normal metaslab class and there are other metaslab
	 * groups to select from. Otherwise, we always consider it eligible
	 * for allocations.
	 */
	if ((mc != spa_normal_class(spa) &&
	    mc != spa_special_class(spa) &&
	    mc != spa_dedup_class(spa)) ||
	    mc->mc_groups <= 1)
		return (B_TRUE);

	/*
	 * If the metaslab group's mg_allocatable flag is set (see comments
	 * in metaslab_group_alloc_update() for more information) and
	 * the allocation throttle is disabled then allow allocations to this
	 * device. However, if the allocation throttle is enabled then
	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
	 * to determine if we should allow allocations to this metaslab group.
	 * If all metaslab groups are no longer considered allocatable
	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
	 * gang block size then we allow allocations on this metaslab group
	 * regardless of the mg_allocatable or throttle settings.
	 */
	if (mg->mg_allocatable) {
		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
		int64_t qdepth;
		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;

		if (!mc->mc_alloc_throttle_enabled)
			return (B_TRUE);

		/*
		 * If this metaslab group does not have any free space, then
		 * there is no point in looking further.
		 */
		if (mg->mg_no_free_space)
			return (B_FALSE);

		/*
		 * Relax allocation throttling for ditto blocks.  Due to
		 * random imbalances in allocation it tends to push copies
		 * to one vdev, that looks a bit better at the moment.
		 */
		qmax = qmax * (4 + d) / 4;

		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);

		/*
		 * If this metaslab group is below its qmax or it's
		 * the only allocatable metasable group, then attempt
		 * to allocate from it.
		 */
		if (qdepth < qmax || mc->mc_alloc_groups == 1)
			return (B_TRUE);
		ASSERT3U(mc->mc_alloc_groups, >, 1);

		/*
		 * Since this metaslab group is at or over its qmax, we
		 * need to determine if there are metaslab groups after this
		 * one that might be able to handle this allocation. This is
		 * racy since we can't hold the locks for all metaslab
		 * groups at the same time when we make this check.
		 */
		for (metaslab_group_t *mgp = mg->mg_next;
		    mgp != rotor; mgp = mgp->mg_next) {
			metaslab_group_allocator_t *mgap =
			    &mgp->mg_allocator[allocator];
			qmax = mgap->mga_cur_max_alloc_queue_depth;
			qmax = qmax * (4 + d) / 4;
			qdepth =
			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);

			/*
			 * If there is another metaslab group that
			 * might be able to handle the allocation, then
			 * we return false so that we skip this group.
			 */
			if (qdepth < qmax && !mgp->mg_no_free_space)
				return (B_FALSE);
		}

		/*
		 * We didn't find another group to handle the allocation
		 * so we can't skip this metaslab group even though
		 * we are at or over our qmax.
		 */
		return (B_TRUE);

	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
		return (B_TRUE);
	}
	return (B_FALSE);
}

/*
 * ==========================================================================
 * Range tree callbacks
 * ==========================================================================
 */

/*
 * Comparison function for the private size-ordered tree using 32-bit
 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
 */
static int
metaslab_rangesize32_compare(const void *x1, const void *x2)
{
	const range_seg32_t *r1 = x1;
	const range_seg32_t *r2 = x2;

	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
	uint64_t rs_size2 = r2->rs_end - r2->rs_start;

	int cmp = TREE_CMP(rs_size1, rs_size2);
	if (likely(cmp))
		return (cmp);

	return (TREE_CMP(r1->rs_start, r2->rs_start));
}

/*
 * Comparison function for the private size-ordered tree using 64-bit
 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
 */
static int
metaslab_rangesize64_compare(const void *x1, const void *x2)
{
	const range_seg64_t *r1 = x1;
	const range_seg64_t *r2 = x2;

	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
	uint64_t rs_size2 = r2->rs_end - r2->rs_start;

	int cmp = TREE_CMP(rs_size1, rs_size2);
	if (likely(cmp))
		return (cmp);

	return (TREE_CMP(r1->rs_start, r2->rs_start));
}
typedef struct metaslab_rt_arg {
	zfs_btree_t *mra_bt;
	uint32_t mra_floor_shift;
} metaslab_rt_arg_t;

struct mssa_arg {
	range_tree_t *rt;
	metaslab_rt_arg_t *mra;
};

static void
metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
{
	struct mssa_arg *mssap = arg;
	range_tree_t *rt = mssap->rt;
	metaslab_rt_arg_t *mrap = mssap->mra;
	range_seg_max_t seg = {0};
	rs_set_start(&seg, rt, start);
	rs_set_end(&seg, rt, start + size);
	metaslab_rt_add(rt, &seg, mrap);
}

static void
metaslab_size_tree_full_load(range_tree_t *rt)
{
	metaslab_rt_arg_t *mrap = rt->rt_arg;
	METASLABSTAT_BUMP(metaslabstat_reload_tree);
	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
	mrap->mra_floor_shift = 0;
	struct mssa_arg arg = {0};
	arg.rt = rt;
	arg.mra = mrap;
	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
}

/*
 * Create any block allocator specific components. The current allocators
 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
 */
static void
metaslab_rt_create(range_tree_t *rt, void *arg)
{
	metaslab_rt_arg_t *mrap = arg;
	zfs_btree_t *size_tree = mrap->mra_bt;

	size_t size;
	int (*compare) (const void *, const void *);
	switch (rt->rt_type) {
	case RANGE_SEG32:
		size = sizeof (range_seg32_t);
		compare = metaslab_rangesize32_compare;
		break;
	case RANGE_SEG64:
		size = sizeof (range_seg64_t);
		compare = metaslab_rangesize64_compare;
		break;
	default:
		panic("Invalid range seg type %d", rt->rt_type);
	}
	zfs_btree_create(size_tree, compare, size);
	mrap->mra_floor_shift = metaslab_by_size_min_shift;
}

static void
metaslab_rt_destroy(range_tree_t *rt, void *arg)
{
	(void) rt;
	metaslab_rt_arg_t *mrap = arg;
	zfs_btree_t *size_tree = mrap->mra_bt;

	zfs_btree_destroy(size_tree);
	kmem_free(mrap, sizeof (*mrap));
}

static void
metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
{
	metaslab_rt_arg_t *mrap = arg;
	zfs_btree_t *size_tree = mrap->mra_bt;

	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
	    (1ULL << mrap->mra_floor_shift))
		return;

	zfs_btree_add(size_tree, rs);
}

static void
metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
{
	metaslab_rt_arg_t *mrap = arg;
	zfs_btree_t *size_tree = mrap->mra_bt;

	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
	    mrap->mra_floor_shift))
		return;

	zfs_btree_remove(size_tree, rs);
}

static void
metaslab_rt_vacate(range_tree_t *rt, void *arg)
{
	metaslab_rt_arg_t *mrap = arg;
	zfs_btree_t *size_tree = mrap->mra_bt;
	zfs_btree_clear(size_tree);
	zfs_btree_destroy(size_tree);

	metaslab_rt_create(rt, arg);
}

static const range_tree_ops_t metaslab_rt_ops = {
	.rtop_create = metaslab_rt_create,
	.rtop_destroy = metaslab_rt_destroy,
	.rtop_add = metaslab_rt_add,
	.rtop_remove = metaslab_rt_remove,
	.rtop_vacate = metaslab_rt_vacate
};

/*
 * ==========================================================================
 * Common allocator routines
 * ==========================================================================
 */

/*
 * Return the maximum contiguous segment within the metaslab.
 */
uint64_t
metaslab_largest_allocatable(metaslab_t *msp)
{
	zfs_btree_t *t = &msp->ms_allocatable_by_size;
	range_seg_t *rs;

	if (t == NULL)
		return (0);
	if (zfs_btree_numnodes(t) == 0)
		metaslab_size_tree_full_load(msp->ms_allocatable);

	rs = zfs_btree_last(t, NULL);
	if (rs == NULL)
		return (0);

	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
	    msp->ms_allocatable));
}

/*
 * Return the maximum contiguous segment within the unflushed frees of this
 * metaslab.
 */
static uint64_t
metaslab_largest_unflushed_free(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	if (msp->ms_unflushed_frees == NULL)
		return (0);

	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
	    NULL);
	if (rs == NULL)
		return (0);

	/*
	 * When a range is freed from the metaslab, that range is added to
	 * both the unflushed frees and the deferred frees. While the block
	 * will eventually be usable, if the metaslab were loaded the range
	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
	 * txgs had passed.  As a result, when attempting to estimate an upper
	 * bound for the largest currently-usable free segment in the
	 * metaslab, we need to not consider any ranges currently in the defer
	 * trees. This algorithm approximates the largest available chunk in
	 * the largest range in the unflushed_frees tree by taking the first
	 * chunk.  While this may be a poor estimate, it should only remain so
	 * briefly and should eventually self-correct as frees are no longer
	 * deferred. Similar logic applies to the ms_freed tree. See
	 * metaslab_load() for more details.
	 *
	 * There are two primary sources of inaccuracy in this estimate. Both
	 * are tolerated for performance reasons. The first source is that we
	 * only check the largest segment for overlaps. Smaller segments may
	 * have more favorable overlaps with the other trees, resulting in
	 * larger usable chunks.  Second, we only look at the first chunk in
	 * the largest segment; there may be other usable chunks in the
	 * largest segment, but we ignore them.
	 */
	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
		uint64_t start = 0;
		uint64_t size = 0;
		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
		    rsize, &start, &size);
		if (found) {
			if (rstart == start)
				return (0);
			rsize = start - rstart;
		}
	}

	uint64_t start = 0;
	uint64_t size = 0;
	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
	    rsize, &start, &size);
	if (found)
		rsize = start - rstart;

	return (rsize);
}

static range_seg_t *
metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
    uint64_t size, zfs_btree_index_t *where)
{
	range_seg_t *rs;
	range_seg_max_t rsearch;

	rs_set_start(&rsearch, rt, start);
	rs_set_end(&rsearch, rt, start + size);

	rs = zfs_btree_find(t, &rsearch, where);
	if (rs == NULL) {
		rs = zfs_btree_next(t, where, where);
	}

	return (rs);
}

#if defined(WITH_DF_BLOCK_ALLOCATOR) || \
    defined(WITH_CF_BLOCK_ALLOCATOR)

/*
 * This is a helper function that can be used by the allocator to find a
 * suitable block to allocate. This will search the specified B-tree looking
 * for a block that matches the specified criteria.
 */
static uint64_t
metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
    uint64_t max_search)
{
	if (*cursor == 0)
		*cursor = rt->rt_start;
	zfs_btree_t *bt = &rt->rt_root;
	zfs_btree_index_t where;
	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
	uint64_t first_found;
	int count_searched = 0;

	if (rs != NULL)
		first_found = rs_get_start(rs, rt);

	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
	    max_search || count_searched < metaslab_min_search_count)) {
		uint64_t offset = rs_get_start(rs, rt);
		if (offset + size <= rs_get_end(rs, rt)) {
			*cursor = offset + size;
			return (offset);
		}
		rs = zfs_btree_next(bt, &where, &where);
		count_searched++;
	}

	*cursor = 0;
	return (-1ULL);
}
#endif /* WITH_DF/CF_BLOCK_ALLOCATOR */

#if defined(WITH_DF_BLOCK_ALLOCATOR)
/*
 * ==========================================================================
 * Dynamic Fit (df) block allocator
 *
 * Search for a free chunk of at least this size, starting from the last
 * offset (for this alignment of block) looking for up to
 * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
 * found within 16MB, then return a free chunk of exactly the requested size (or
 * larger).
 *
 * If it seems like searching from the last offset will be unproductive, skip
 * that and just return a free chunk of exactly the requested size (or larger).
 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
 * mechanism is probably not very useful and may be removed in the future.
 *
 * The behavior when not searching can be changed to return the largest free
 * chunk, instead of a free chunk of exactly the requested size, by setting
 * metaslab_df_use_largest_segment.
 * ==========================================================================
 */
static uint64_t
metaslab_df_alloc(metaslab_t *msp, uint64_t size)
{
	/*
	 * Find the largest power of 2 block size that evenly divides the
	 * requested size. This is used to try to allocate blocks with similar
	 * alignment from the same area of the metaslab (i.e. same cursor
	 * bucket) but it does not guarantee that other allocations sizes
	 * may exist in the same region.
	 */
	uint64_t align = size & -size;
	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
	range_tree_t *rt = msp->ms_allocatable;
	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
	uint64_t offset;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * If we're running low on space, find a segment based on size,
	 * rather than iterating based on offset.
	 */
	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
	    free_pct < metaslab_df_free_pct) {
		offset = -1;
	} else {
		offset = metaslab_block_picker(rt,
		    cursor, size, metaslab_df_max_search);
	}

	if (offset == -1) {
		range_seg_t *rs;
		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
			metaslab_size_tree_full_load(msp->ms_allocatable);

		if (metaslab_df_use_largest_segment) {
			/* use largest free segment */
			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
		} else {
			zfs_btree_index_t where;
			/* use segment of this size, or next largest */
			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
			    rt, msp->ms_start, size, &where);
		}
		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
		    rt)) {
			offset = rs_get_start(rs, rt);
			*cursor = offset + size;
		}
	}

	return (offset);
}

const metaslab_ops_t zfs_metaslab_ops = {
	metaslab_df_alloc
};
#endif /* WITH_DF_BLOCK_ALLOCATOR */

#if defined(WITH_CF_BLOCK_ALLOCATOR)
/*
 * ==========================================================================
 * Cursor fit block allocator -
 * Select the largest region in the metaslab, set the cursor to the beginning
 * of the range and the cursor_end to the end of the range. As allocations
 * are made advance the cursor. Continue allocating from the cursor until
 * the range is exhausted and then find a new range.
 * ==========================================================================
 */
static uint64_t
metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
{
	range_tree_t *rt = msp->ms_allocatable;
	zfs_btree_t *t = &msp->ms_allocatable_by_size;
	uint64_t *cursor = &msp->ms_lbas[0];
	uint64_t *cursor_end = &msp->ms_lbas[1];
	uint64_t offset = 0;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	ASSERT3U(*cursor_end, >=, *cursor);

	if ((*cursor + size) > *cursor_end) {
		range_seg_t *rs;

		if (zfs_btree_numnodes(t) == 0)
			metaslab_size_tree_full_load(msp->ms_allocatable);
		rs = zfs_btree_last(t, NULL);
		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
		    size)
			return (-1ULL);

		*cursor = rs_get_start(rs, rt);
		*cursor_end = rs_get_end(rs, rt);
	}

	offset = *cursor;
	*cursor += size;

	return (offset);
}

const metaslab_ops_t zfs_metaslab_ops = {
	metaslab_cf_alloc
};
#endif /* WITH_CF_BLOCK_ALLOCATOR */

#if defined(WITH_NDF_BLOCK_ALLOCATOR)
/*
 * ==========================================================================
 * New dynamic fit allocator -
 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
 * contiguous blocks. If no region is found then just use the largest segment
 * that remains.
 * ==========================================================================
 */

/*
 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
 * to request from the allocator.
 */
uint64_t metaslab_ndf_clump_shift = 4;

static uint64_t
metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
{
	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
	range_tree_t *rt = msp->ms_allocatable;
	zfs_btree_index_t where;
	range_seg_t *rs;
	range_seg_max_t rsearch;
	uint64_t hbit = highbit64(size);
	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
	uint64_t max_size = metaslab_largest_allocatable(msp);

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	if (max_size < size)
		return (-1ULL);

	rs_set_start(&rsearch, rt, *cursor);
	rs_set_end(&rsearch, rt, *cursor + size);

	rs = zfs_btree_find(t, &rsearch, &where);
	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
		t = &msp->ms_allocatable_by_size;

		rs_set_start(&rsearch, rt, 0);
		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
		    metaslab_ndf_clump_shift)));

		rs = zfs_btree_find(t, &rsearch, &where);
		if (rs == NULL)
			rs = zfs_btree_next(t, &where, &where);
		ASSERT(rs != NULL);
	}

	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
		*cursor = rs_get_start(rs, rt) + size;
		return (rs_get_start(rs, rt));
	}
	return (-1ULL);
}

const metaslab_ops_t zfs_metaslab_ops = {
	metaslab_ndf_alloc
};
#endif /* WITH_NDF_BLOCK_ALLOCATOR */


/*
 * ==========================================================================
 * Metaslabs
 * ==========================================================================
 */

/*
 * Wait for any in-progress metaslab loads to complete.
 */
static void
metaslab_load_wait(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	while (msp->ms_loading) {
		ASSERT(!msp->ms_loaded);
		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
	}
}

/*
 * Wait for any in-progress flushing to complete.
 */
static void
metaslab_flush_wait(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	while (msp->ms_flushing)
		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
}

static unsigned int
metaslab_idx_func(multilist_t *ml, void *arg)
{
	metaslab_t *msp = arg;

	/*
	 * ms_id values are allocated sequentially, so full 64bit
	 * division would be a waste of time, so limit it to 32 bits.
	 */
	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
}

uint64_t
metaslab_allocated_space(metaslab_t *msp)
{
	return (msp->ms_allocated_space);
}

/*
 * Verify that the space accounting on disk matches the in-core range_trees.
 */
static void
metaslab_verify_space(metaslab_t *msp, uint64_t txg)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	uint64_t allocating = 0;
	uint64_t sm_free_space, msp_free_space;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(!msp->ms_condensing);

	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
		return;

	/*
	 * We can only verify the metaslab space when we're called
	 * from syncing context with a loaded metaslab that has an
	 * allocated space map. Calling this in non-syncing context
	 * does not provide a consistent view of the metaslab since
	 * we're performing allocations in the future.
	 */
	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
	    !msp->ms_loaded)
		return;

	/*
	 * Even though the smp_alloc field can get negative,
	 * when it comes to a metaslab's space map, that should
	 * never be the case.
	 */
	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);

	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
	    range_tree_space(msp->ms_unflushed_frees));

	ASSERT3U(metaslab_allocated_space(msp), ==,
	    space_map_allocated(msp->ms_sm) +
	    range_tree_space(msp->ms_unflushed_allocs) -
	    range_tree_space(msp->ms_unflushed_frees));

	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);

	/*
	 * Account for future allocations since we would have
	 * already deducted that space from the ms_allocatable.
	 */
	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
		allocating +=
		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
	}
	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
	    msp->ms_allocating_total);

	ASSERT3U(msp->ms_deferspace, ==,
	    range_tree_space(msp->ms_defer[0]) +
	    range_tree_space(msp->ms_defer[1]));

	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
	    msp->ms_deferspace + range_tree_space(msp->ms_freed);

	VERIFY3U(sm_free_space, ==, msp_free_space);
}

static void
metaslab_aux_histograms_clear(metaslab_t *msp)
{
	/*
	 * Auxiliary histograms are only cleared when resetting them,
	 * which can only happen while the metaslab is loaded.
	 */
	ASSERT(msp->ms_loaded);

	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
	for (int t = 0; t < TXG_DEFER_SIZE; t++)
		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
}

static void
metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
    range_tree_t *rt)
{
	/*
	 * This is modeled after space_map_histogram_add(), so refer to that
	 * function for implementation details. We want this to work like
	 * the space map histogram, and not the range tree histogram, as we
	 * are essentially constructing a delta that will be later subtracted
	 * from the space map histogram.
	 */
	int idx = 0;
	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
		ASSERT3U(i, >=, idx + shift);
		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);

		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
			ASSERT3U(idx + shift, ==, i);
			idx++;
			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
		}
	}
}

/*
 * Called at every sync pass that the metaslab gets synced.
 *
 * The reason is that we want our auxiliary histograms to be updated
 * wherever the metaslab's space map histogram is updated. This way
 * we stay consistent on which parts of the metaslab space map's
 * histogram are currently not available for allocations (e.g because
 * they are in the defer, freed, and freeing trees).
 */
static void
metaslab_aux_histograms_update(metaslab_t *msp)
{
	space_map_t *sm = msp->ms_sm;
	ASSERT(sm != NULL);

	/*
	 * This is similar to the metaslab's space map histogram updates
	 * that take place in metaslab_sync(). The only difference is that
	 * we only care about segments that haven't made it into the
	 * ms_allocatable tree yet.
	 */
	if (msp->ms_loaded) {
		metaslab_aux_histograms_clear(msp);

		metaslab_aux_histogram_add(msp->ms_synchist,
		    sm->sm_shift, msp->ms_freed);

		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
			metaslab_aux_histogram_add(msp->ms_deferhist[t],
			    sm->sm_shift, msp->ms_defer[t]);
		}
	}

	metaslab_aux_histogram_add(msp->ms_synchist,
	    sm->sm_shift, msp->ms_freeing);
}

/*
 * Called every time we are done syncing (writing to) the metaslab,
 * i.e. at the end of each sync pass.
 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
 */
static void
metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	space_map_t *sm = msp->ms_sm;

	if (sm == NULL) {
		/*
		 * We came here from metaslab_init() when creating/opening a
		 * pool, looking at a metaslab that hasn't had any allocations
		 * yet.
		 */
		return;
	}

	/*
	 * This is similar to the actions that we take for the ms_freed
	 * and ms_defer trees in metaslab_sync_done().
	 */
	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
	if (defer_allowed) {
		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
		    sizeof (msp->ms_synchist));
	} else {
		memset(msp->ms_deferhist[hist_index], 0,
		    sizeof (msp->ms_deferhist[hist_index]));
	}
	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
}

/*
 * Ensure that the metaslab's weight and fragmentation are consistent
 * with the contents of the histogram (either the range tree's histogram
 * or the space map's depending whether the metaslab is loaded).
 */
static void
metaslab_verify_weight_and_frag(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
		return;

	/*
	 * We can end up here from vdev_remove_complete(), in which case we
	 * cannot do these assertions because we hold spa config locks and
	 * thus we are not allowed to read from the DMU.
	 *
	 * We check if the metaslab group has been removed and if that's
	 * the case we return immediately as that would mean that we are
	 * here from the aforementioned code path.
	 */
	if (msp->ms_group == NULL)
		return;

	/*
	 * Devices being removed always return a weight of 0 and leave
	 * fragmentation and ms_max_size as is - there is nothing for
	 * us to verify here.
	 */
	vdev_t *vd = msp->ms_group->mg_vd;
	if (vd->vdev_removing)
		return;

	/*
	 * If the metaslab is dirty it probably means that we've done
	 * some allocations or frees that have changed our histograms
	 * and thus the weight.
	 */
	for (int t = 0; t < TXG_SIZE; t++) {
		if (txg_list_member(&vd->vdev_ms_list, msp, t))
			return;
	}

	/*
	 * This verification checks that our in-memory state is consistent
	 * with what's on disk. If the pool is read-only then there aren't
	 * any changes and we just have the initially-loaded state.
	 */
	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
		return;

	/* some extra verification for in-core tree if you can */
	if (msp->ms_loaded) {
		range_tree_stat_verify(msp->ms_allocatable);
		VERIFY(space_map_histogram_verify(msp->ms_sm,
		    msp->ms_allocatable));
	}

	uint64_t weight = msp->ms_weight;
	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
	uint64_t frag = msp->ms_fragmentation;
	uint64_t max_segsize = msp->ms_max_size;

	msp->ms_weight = 0;
	msp->ms_fragmentation = 0;

	/*
	 * This function is used for verification purposes and thus should
	 * not introduce any side-effects/mutations on the system's state.
	 *
	 * Regardless of whether metaslab_weight() thinks this metaslab
	 * should be active or not, we want to ensure that the actual weight
	 * (and therefore the value of ms_weight) would be the same if it
	 * was to be recalculated at this point.
	 *
	 * In addition we set the nodirty flag so metaslab_weight() does
	 * not dirty the metaslab for future TXGs (e.g. when trying to
	 * force condensing to upgrade the metaslab spacemaps).
	 */
	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;

	VERIFY3U(max_segsize, ==, msp->ms_max_size);

	/*
	 * If the weight type changed then there is no point in doing
	 * verification. Revert fields to their original values.
	 */
	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
		msp->ms_fragmentation = frag;
		msp->ms_weight = weight;
		return;
	}

	VERIFY3U(msp->ms_fragmentation, ==, frag);
	VERIFY3U(msp->ms_weight, ==, weight);
}

/*
 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
 * this class that was used longest ago, and attempt to unload it.  We don't
 * want to spend too much time in this loop to prevent performance
 * degradation, and we expect that most of the time this operation will
 * succeed. Between that and the normal unloading processing during txg sync,
 * we expect this to keep the metaslab memory usage under control.
 */
static void
metaslab_potentially_evict(metaslab_class_t *mc)
{
#ifdef _KERNEL
	uint64_t allmem = arc_all_memory();
	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
	uint_t tries = 0;
	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
	    tries++) {
		unsigned int idx = multilist_get_random_index(
		    &mc->mc_metaslab_txg_list);
		multilist_sublist_t *mls =
		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
		metaslab_t *msp = multilist_sublist_head(mls);
		multilist_sublist_unlock(mls);
		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
		    inuse * size) {
			VERIFY3P(mls, ==, multilist_sublist_lock(
			    &mc->mc_metaslab_txg_list, idx));
			ASSERT3U(idx, ==,
			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));

			if (!multilist_link_active(&msp->ms_class_txg_node)) {
				multilist_sublist_unlock(mls);
				break;
			}
			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
			multilist_sublist_unlock(mls);
			/*
			 * If the metaslab is currently loading there are two
			 * cases. If it's the metaslab we're evicting, we
			 * can't continue on or we'll panic when we attempt to
			 * recursively lock the mutex. If it's another
			 * metaslab that's loading, it can be safely skipped,
			 * since we know it's very new and therefore not a
			 * good eviction candidate. We check later once the
			 * lock is held that the metaslab is fully loaded
			 * before actually unloading it.
			 */
			if (msp->ms_loading) {
				msp = next_msp;
				inuse =
				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
				continue;
			}
			/*
			 * We can't unload metaslabs with no spacemap because
			 * they're not ready to be unloaded yet. We can't
			 * unload metaslabs with outstanding allocations
			 * because doing so could cause the metaslab's weight
			 * to decrease while it's unloaded, which violates an
			 * invariant that we use to prevent unnecessary
			 * loading. We also don't unload metaslabs that are
			 * currently active because they are high-weight
			 * metaslabs that are likely to be used in the near
			 * future.
			 */
			mutex_enter(&msp->ms_lock);
			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
			    msp->ms_allocating_total == 0) {
				metaslab_unload(msp);
			}
			mutex_exit(&msp->ms_lock);
			msp = next_msp;
			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
		}
	}
#else
	(void) mc, (void) zfs_metaslab_mem_limit;
#endif
}

static int
metaslab_load_impl(metaslab_t *msp)
{
	int error = 0;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(msp->ms_loading);
	ASSERT(!msp->ms_condensing);

	/*
	 * We temporarily drop the lock to unblock other operations while we
	 * are reading the space map. Therefore, metaslab_sync() and
	 * metaslab_sync_done() can run at the same time as we do.
	 *
	 * If we are using the log space maps, metaslab_sync() can't write to
	 * the metaslab's space map while we are loading as we only write to
	 * it when we are flushing the metaslab, and that can't happen while
	 * we are loading it.
	 *
	 * If we are not using log space maps though, metaslab_sync() can
	 * append to the space map while we are loading. Therefore we load
	 * only entries that existed when we started the load. Additionally,
	 * metaslab_sync_done() has to wait for the load to complete because
	 * there are potential races like metaslab_load() loading parts of the
	 * space map that are currently being appended by metaslab_sync(). If
	 * we didn't, the ms_allocatable would have entries that
	 * metaslab_sync_done() would try to re-add later.
	 *
	 * That's why before dropping the lock we remember the synced length
	 * of the metaslab and read up to that point of the space map,
	 * ignoring entries appended by metaslab_sync() that happen after we
	 * drop the lock.
	 */
	uint64_t length = msp->ms_synced_length;
	mutex_exit(&msp->ms_lock);

	hrtime_t load_start = gethrtime();
	metaslab_rt_arg_t *mrap;
	if (msp->ms_allocatable->rt_arg == NULL) {
		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
	} else {
		mrap = msp->ms_allocatable->rt_arg;
		msp->ms_allocatable->rt_ops = NULL;
		msp->ms_allocatable->rt_arg = NULL;
	}
	mrap->mra_bt = &msp->ms_allocatable_by_size;
	mrap->mra_floor_shift = metaslab_by_size_min_shift;

	if (msp->ms_sm != NULL) {
		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
		    SM_FREE, length);

		/* Now, populate the size-sorted tree. */
		metaslab_rt_create(msp->ms_allocatable, mrap);
		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
		msp->ms_allocatable->rt_arg = mrap;

		struct mssa_arg arg = {0};
		arg.rt = msp->ms_allocatable;
		arg.mra = mrap;
		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
		    &arg);
	} else {
		/*
		 * Add the size-sorted tree first, since we don't need to load
		 * the metaslab from the spacemap.
		 */
		metaslab_rt_create(msp->ms_allocatable, mrap);
		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
		msp->ms_allocatable->rt_arg = mrap;
		/*
		 * The space map has not been allocated yet, so treat
		 * all the space in the metaslab as free and add it to the
		 * ms_allocatable tree.
		 */
		range_tree_add(msp->ms_allocatable,
		    msp->ms_start, msp->ms_size);

		if (msp->ms_new) {
			/*
			 * If the ms_sm doesn't exist, this means that this
			 * metaslab hasn't gone through metaslab_sync() and
			 * thus has never been dirtied. So we shouldn't
			 * expect any unflushed allocs or frees from previous
			 * TXGs.
			 */
			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
		}
	}

	/*
	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
	 * changing the ms_sm (or log_sm) and the metaslab's range trees
	 * while we are about to use them and populate the ms_allocatable.
	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
	 */
	mutex_enter(&msp->ms_sync_lock);
	mutex_enter(&msp->ms_lock);

	ASSERT(!msp->ms_condensing);
	ASSERT(!msp->ms_flushing);

	if (error != 0) {
		mutex_exit(&msp->ms_sync_lock);
		return (error);
	}

	ASSERT3P(msp->ms_group, !=, NULL);
	msp->ms_loaded = B_TRUE;

	/*
	 * Apply all the unflushed changes to ms_allocatable right
	 * away so any manipulations we do below have a clear view
	 * of what is allocated and what is free.
	 */
	range_tree_walk(msp->ms_unflushed_allocs,
	    range_tree_remove, msp->ms_allocatable);
	range_tree_walk(msp->ms_unflushed_frees,
	    range_tree_add, msp->ms_allocatable);

	ASSERT3P(msp->ms_group, !=, NULL);
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	if (spa_syncing_log_sm(spa) != NULL) {
		ASSERT(spa_feature_is_enabled(spa,
		    SPA_FEATURE_LOG_SPACEMAP));

		/*
		 * If we use a log space map we add all the segments
		 * that are in ms_unflushed_frees so they are available
		 * for allocation.
		 *
		 * ms_allocatable needs to contain all free segments
		 * that are ready for allocations (thus not segments
		 * from ms_freeing, ms_freed, and the ms_defer trees).
		 * But if we grab the lock in this code path at a sync
		 * pass later that 1, then it also contains the
		 * segments of ms_freed (they were added to it earlier
		 * in this path through ms_unflushed_frees). So we
		 * need to remove all the segments that exist in
		 * ms_freed from ms_allocatable as they will be added
		 * later in metaslab_sync_done().
		 *
		 * When there's no log space map, the ms_allocatable
		 * correctly doesn't contain any segments that exist
		 * in ms_freed [see ms_synced_length].
		 */
		range_tree_walk(msp->ms_freed,
		    range_tree_remove, msp->ms_allocatable);
	}

	/*
	 * If we are not using the log space map, ms_allocatable
	 * contains the segments that exist in the ms_defer trees
	 * [see ms_synced_length]. Thus we need to remove them
	 * from ms_allocatable as they will be added again in
	 * metaslab_sync_done().
	 *
	 * If we are using the log space map, ms_allocatable still
	 * contains the segments that exist in the ms_defer trees.
	 * Not because it read them through the ms_sm though. But
	 * because these segments are part of ms_unflushed_frees
	 * whose segments we add to ms_allocatable earlier in this
	 * code path.
	 */
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
		range_tree_walk(msp->ms_defer[t],
		    range_tree_remove, msp->ms_allocatable);
	}

	/*
	 * Call metaslab_recalculate_weight_and_sort() now that the
	 * metaslab is loaded so we get the metaslab's real weight.
	 *
	 * Unless this metaslab was created with older software and
	 * has not yet been converted to use segment-based weight, we
	 * expect the new weight to be better or equal to the weight
	 * that the metaslab had while it was not loaded. This is
	 * because the old weight does not take into account the
	 * consolidation of adjacent segments between TXGs. [see
	 * comment for ms_synchist and ms_deferhist[] for more info]
	 */
	uint64_t weight = msp->ms_weight;
	uint64_t max_size = msp->ms_max_size;
	metaslab_recalculate_weight_and_sort(msp);
	if (!WEIGHT_IS_SPACEBASED(weight))
		ASSERT3U(weight, <=, msp->ms_weight);
	msp->ms_max_size = metaslab_largest_allocatable(msp);
	ASSERT3U(max_size, <=, msp->ms_max_size);
	hrtime_t load_end = gethrtime();
	msp->ms_load_time = load_end;
	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
	    "ms_id %llu, smp_length %llu, "
	    "unflushed_allocs %llu, unflushed_frees %llu, "
	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
	    "loading_time %lld ms, ms_max_size %llu, "
	    "max size error %lld, "
	    "old_weight %llx, new_weight %llx",
	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
	    (u_longlong_t)msp->ms_id,
	    (u_longlong_t)space_map_length(msp->ms_sm),
	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
	    (u_longlong_t)range_tree_space(msp->ms_freed),
	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
	    (longlong_t)((load_end - load_start) / 1000000),
	    (u_longlong_t)msp->ms_max_size,
	    (u_longlong_t)msp->ms_max_size - max_size,
	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);

	metaslab_verify_space(msp, spa_syncing_txg(spa));
	mutex_exit(&msp->ms_sync_lock);
	return (0);
}

int
metaslab_load(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * There may be another thread loading the same metaslab, if that's
	 * the case just wait until the other thread is done and return.
	 */
	metaslab_load_wait(msp);
	if (msp->ms_loaded)
		return (0);
	VERIFY(!msp->ms_loading);
	ASSERT(!msp->ms_condensing);

	/*
	 * We set the loading flag BEFORE potentially dropping the lock to
	 * wait for an ongoing flush (see ms_flushing below). This way other
	 * threads know that there is already a thread that is loading this
	 * metaslab.
	 */
	msp->ms_loading = B_TRUE;

	/*
	 * Wait for any in-progress flushing to finish as we drop the ms_lock
	 * both here (during space_map_load()) and in metaslab_flush() (when
	 * we flush our changes to the ms_sm).
	 */
	if (msp->ms_flushing)
		metaslab_flush_wait(msp);

	/*
	 * In the possibility that we were waiting for the metaslab to be
	 * flushed (where we temporarily dropped the ms_lock), ensure that
	 * no one else loaded the metaslab somehow.
	 */
	ASSERT(!msp->ms_loaded);

	/*
	 * If we're loading a metaslab in the normal class, consider evicting
	 * another one to keep our memory usage under the limit defined by the
	 * zfs_metaslab_mem_limit tunable.
	 */
	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
	    msp->ms_group->mg_class) {
		metaslab_potentially_evict(msp->ms_group->mg_class);
	}

	int error = metaslab_load_impl(msp);

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	msp->ms_loading = B_FALSE;
	cv_broadcast(&msp->ms_load_cv);

	return (error);
}

void
metaslab_unload(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * This can happen if a metaslab is selected for eviction (in
	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
	 * metaslab_class_evict_old).
	 */
	if (!msp->ms_loaded)
		return;

	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
	msp->ms_loaded = B_FALSE;
	msp->ms_unload_time = gethrtime();

	msp->ms_activation_weight = 0;
	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;

	if (msp->ms_group != NULL) {
		metaslab_class_t *mc = msp->ms_group->mg_class;
		multilist_sublist_t *mls =
		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
		if (multilist_link_active(&msp->ms_class_txg_node))
			multilist_sublist_remove(mls, msp);
		multilist_sublist_unlock(mls);

		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
		    "ms_id %llu, weight %llx, "
		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
		    "loaded %llu ms ago, max_size %llu",
		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
		    (u_longlong_t)msp->ms_id,
		    (u_longlong_t)msp->ms_weight,
		    (u_longlong_t)msp->ms_selected_txg,
		    (u_longlong_t)(msp->ms_unload_time -
		    msp->ms_selected_time) / 1000 / 1000,
		    (u_longlong_t)msp->ms_alloc_txg,
		    (u_longlong_t)(msp->ms_unload_time -
		    msp->ms_load_time) / 1000 / 1000,
		    (u_longlong_t)msp->ms_max_size);
	}

	/*
	 * We explicitly recalculate the metaslab's weight based on its space
	 * map (as it is now not loaded). We want unload metaslabs to always
	 * have their weights calculated from the space map histograms, while
	 * loaded ones have it calculated from their in-core range tree
	 * [see metaslab_load()]. This way, the weight reflects the information
	 * available in-core, whether it is loaded or not.
	 *
	 * If ms_group == NULL means that we came here from metaslab_fini(),
	 * at which point it doesn't make sense for us to do the recalculation
	 * and the sorting.
	 */
	if (msp->ms_group != NULL)
		metaslab_recalculate_weight_and_sort(msp);
}

/*
 * We want to optimize the memory use of the per-metaslab range
 * trees. To do this, we store the segments in the range trees in
 * units of sectors, zero-indexing from the start of the metaslab. If
 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
 * the ranges using two uint32_ts, rather than two uint64_ts.
 */
range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
    uint64_t *start, uint64_t *shift)
{
	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
	    !zfs_metaslab_force_large_segs) {
		*shift = vdev->vdev_ashift;
		*start = msp->ms_start;
		return (RANGE_SEG32);
	} else {
		*shift = 0;
		*start = 0;
		return (RANGE_SEG64);
	}
}

void
metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));
	metaslab_class_t *mc = msp->ms_group->mg_class;
	multilist_sublist_t *mls =
	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
	if (multilist_link_active(&msp->ms_class_txg_node))
		multilist_sublist_remove(mls, msp);
	msp->ms_selected_txg = txg;
	msp->ms_selected_time = gethrtime();
	multilist_sublist_insert_tail(mls, msp);
	multilist_sublist_unlock(mls);
}

void
metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
    int64_t defer_delta, int64_t space_delta)
{
	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);

	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
	ASSERT(vd->vdev_ms_count != 0);

	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
	    vdev_deflated_space(vd, space_delta));
}

int
metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
    uint64_t txg, metaslab_t **msp)
{
	vdev_t *vd = mg->mg_vd;
	spa_t *spa = vd->vdev_spa;
	objset_t *mos = spa->spa_meta_objset;
	metaslab_t *ms;
	int error;

	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
	multilist_link_init(&ms->ms_class_txg_node);

	ms->ms_id = id;
	ms->ms_start = id << vd->vdev_ms_shift;
	ms->ms_size = 1ULL << vd->vdev_ms_shift;
	ms->ms_allocator = -1;
	ms->ms_new = B_TRUE;

	vdev_ops_t *ops = vd->vdev_ops;
	if (ops->vdev_op_metaslab_init != NULL)
		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);

	/*
	 * We only open space map objects that already exist. All others
	 * will be opened when we finally allocate an object for it. For
	 * readonly pools there is no need to open the space map object.
	 *
	 * Note:
	 * When called from vdev_expand(), we can't call into the DMU as
	 * we are holding the spa_config_lock as a writer and we would
	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
	 * that case, the object parameter is zero though, so we won't
	 * call into the DMU.
	 */
	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
	    !spa->spa_read_spacemaps)) {
		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
		    ms->ms_size, vd->vdev_ashift);

		if (error != 0) {
			kmem_free(ms, sizeof (metaslab_t));
			return (error);
		}

		ASSERT(ms->ms_sm != NULL);
		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
	}

	uint64_t shift, start;
	range_seg_type_t type =
	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);

	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
	for (int t = 0; t < TXG_SIZE; t++) {
		ms->ms_allocating[t] = range_tree_create(NULL, type,
		    NULL, start, shift);
	}
	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
		    start, shift);
	}
	ms->ms_checkpointing =
	    range_tree_create(NULL, type, NULL, start, shift);
	ms->ms_unflushed_allocs =
	    range_tree_create(NULL, type, NULL, start, shift);

	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
	mrap->mra_floor_shift = metaslab_by_size_min_shift;
	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
	    type, mrap, start, shift);

	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);

	metaslab_group_add(mg, ms);
	metaslab_set_fragmentation(ms, B_FALSE);

	/*
	 * If we're opening an existing pool (txg == 0) or creating
	 * a new one (txg == TXG_INITIAL), all space is available now.
	 * If we're adding space to an existing pool, the new space
	 * does not become available until after this txg has synced.
	 * The metaslab's weight will also be initialized when we sync
	 * out this txg. This ensures that we don't attempt to allocate
	 * from it before we have initialized it completely.
	 */
	if (txg <= TXG_INITIAL) {
		metaslab_sync_done(ms, 0);
		metaslab_space_update(vd, mg->mg_class,
		    metaslab_allocated_space(ms), 0, 0);
	}

	if (txg != 0) {
		vdev_dirty(vd, 0, NULL, txg);
		vdev_dirty(vd, VDD_METASLAB, ms, txg);
	}

	*msp = ms;

	return (0);
}

static void
metaslab_fini_flush_data(metaslab_t *msp)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;

	if (metaslab_unflushed_txg(msp) == 0) {
		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
		    ==, NULL);
		return;
	}
	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));

	mutex_enter(&spa->spa_flushed_ms_lock);
	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
	mutex_exit(&spa->spa_flushed_ms_lock);

	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
	    metaslab_unflushed_dirty(msp));
}

uint64_t
metaslab_unflushed_changes_memused(metaslab_t *ms)
{
	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
	    range_tree_numsegs(ms->ms_unflushed_frees)) *
	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
}

void
metaslab_fini(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	vdev_t *vd = mg->mg_vd;
	spa_t *spa = vd->vdev_spa;

	metaslab_fini_flush_data(msp);

	metaslab_group_remove(mg, msp);

	mutex_enter(&msp->ms_lock);
	VERIFY(msp->ms_group == NULL);

	/*
	 * If this metaslab hasn't been through metaslab_sync_done() yet its
	 * space hasn't been accounted for in its vdev and doesn't need to be
	 * subtracted.
	 */
	if (!msp->ms_new) {
		metaslab_space_update(vd, mg->mg_class,
		    -metaslab_allocated_space(msp), 0, -msp->ms_size);

	}
	space_map_close(msp->ms_sm);
	msp->ms_sm = NULL;

	metaslab_unload(msp);

	range_tree_destroy(msp->ms_allocatable);
	range_tree_destroy(msp->ms_freeing);
	range_tree_destroy(msp->ms_freed);

	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
	    metaslab_unflushed_changes_memused(msp));
	spa->spa_unflushed_stats.sus_memused -=
	    metaslab_unflushed_changes_memused(msp);
	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
	range_tree_destroy(msp->ms_unflushed_allocs);
	range_tree_destroy(msp->ms_checkpointing);
	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
	range_tree_destroy(msp->ms_unflushed_frees);

	for (int t = 0; t < TXG_SIZE; t++) {
		range_tree_destroy(msp->ms_allocating[t]);
	}
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
		range_tree_destroy(msp->ms_defer[t]);
	}
	ASSERT0(msp->ms_deferspace);

	for (int t = 0; t < TXG_SIZE; t++)
		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));

	range_tree_vacate(msp->ms_trim, NULL, NULL);
	range_tree_destroy(msp->ms_trim);

	mutex_exit(&msp->ms_lock);
	cv_destroy(&msp->ms_load_cv);
	cv_destroy(&msp->ms_flush_cv);
	mutex_destroy(&msp->ms_lock);
	mutex_destroy(&msp->ms_sync_lock);
	ASSERT3U(msp->ms_allocator, ==, -1);

	kmem_free(msp, sizeof (metaslab_t));
}

#define	FRAGMENTATION_TABLE_SIZE	17

/*
 * This table defines a segment size based fragmentation metric that will
 * allow each metaslab to derive its own fragmentation value. This is done
 * by calculating the space in each bucket of the spacemap histogram and
 * multiplying that by the fragmentation metric in this table. Doing
 * this for all buckets and dividing it by the total amount of free
 * space in this metaslab (i.e. the total free space in all buckets) gives
 * us the fragmentation metric. This means that a high fragmentation metric
 * equates to most of the free space being comprised of small segments.
 * Conversely, if the metric is low, then most of the free space is in
 * large segments. A 10% change in fragmentation equates to approximately
 * double the number of segments.
 *
 * This table defines 0% fragmented space using 16MB segments. Testing has
 * shown that segments that are greater than or equal to 16MB do not suffer
 * from drastic performance problems. Using this value, we derive the rest
 * of the table. Since the fragmentation value is never stored on disk, it
 * is possible to change these calculations in the future.
 */
static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
	100,	/* 512B	*/
	100,	/* 1K	*/
	98,	/* 2K	*/
	95,	/* 4K	*/
	90,	/* 8K	*/
	80,	/* 16K	*/
	70,	/* 32K	*/
	60,	/* 64K	*/
	50,	/* 128K	*/
	40,	/* 256K	*/
	30,	/* 512K	*/
	20,	/* 1M	*/
	15,	/* 2M	*/
	10,	/* 4M	*/
	5,	/* 8M	*/
	0	/* 16M	*/
};

/*
 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
 * been upgraded and does not support this metric. Otherwise, the return
 * value should be in the range [0, 100].
 */
static void
metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	uint64_t fragmentation = 0;
	uint64_t total = 0;
	boolean_t feature_enabled = spa_feature_is_enabled(spa,
	    SPA_FEATURE_SPACEMAP_HISTOGRAM);

	if (!feature_enabled) {
		msp->ms_fragmentation = ZFS_FRAG_INVALID;
		return;
	}

	/*
	 * A null space map means that the entire metaslab is free
	 * and thus is not fragmented.
	 */
	if (msp->ms_sm == NULL) {
		msp->ms_fragmentation = 0;
		return;
	}

	/*
	 * If this metaslab's space map has not been upgraded, flag it
	 * so that we upgrade next time we encounter it.
	 */
	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
		uint64_t txg = spa_syncing_txg(spa);
		vdev_t *vd = msp->ms_group->mg_vd;

		/*
		 * If we've reached the final dirty txg, then we must
		 * be shutting down the pool. We don't want to dirty
		 * any data past this point so skip setting the condense
		 * flag. We can retry this action the next time the pool
		 * is imported. We also skip marking this metaslab for
		 * condensing if the caller has explicitly set nodirty.
		 */
		if (!nodirty &&
		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
			msp->ms_condense_wanted = B_TRUE;
			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
			zfs_dbgmsg("txg %llu, requesting force condense: "
			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
			    (u_longlong_t)msp->ms_id,
			    (u_longlong_t)vd->vdev_id);
		}
		msp->ms_fragmentation = ZFS_FRAG_INVALID;
		return;
	}

	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
		uint64_t space = 0;
		uint8_t shift = msp->ms_sm->sm_shift;

		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
		    FRAGMENTATION_TABLE_SIZE - 1);

		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
			continue;

		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
		total += space;

		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
		fragmentation += space * zfs_frag_table[idx];
	}

	if (total > 0)
		fragmentation /= total;
	ASSERT3U(fragmentation, <=, 100);

	msp->ms_fragmentation = fragmentation;
}

/*
 * Compute a weight -- a selection preference value -- for the given metaslab.
 * This is based on the amount of free space, the level of fragmentation,
 * the LBA range, and whether the metaslab is loaded.
 */
static uint64_t
metaslab_space_weight(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	vdev_t *vd = mg->mg_vd;
	uint64_t weight, space;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * The baseline weight is the metaslab's free space.
	 */
	space = msp->ms_size - metaslab_allocated_space(msp);

	if (metaslab_fragmentation_factor_enabled &&
	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
		/*
		 * Use the fragmentation information to inversely scale
		 * down the baseline weight. We need to ensure that we
		 * don't exclude this metaslab completely when it's 100%
		 * fragmented. To avoid this we reduce the fragmented value
		 * by 1.
		 */
		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;

		/*
		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
		 * this metaslab again. The fragmentation metric may have
		 * decreased the space to something smaller than
		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
		 * so that we can consume any remaining space.
		 */
		if (space > 0 && space < SPA_MINBLOCKSIZE)
			space = SPA_MINBLOCKSIZE;
	}
	weight = space;

	/*
	 * Modern disks have uniform bit density and constant angular velocity.
	 * Therefore, the outer recording zones are faster (higher bandwidth)
	 * than the inner zones by the ratio of outer to inner track diameter,
	 * which is typically around 2:1.  We account for this by assigning
	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
	 * In effect, this means that we'll select the metaslab with the most
	 * free bandwidth rather than simply the one with the most free space.
	 */
	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
		ASSERT(weight >= space && weight <= 2 * space);
	}

	/*
	 * If this metaslab is one we're actively using, adjust its
	 * weight to make it preferable to any inactive metaslab so
	 * we'll polish it off. If the fragmentation on this metaslab
	 * has exceed our threshold, then don't mark it active.
	 */
	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
	}

	WEIGHT_SET_SPACEBASED(weight);
	return (weight);
}

/*
 * Return the weight of the specified metaslab, according to the segment-based
 * weighting algorithm. The metaslab must be loaded. This function can
 * be called within a sync pass since it relies only on the metaslab's
 * range tree which is always accurate when the metaslab is loaded.
 */
static uint64_t
metaslab_weight_from_range_tree(metaslab_t *msp)
{
	uint64_t weight = 0;
	uint32_t segments = 0;

	ASSERT(msp->ms_loaded);

	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
	    i--) {
		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;

		segments <<= 1;
		segments += msp->ms_allocatable->rt_histogram[i];

		/*
		 * The range tree provides more precision than the space map
		 * and must be downgraded so that all values fit within the
		 * space map's histogram. This allows us to compare loaded
		 * vs. unloaded metaslabs to determine which metaslab is
		 * considered "best".
		 */
		if (i > max_idx)
			continue;

		if (segments != 0) {
			WEIGHT_SET_COUNT(weight, segments);
			WEIGHT_SET_INDEX(weight, i);
			WEIGHT_SET_ACTIVE(weight, 0);
			break;
		}
	}
	return (weight);
}

/*
 * Calculate the weight based on the on-disk histogram. Should be applied
 * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
 * give results consistent with the on-disk state
 */
static uint64_t
metaslab_weight_from_spacemap(metaslab_t *msp)
{
	space_map_t *sm = msp->ms_sm;
	ASSERT(!msp->ms_loaded);
	ASSERT(sm != NULL);
	ASSERT3U(space_map_object(sm), !=, 0);
	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));

	/*
	 * Create a joint histogram from all the segments that have made
	 * it to the metaslab's space map histogram, that are not yet
	 * available for allocation because they are still in the freeing
	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
	 * these segments from the space map's histogram to get a more
	 * accurate weight.
	 */
	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
		deferspace_histogram[i] += msp->ms_synchist[i];
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
			deferspace_histogram[i] += msp->ms_deferhist[t][i];
		}
	}

	uint64_t weight = 0;
	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
		    deferspace_histogram[i]);
		uint64_t count =
		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
		if (count != 0) {
			WEIGHT_SET_COUNT(weight, count);
			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
			WEIGHT_SET_ACTIVE(weight, 0);
			break;
		}
	}
	return (weight);
}

/*
 * Compute a segment-based weight for the specified metaslab. The weight
 * is determined by highest bucket in the histogram. The information
 * for the highest bucket is encoded into the weight value.
 */
static uint64_t
metaslab_segment_weight(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	uint64_t weight = 0;
	uint8_t shift = mg->mg_vd->vdev_ashift;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * The metaslab is completely free.
	 */
	if (metaslab_allocated_space(msp) == 0) {
		int idx = highbit64(msp->ms_size) - 1;
		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;

		if (idx < max_idx) {
			WEIGHT_SET_COUNT(weight, 1ULL);
			WEIGHT_SET_INDEX(weight, idx);
		} else {
			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
			WEIGHT_SET_INDEX(weight, max_idx);
		}
		WEIGHT_SET_ACTIVE(weight, 0);
		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
		return (weight);
	}

	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));

	/*
	 * If the metaslab is fully allocated then just make the weight 0.
	 */
	if (metaslab_allocated_space(msp) == msp->ms_size)
		return (0);
	/*
	 * If the metaslab is already loaded, then use the range tree to
	 * determine the weight. Otherwise, we rely on the space map information
	 * to generate the weight.
	 */
	if (msp->ms_loaded) {
		weight = metaslab_weight_from_range_tree(msp);
	} else {
		weight = metaslab_weight_from_spacemap(msp);
	}

	/*
	 * If the metaslab was active the last time we calculated its weight
	 * then keep it active. We want to consume the entire region that
	 * is associated with this weight.
	 */
	if (msp->ms_activation_weight != 0 && weight != 0)
		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
	return (weight);
}

/*
 * Determine if we should attempt to allocate from this metaslab. If the
 * metaslab is loaded, then we can determine if the desired allocation
 * can be satisfied by looking at the size of the maximum free segment
 * on that metaslab. Otherwise, we make our decision based on the metaslab's
 * weight. For segment-based weighting we can determine the maximum
 * allocation based on the index encoded in its value. For space-based
 * weights we rely on the entire weight (excluding the weight-type bit).
 */
static boolean_t
metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
{
	/*
	 * If the metaslab is loaded, ms_max_size is definitive and we can use
	 * the fast check. If it's not, the ms_max_size is a lower bound (once
	 * set), and we should use the fast check as long as we're not in
	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
	 * seconds since the metaslab was unloaded.
	 */
	if (msp->ms_loaded ||
	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
		return (msp->ms_max_size >= asize);

	boolean_t should_allocate;
	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
		/*
		 * The metaslab segment weight indicates segments in the
		 * range [2^i, 2^(i+1)), where i is the index in the weight.
		 * Since the asize might be in the middle of the range, we
		 * should attempt the allocation if asize < 2^(i+1).
		 */
		should_allocate = (asize <
		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
	} else {
		should_allocate = (asize <=
		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
	}

	return (should_allocate);
}

static uint64_t
metaslab_weight(metaslab_t *msp, boolean_t nodirty)
{
	vdev_t *vd = msp->ms_group->mg_vd;
	spa_t *spa = vd->vdev_spa;
	uint64_t weight;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	metaslab_set_fragmentation(msp, nodirty);

	/*
	 * Update the maximum size. If the metaslab is loaded, this will
	 * ensure that we get an accurate maximum size if newly freed space
	 * has been added back into the free tree. If the metaslab is
	 * unloaded, we check if there's a larger free segment in the
	 * unflushed frees. This is a lower bound on the largest allocatable
	 * segment size. Coalescing of adjacent entries may reveal larger
	 * allocatable segments, but we aren't aware of those until loading
	 * the space map into a range tree.
	 */
	if (msp->ms_loaded) {
		msp->ms_max_size = metaslab_largest_allocatable(msp);
	} else {
		msp->ms_max_size = MAX(msp->ms_max_size,
		    metaslab_largest_unflushed_free(msp));
	}

	/*
	 * Segment-based weighting requires space map histogram support.
	 */
	if (zfs_metaslab_segment_weight_enabled &&
	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
	    sizeof (space_map_phys_t))) {
		weight = metaslab_segment_weight(msp);
	} else {
		weight = metaslab_space_weight(msp);
	}
	return (weight);
}

void
metaslab_recalculate_weight_and_sort(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/* note: we preserve the mask (e.g. indication of primary, etc..) */
	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
	metaslab_group_sort(msp->ms_group, msp,
	    metaslab_weight(msp, B_FALSE) | was_active);
}

static int
metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
    int allocator, uint64_t activation_weight)
{
	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * If we're activating for the claim code, we don't want to actually
	 * set the metaslab up for a specific allocator.
	 */
	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
		ASSERT0(msp->ms_activation_weight);
		msp->ms_activation_weight = msp->ms_weight;
		metaslab_group_sort(mg, msp, msp->ms_weight |
		    activation_weight);
		return (0);
	}

	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
	    &mga->mga_primary : &mga->mga_secondary);

	mutex_enter(&mg->mg_lock);
	if (*mspp != NULL) {
		mutex_exit(&mg->mg_lock);
		return (EEXIST);
	}

	*mspp = msp;
	ASSERT3S(msp->ms_allocator, ==, -1);
	msp->ms_allocator = allocator;
	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);

	ASSERT0(msp->ms_activation_weight);
	msp->ms_activation_weight = msp->ms_weight;
	metaslab_group_sort_impl(mg, msp,
	    msp->ms_weight | activation_weight);
	mutex_exit(&mg->mg_lock);

	return (0);
}

static int
metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * The current metaslab is already activated for us so there
	 * is nothing to do. Already activated though, doesn't mean
	 * that this metaslab is activated for our allocator nor our
	 * requested activation weight. The metaslab could have started
	 * as an active one for our allocator but changed allocators
	 * while we were waiting to grab its ms_lock or we stole it
	 * [see find_valid_metaslab()]. This means that there is a
	 * possibility of passivating a metaslab of another allocator
	 * or from a different activation mask, from this thread.
	 */
	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
		ASSERT(msp->ms_loaded);
		return (0);
	}

	int error = metaslab_load(msp);
	if (error != 0) {
		metaslab_group_sort(msp->ms_group, msp, 0);
		return (error);
	}

	/*
	 * When entering metaslab_load() we may have dropped the
	 * ms_lock because we were loading this metaslab, or we
	 * were waiting for another thread to load it for us. In
	 * that scenario, we recheck the weight of the metaslab
	 * to see if it was activated by another thread.
	 *
	 * If the metaslab was activated for another allocator or
	 * it was activated with a different activation weight (e.g.
	 * we wanted to make it a primary but it was activated as
	 * secondary) we return error (EBUSY).
	 *
	 * If the metaslab was activated for the same allocator
	 * and requested activation mask, skip activating it.
	 */
	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
		if (msp->ms_allocator != allocator)
			return (EBUSY);

		if ((msp->ms_weight & activation_weight) == 0)
			return (SET_ERROR(EBUSY));

		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
		    msp->ms_primary);
		return (0);
	}

	/*
	 * If the metaslab has literally 0 space, it will have weight 0. In
	 * that case, don't bother activating it. This can happen if the
	 * metaslab had space during find_valid_metaslab, but another thread
	 * loaded it and used all that space while we were waiting to grab the
	 * lock.
	 */
	if (msp->ms_weight == 0) {
		ASSERT0(range_tree_space(msp->ms_allocatable));
		return (SET_ERROR(ENOSPC));
	}

	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
	    allocator, activation_weight)) != 0) {
		return (error);
	}

	ASSERT(msp->ms_loaded);
	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);

	return (0);
}

static void
metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
    uint64_t weight)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(msp->ms_loaded);

	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
		metaslab_group_sort(mg, msp, weight);
		return;
	}

	mutex_enter(&mg->mg_lock);
	ASSERT3P(msp->ms_group, ==, mg);
	ASSERT3S(0, <=, msp->ms_allocator);
	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);

	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
	if (msp->ms_primary) {
		ASSERT3P(mga->mga_primary, ==, msp);
		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
		mga->mga_primary = NULL;
	} else {
		ASSERT3P(mga->mga_secondary, ==, msp);
		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
		mga->mga_secondary = NULL;
	}
	msp->ms_allocator = -1;
	metaslab_group_sort_impl(mg, msp, weight);
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_passivate(metaslab_t *msp, uint64_t weight)
{
	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;

	/*
	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
	 * this metaslab again.  In that case, it had better be empty,
	 * or we would be leaving space on the table.
	 */
	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
	    size >= SPA_MINBLOCKSIZE ||
	    range_tree_space(msp->ms_allocatable) == 0);
	ASSERT0(weight & METASLAB_ACTIVE_MASK);

	ASSERT(msp->ms_activation_weight != 0);
	msp->ms_activation_weight = 0;
	metaslab_passivate_allocator(msp->ms_group, msp, weight);
	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
}

/*
 * Segment-based metaslabs are activated once and remain active until
 * we either fail an allocation attempt (similar to space-based metaslabs)
 * or have exhausted the free space in zfs_metaslab_switch_threshold
 * buckets since the metaslab was activated. This function checks to see
 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
 * metaslab and passivates it proactively. This will allow us to select a
 * metaslab with a larger contiguous region, if any, remaining within this
 * metaslab group. If we're in sync pass > 1, then we continue using this
 * metaslab so that we don't dirty more block and cause more sync passes.
 */
static void
metaslab_segment_may_passivate(metaslab_t *msp)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;

	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
		return;

	/*
	 * Since we are in the middle of a sync pass, the most accurate
	 * information that is accessible to us is the in-core range tree
	 * histogram; calculate the new weight based on that information.
	 */
	uint64_t weight = metaslab_weight_from_range_tree(msp);
	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
	int current_idx = WEIGHT_GET_INDEX(weight);

	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
		metaslab_passivate(msp, weight);
}

static void
metaslab_preload(void *arg)
{
	metaslab_t *msp = arg;
	metaslab_class_t *mc = msp->ms_group->mg_class;
	spa_t *spa = mc->mc_spa;
	fstrans_cookie_t cookie = spl_fstrans_mark();

	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));

	mutex_enter(&msp->ms_lock);
	(void) metaslab_load(msp);
	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
	mutex_exit(&msp->ms_lock);
	spl_fstrans_unmark(cookie);
}

static void
metaslab_group_preload(metaslab_group_t *mg)
{
	spa_t *spa = mg->mg_vd->vdev_spa;
	metaslab_t *msp;
	avl_tree_t *t = &mg->mg_metaslab_tree;
	int m = 0;

	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
		taskq_wait_outstanding(mg->mg_taskq, 0);
		return;
	}

	mutex_enter(&mg->mg_lock);

	/*
	 * Load the next potential metaslabs
	 */
	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
		ASSERT3P(msp->ms_group, ==, mg);

		/*
		 * We preload only the maximum number of metaslabs specified
		 * by metaslab_preload_limit. If a metaslab is being forced
		 * to condense then we preload it too. This will ensure
		 * that force condensing happens in the next txg.
		 */
		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
			continue;
		}

		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
		    msp, TQ_SLEEP) != TASKQID_INVALID);
	}
	mutex_exit(&mg->mg_lock);
}

/*
 * Determine if the space map's on-disk footprint is past our tolerance for
 * inefficiency. We would like to use the following criteria to make our
 * decision:
 *
 * 1. Do not condense if the size of the space map object would dramatically
 *    increase as a result of writing out the free space range tree.
 *
 * 2. Condense if the on on-disk space map representation is at least
 *    zfs_condense_pct/100 times the size of the optimal representation
 *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
 *
 * 3. Do not condense if the on-disk size of the space map does not actually
 *    decrease.
 *
 * Unfortunately, we cannot compute the on-disk size of the space map in this
 * context because we cannot accurately compute the effects of compression, etc.
 * Instead, we apply the heuristic described in the block comment for
 * zfs_metaslab_condense_block_threshold - we only condense if the space used
 * is greater than a threshold number of blocks.
 */
static boolean_t
metaslab_should_condense(metaslab_t *msp)
{
	space_map_t *sm = msp->ms_sm;
	vdev_t *vd = msp->ms_group->mg_vd;
	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(msp->ms_loaded);
	ASSERT(sm != NULL);
	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);

	/*
	 * We always condense metaslabs that are empty and metaslabs for
	 * which a condense request has been made.
	 */
	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
	    msp->ms_condense_wanted)
		return (B_TRUE);

	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
	uint64_t object_size = space_map_length(sm);
	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
	    msp->ms_allocatable, SM_NO_VDEVID);

	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
	    object_size > zfs_metaslab_condense_block_threshold * record_size);
}

/*
 * Condense the on-disk space map representation to its minimized form.
 * The minimized form consists of a small number of allocations followed
 * by the entries of the free range tree (ms_allocatable). The condensed
 * spacemap contains all the entries of previous TXGs (including those in
 * the pool-wide log spacemaps; thus this is effectively a superset of
 * metaslab_flush()), but this TXG's entries still need to be written.
 */
static void
metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
{
	range_tree_t *condense_tree;
	space_map_t *sm = msp->ms_sm;
	uint64_t txg = dmu_tx_get_txg(tx);
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(msp->ms_loaded);
	ASSERT(msp->ms_sm != NULL);

	/*
	 * In order to condense the space map, we need to change it so it
	 * only describes which segments are currently allocated and free.
	 *
	 * All the current free space resides in the ms_allocatable, all
	 * the ms_defer trees, and all the ms_allocating trees. We ignore
	 * ms_freed because it is empty because we're in sync pass 1. We
	 * ignore ms_freeing because these changes are not yet reflected
	 * in the spacemap (they will be written later this txg).
	 *
	 * So to truncate the space map to represent all the entries of
	 * previous TXGs we do the following:
	 *
	 * 1] We create a range tree (condense tree) that is 100% empty.
	 * 2] We add to it all segments found in the ms_defer trees
	 *    as those segments are marked as free in the original space
	 *    map. We do the same with the ms_allocating trees for the same
	 *    reason. Adding these segments should be a relatively
	 *    inexpensive operation since we expect these trees to have a
	 *    small number of nodes.
	 * 3] We vacate any unflushed allocs, since they are not frees we
	 *    need to add to the condense tree. Then we vacate any
	 *    unflushed frees as they should already be part of ms_allocatable.
	 * 4] At this point, we would ideally like to add all segments
	 *    in the ms_allocatable tree from the condense tree. This way
	 *    we would write all the entries of the condense tree as the
	 *    condensed space map, which would only contain freed
	 *    segments with everything else assumed to be allocated.
	 *
	 *    Doing so can be prohibitively expensive as ms_allocatable can
	 *    be large, and therefore computationally expensive to add to
	 *    the condense_tree. Instead we first sync out an entry marking
	 *    everything as allocated, then the condense_tree and then the
	 *    ms_allocatable, in the condensed space map. While this is not
	 *    optimal, it is typically close to optimal and more importantly
	 *    much cheaper to compute.
	 *
	 * 5] Finally, as both of the unflushed trees were written to our
	 *    new and condensed metaslab space map, we basically flushed
	 *    all the unflushed changes to disk, thus we call
	 *    metaslab_flush_update().
	 */
	ASSERT3U(spa_sync_pass(spa), ==, 1);
	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */

	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
	    msp->ms_condense_wanted ? "TRUE" : "FALSE");

	msp->ms_condense_wanted = B_FALSE;

	range_seg_type_t type;
	uint64_t shift, start;
	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
	    &start, &shift);

	condense_tree = range_tree_create(NULL, type, NULL, start, shift);

	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
		range_tree_walk(msp->ms_defer[t],
		    range_tree_add, condense_tree);
	}

	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
		    range_tree_add, condense_tree);
	}

	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
	    metaslab_unflushed_changes_memused(msp));
	spa->spa_unflushed_stats.sus_memused -=
	    metaslab_unflushed_changes_memused(msp);
	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);

	/*
	 * We're about to drop the metaslab's lock thus allowing other
	 * consumers to change it's content. Set the metaslab's ms_condensing
	 * flag to ensure that allocations on this metaslab do not occur
	 * while we're in the middle of committing it to disk. This is only
	 * critical for ms_allocatable as all other range trees use per TXG
	 * views of their content.
	 */
	msp->ms_condensing = B_TRUE;

	mutex_exit(&msp->ms_lock);
	uint64_t object = space_map_object(msp->ms_sm);
	space_map_truncate(sm,
	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);

	/*
	 * space_map_truncate() may have reallocated the spacemap object.
	 * If so, update the vdev_ms_array.
	 */
	if (space_map_object(msp->ms_sm) != object) {
		object = space_map_object(msp->ms_sm);
		dmu_write(spa->spa_meta_objset,
		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
		    msp->ms_id, sizeof (uint64_t), &object, tx);
	}

	/*
	 * Note:
	 * When the log space map feature is enabled, each space map will
	 * always have ALLOCS followed by FREES for each sync pass. This is
	 * typically true even when the log space map feature is disabled,
	 * except from the case where a metaslab goes through metaslab_sync()
	 * and gets condensed. In that case the metaslab's space map will have
	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
	 * sync pass 1.
	 */
	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
	    shift);
	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);

	range_tree_vacate(condense_tree, NULL, NULL);
	range_tree_destroy(condense_tree);
	range_tree_vacate(tmp_tree, NULL, NULL);
	range_tree_destroy(tmp_tree);
	mutex_enter(&msp->ms_lock);

	msp->ms_condensing = B_FALSE;
	metaslab_flush_update(msp, tx);
}

static void
metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	ASSERT(spa_syncing_log_sm(spa) != NULL);
	ASSERT(msp->ms_sm != NULL);
	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));

	mutex_enter(&spa->spa_flushed_ms_lock);
	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
	metaslab_set_unflushed_dirty(msp, B_TRUE);
	avl_add(&spa->spa_metaslabs_by_flushed, msp);
	mutex_exit(&spa->spa_flushed_ms_lock);

	spa_log_sm_increment_current_mscount(spa);
	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
}

void
metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	ASSERT(spa_syncing_log_sm(spa) != NULL);
	ASSERT(msp->ms_sm != NULL);
	ASSERT(metaslab_unflushed_txg(msp) != 0);
	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));

	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));

	/* update metaslab's position in our flushing tree */
	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
	mutex_enter(&spa->spa_flushed_ms_lock);
	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
	metaslab_set_unflushed_dirty(msp, dirty);
	avl_add(&spa->spa_metaslabs_by_flushed, msp);
	mutex_exit(&spa->spa_flushed_ms_lock);

	/* update metaslab counts of spa_log_sm_t nodes */
	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
	spa_log_sm_increment_current_mscount(spa);

	/* update log space map summary */
	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
	    ms_prev_flushed_dirty);
	spa_log_summary_add_flushed_metaslab(spa, dirty);

	/* cleanup obsolete logs if any */
	spa_cleanup_old_sm_logs(spa, tx);
}

/*
 * Called when the metaslab has been flushed (its own spacemap now reflects
 * all the contents of the pool-wide spacemap log). Updates the metaslab's
 * metadata and any pool-wide related log space map data (e.g. summary,
 * obsolete logs, etc..) to reflect that.
 */
static void
metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
{
	metaslab_group_t *mg = msp->ms_group;
	spa_t *spa = mg->mg_vd->vdev_spa;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	ASSERT3U(spa_sync_pass(spa), ==, 1);

	/*
	 * Just because a metaslab got flushed, that doesn't mean that
	 * it will pass through metaslab_sync_done(). Thus, make sure to
	 * update ms_synced_length here in case it doesn't.
	 */
	msp->ms_synced_length = space_map_length(msp->ms_sm);

	/*
	 * We may end up here from metaslab_condense() without the
	 * feature being active. In that case this is a no-op.
	 */
	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
	    metaslab_unflushed_txg(msp) == 0)
		return;

	metaslab_unflushed_bump(msp, tx, B_FALSE);
}

boolean_t
metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT3U(spa_sync_pass(spa), ==, 1);
	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));

	ASSERT(msp->ms_sm != NULL);
	ASSERT(metaslab_unflushed_txg(msp) != 0);
	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);

	/*
	 * There is nothing wrong with flushing the same metaslab twice, as
	 * this codepath should work on that case. However, the current
	 * flushing scheme makes sure to avoid this situation as we would be
	 * making all these calls without having anything meaningful to write
	 * to disk. We assert this behavior here.
	 */
	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));

	/*
	 * We can not flush while loading, because then we would
	 * not load the ms_unflushed_{allocs,frees}.
	 */
	if (msp->ms_loading)
		return (B_FALSE);

	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
	metaslab_verify_weight_and_frag(msp);

	/*
	 * Metaslab condensing is effectively flushing. Therefore if the
	 * metaslab can be condensed we can just condense it instead of
	 * flushing it.
	 *
	 * Note that metaslab_condense() does call metaslab_flush_update()
	 * so we can just return immediately after condensing. We also
	 * don't need to care about setting ms_flushing or broadcasting
	 * ms_flush_cv, even if we temporarily drop the ms_lock in
	 * metaslab_condense(), as the metaslab is already loaded.
	 */
	if (msp->ms_loaded && metaslab_should_condense(msp)) {
		metaslab_group_t *mg = msp->ms_group;

		/*
		 * For all histogram operations below refer to the
		 * comments of metaslab_sync() where we follow a
		 * similar procedure.
		 */
		metaslab_group_histogram_verify(mg);
		metaslab_class_histogram_verify(mg->mg_class);
		metaslab_group_histogram_remove(mg, msp);

		metaslab_condense(msp, tx);

		space_map_histogram_clear(msp->ms_sm);
		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
		ASSERT(range_tree_is_empty(msp->ms_freed));
		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
			space_map_histogram_add(msp->ms_sm,
			    msp->ms_defer[t], tx);
		}
		metaslab_aux_histograms_update(msp);

		metaslab_group_histogram_add(mg, msp);
		metaslab_group_histogram_verify(mg);
		metaslab_class_histogram_verify(mg->mg_class);

		metaslab_verify_space(msp, dmu_tx_get_txg(tx));

		/*
		 * Since we recreated the histogram (and potentially
		 * the ms_sm too while condensing) ensure that the
		 * weight is updated too because we are not guaranteed
		 * that this metaslab is dirty and will go through
		 * metaslab_sync_done().
		 */
		metaslab_recalculate_weight_and_sort(msp);
		return (B_TRUE);
	}

	msp->ms_flushing = B_TRUE;
	uint64_t sm_len_before = space_map_length(msp->ms_sm);

	mutex_exit(&msp->ms_lock);
	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
	    SM_NO_VDEVID, tx);
	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
	    SM_NO_VDEVID, tx);
	mutex_enter(&msp->ms_lock);

	uint64_t sm_len_after = space_map_length(msp->ms_sm);
	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
		    spa_name(spa),
		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
		    (u_longlong_t)msp->ms_id,
		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
		    (u_longlong_t)(sm_len_after - sm_len_before));
	}

	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
	    metaslab_unflushed_changes_memused(msp));
	spa->spa_unflushed_stats.sus_memused -=
	    metaslab_unflushed_changes_memused(msp);
	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);

	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
	metaslab_verify_weight_and_frag(msp);

	metaslab_flush_update(msp, tx);

	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
	metaslab_verify_weight_and_frag(msp);

	msp->ms_flushing = B_FALSE;
	cv_broadcast(&msp->ms_flush_cv);
	return (B_TRUE);
}

/*
 * Write a metaslab to disk in the context of the specified transaction group.
 */
void
metaslab_sync(metaslab_t *msp, uint64_t txg)
{
	metaslab_group_t *mg = msp->ms_group;
	vdev_t *vd = mg->mg_vd;
	spa_t *spa = vd->vdev_spa;
	objset_t *mos = spa_meta_objset(spa);
	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
	dmu_tx_t *tx;

	ASSERT(!vd->vdev_ishole);

	/*
	 * This metaslab has just been added so there's no work to do now.
	 */
	if (msp->ms_new) {
		ASSERT0(range_tree_space(alloctree));
		ASSERT0(range_tree_space(msp->ms_freeing));
		ASSERT0(range_tree_space(msp->ms_freed));
		ASSERT0(range_tree_space(msp->ms_checkpointing));
		ASSERT0(range_tree_space(msp->ms_trim));
		return;
	}

	/*
	 * Normally, we don't want to process a metaslab if there are no
	 * allocations or frees to perform. However, if the metaslab is being
	 * forced to condense, it's loaded and we're not beyond the final
	 * dirty txg, we need to let it through. Not condensing beyond the
	 * final dirty txg prevents an issue where metaslabs that need to be
	 * condensed but were loaded for other reasons could cause a panic
	 * here. By only checking the txg in that branch of the conditional,
	 * we preserve the utility of the VERIFY statements in all other
	 * cases.
	 */
	if (range_tree_is_empty(alloctree) &&
	    range_tree_is_empty(msp->ms_freeing) &&
	    range_tree_is_empty(msp->ms_checkpointing) &&
	    !(msp->ms_loaded && msp->ms_condense_wanted &&
	    txg <= spa_final_dirty_txg(spa)))
		return;


	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));

	/*
	 * The only state that can actually be changing concurrently
	 * with metaslab_sync() is the metaslab's ms_allocatable. No
	 * other thread can be modifying this txg's alloc, freeing,
	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
	 * could call into the DMU, because the DMU can call down to
	 * us (e.g. via zio_free()) at any time.
	 *
	 * The spa_vdev_remove_thread() can be reading metaslab state
	 * concurrently, and it is locked out by the ms_sync_lock.
	 * Note that the ms_lock is insufficient for this, because it
	 * is dropped by space_map_write().
	 */
	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);

	/*
	 * Generate a log space map if one doesn't exist already.
	 */
	spa_generate_syncing_log_sm(spa, tx);

	if (msp->ms_sm == NULL) {
		uint64_t new_object = space_map_alloc(mos,
		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
		    zfs_metaslab_sm_blksz_with_log :
		    zfs_metaslab_sm_blksz_no_log, tx);
		VERIFY3U(new_object, !=, 0);

		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
		    msp->ms_id, sizeof (uint64_t), &new_object, tx);

		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
		ASSERT(msp->ms_sm != NULL);

		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
		ASSERT0(metaslab_allocated_space(msp));
	}

	if (!range_tree_is_empty(msp->ms_checkpointing) &&
	    vd->vdev_checkpoint_sm == NULL) {
		ASSERT(spa_has_checkpoint(spa));

		uint64_t new_object = space_map_alloc(mos,
		    zfs_vdev_standard_sm_blksz, tx);
		VERIFY3U(new_object, !=, 0);

		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);

		/*
		 * We save the space map object as an entry in vdev_top_zap
		 * so it can be retrieved when the pool is reopened after an
		 * export or through zdb.
		 */
		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
		    sizeof (new_object), 1, &new_object, tx));
	}

	mutex_enter(&msp->ms_sync_lock);
	mutex_enter(&msp->ms_lock);

	/*
	 * Note: metaslab_condense() clears the space map's histogram.
	 * Therefore we must verify and remove this histogram before
	 * condensing.
	 */
	metaslab_group_histogram_verify(mg);
	metaslab_class_histogram_verify(mg->mg_class);
	metaslab_group_histogram_remove(mg, msp);

	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
	    metaslab_should_condense(msp))
		metaslab_condense(msp, tx);

	/*
	 * We'll be going to disk to sync our space accounting, thus we
	 * drop the ms_lock during that time so allocations coming from
	 * open-context (ZIL) for future TXGs do not block.
	 */
	mutex_exit(&msp->ms_lock);
	space_map_t *log_sm = spa_syncing_log_sm(spa);
	if (log_sm != NULL) {
		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
		if (metaslab_unflushed_txg(msp) == 0)
			metaslab_unflushed_add(msp, tx);
		else if (!metaslab_unflushed_dirty(msp))
			metaslab_unflushed_bump(msp, tx, B_TRUE);

		space_map_write(log_sm, alloctree, SM_ALLOC,
		    vd->vdev_id, tx);
		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
		    vd->vdev_id, tx);
		mutex_enter(&msp->ms_lock);

		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
		    metaslab_unflushed_changes_memused(msp));
		spa->spa_unflushed_stats.sus_memused -=
		    metaslab_unflushed_changes_memused(msp);
		range_tree_remove_xor_add(alloctree,
		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
		range_tree_remove_xor_add(msp->ms_freeing,
		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
		spa->spa_unflushed_stats.sus_memused +=
		    metaslab_unflushed_changes_memused(msp);
	} else {
		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));

		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
		    SM_NO_VDEVID, tx);
		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
		    SM_NO_VDEVID, tx);
		mutex_enter(&msp->ms_lock);
	}

	msp->ms_allocated_space += range_tree_space(alloctree);
	ASSERT3U(msp->ms_allocated_space, >=,
	    range_tree_space(msp->ms_freeing));
	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);

	if (!range_tree_is_empty(msp->ms_checkpointing)) {
		ASSERT(spa_has_checkpoint(spa));
		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);

		/*
		 * Since we are doing writes to disk and the ms_checkpointing
		 * tree won't be changing during that time, we drop the
		 * ms_lock while writing to the checkpoint space map, for the
		 * same reason mentioned above.
		 */
		mutex_exit(&msp->ms_lock);
		space_map_write(vd->vdev_checkpoint_sm,
		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
		mutex_enter(&msp->ms_lock);

		spa->spa_checkpoint_info.sci_dspace +=
		    range_tree_space(msp->ms_checkpointing);
		vd->vdev_stat.vs_checkpoint_space +=
		    range_tree_space(msp->ms_checkpointing);
		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
		    -space_map_allocated(vd->vdev_checkpoint_sm));

		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
	}

	if (msp->ms_loaded) {
		/*
		 * When the space map is loaded, we have an accurate
		 * histogram in the range tree. This gives us an opportunity
		 * to bring the space map's histogram up-to-date so we clear
		 * it first before updating it.
		 */
		space_map_histogram_clear(msp->ms_sm);
		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);

		/*
		 * Since we've cleared the histogram we need to add back
		 * any free space that has already been processed, plus
		 * any deferred space. This allows the on-disk histogram
		 * to accurately reflect all free space even if some space
		 * is not yet available for allocation (i.e. deferred).
		 */
		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);

		/*
		 * Add back any deferred free space that has not been
		 * added back into the in-core free tree yet. This will
		 * ensure that we don't end up with a space map histogram
		 * that is completely empty unless the metaslab is fully
		 * allocated.
		 */
		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
			space_map_histogram_add(msp->ms_sm,
			    msp->ms_defer[t], tx);
		}
	}

	/*
	 * Always add the free space from this sync pass to the space
	 * map histogram. We want to make sure that the on-disk histogram
	 * accounts for all free space. If the space map is not loaded,
	 * then we will lose some accuracy but will correct it the next
	 * time we load the space map.
	 */
	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
	metaslab_aux_histograms_update(msp);

	metaslab_group_histogram_add(mg, msp);
	metaslab_group_histogram_verify(mg);
	metaslab_class_histogram_verify(mg->mg_class);

	/*
	 * For sync pass 1, we avoid traversing this txg's free range tree
	 * and instead will just swap the pointers for freeing and freed.
	 * We can safely do this since the freed_tree is guaranteed to be
	 * empty on the initial pass.
	 *
	 * Keep in mind that even if we are currently using a log spacemap
	 * we want current frees to end up in the ms_allocatable (but not
	 * get appended to the ms_sm) so their ranges can be reused as usual.
	 */
	if (spa_sync_pass(spa) == 1) {
		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
		ASSERT0(msp->ms_allocated_this_txg);
	} else {
		range_tree_vacate(msp->ms_freeing,
		    range_tree_add, msp->ms_freed);
	}
	msp->ms_allocated_this_txg += range_tree_space(alloctree);
	range_tree_vacate(alloctree, NULL, NULL);

	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
	    & TXG_MASK]));
	ASSERT0(range_tree_space(msp->ms_freeing));
	ASSERT0(range_tree_space(msp->ms_checkpointing));

	mutex_exit(&msp->ms_lock);

	/*
	 * Verify that the space map object ID has been recorded in the
	 * vdev_ms_array.
	 */
	uint64_t object;
	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
	VERIFY3U(object, ==, space_map_object(msp->ms_sm));

	mutex_exit(&msp->ms_sync_lock);
	dmu_tx_commit(tx);
}

static void
metaslab_evict(metaslab_t *msp, uint64_t txg)
{
	if (!msp->ms_loaded || msp->ms_disabled != 0)
		return;

	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
		VERIFY0(range_tree_space(
		    msp->ms_allocating[(txg + t) & TXG_MASK]));
	}
	if (msp->ms_allocator != -1)
		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);

	if (!metaslab_debug_unload)
		metaslab_unload(msp);
}

/*
 * Called after a transaction group has completely synced to mark
 * all of the metaslab's free space as usable.
 */
void
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
{
	metaslab_group_t *mg = msp->ms_group;
	vdev_t *vd = mg->mg_vd;
	spa_t *spa = vd->vdev_spa;
	range_tree_t **defer_tree;
	int64_t alloc_delta, defer_delta;
	boolean_t defer_allowed = B_TRUE;

	ASSERT(!vd->vdev_ishole);

	mutex_enter(&msp->ms_lock);

	if (msp->ms_new) {
		/* this is a new metaslab, add its capacity to the vdev */
		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);

		/* there should be no allocations nor frees at this point */
		VERIFY0(msp->ms_allocated_this_txg);
		VERIFY0(range_tree_space(msp->ms_freed));
	}

	ASSERT0(range_tree_space(msp->ms_freeing));
	ASSERT0(range_tree_space(msp->ms_checkpointing));

	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];

	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
	    metaslab_class_get_alloc(spa_normal_class(spa));
	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
		defer_allowed = B_FALSE;
	}

	defer_delta = 0;
	alloc_delta = msp->ms_allocated_this_txg -
	    range_tree_space(msp->ms_freed);

	if (defer_allowed) {
		defer_delta = range_tree_space(msp->ms_freed) -
		    range_tree_space(*defer_tree);
	} else {
		defer_delta -= range_tree_space(*defer_tree);
	}
	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
	    defer_delta, 0);

	if (spa_syncing_log_sm(spa) == NULL) {
		/*
		 * If there's a metaslab_load() in progress and we don't have
		 * a log space map, it means that we probably wrote to the
		 * metaslab's space map. If this is the case, we need to
		 * make sure that we wait for the load to complete so that we
		 * have a consistent view at the in-core side of the metaslab.
		 */
		metaslab_load_wait(msp);
	} else {
		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
	}

	/*
	 * When auto-trimming is enabled, free ranges which are added to
	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
	 * periodically consumed by the vdev_autotrim_thread() which issues
	 * trims for all ranges and then vacates the tree.  The ms_trim tree
	 * can be discarded at any time with the sole consequence of recent
	 * frees not being trimmed.
	 */
	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
		if (!defer_allowed) {
			range_tree_walk(msp->ms_freed, range_tree_add,
			    msp->ms_trim);
		}
	} else {
		range_tree_vacate(msp->ms_trim, NULL, NULL);
	}

	/*
	 * Move the frees from the defer_tree back to the free
	 * range tree (if it's loaded). Swap the freed_tree and
	 * the defer_tree -- this is safe to do because we've
	 * just emptied out the defer_tree.
	 */
	range_tree_vacate(*defer_tree,
	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
	if (defer_allowed) {
		range_tree_swap(&msp->ms_freed, defer_tree);
	} else {
		range_tree_vacate(msp->ms_freed,
		    msp->ms_loaded ? range_tree_add : NULL,
		    msp->ms_allocatable);
	}

	msp->ms_synced_length = space_map_length(msp->ms_sm);

	msp->ms_deferspace += defer_delta;
	ASSERT3S(msp->ms_deferspace, >=, 0);
	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
	if (msp->ms_deferspace != 0) {
		/*
		 * Keep syncing this metaslab until all deferred frees
		 * are back in circulation.
		 */
		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
	}
	metaslab_aux_histograms_update_done(msp, defer_allowed);

	if (msp->ms_new) {
		msp->ms_new = B_FALSE;
		mutex_enter(&mg->mg_lock);
		mg->mg_ms_ready++;
		mutex_exit(&mg->mg_lock);
	}

	/*
	 * Re-sort metaslab within its group now that we've adjusted
	 * its allocatable space.
	 */
	metaslab_recalculate_weight_and_sort(msp);

	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
	ASSERT0(range_tree_space(msp->ms_freeing));
	ASSERT0(range_tree_space(msp->ms_freed));
	ASSERT0(range_tree_space(msp->ms_checkpointing));
	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
	msp->ms_allocated_this_txg = 0;
	mutex_exit(&msp->ms_lock);
}

void
metaslab_sync_reassess(metaslab_group_t *mg)
{
	spa_t *spa = mg->mg_class->mc_spa;

	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
	metaslab_group_alloc_update(mg);
	mg->mg_fragmentation = metaslab_group_fragmentation(mg);

	/*
	 * Preload the next potential metaslabs but only on active
	 * metaslab groups. We can get into a state where the metaslab
	 * is no longer active since we dirty metaslabs as we remove a
	 * a device, thus potentially making the metaslab group eligible
	 * for preloading.
	 */
	if (mg->mg_activation_count > 0) {
		metaslab_group_preload(mg);
	}
	spa_config_exit(spa, SCL_ALLOC, FTAG);
}

/*
 * When writing a ditto block (i.e. more than one DVA for a given BP) on
 * the same vdev as an existing DVA of this BP, then try to allocate it
 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
 */
static boolean_t
metaslab_is_unique(metaslab_t *msp, dva_t *dva)
{
	uint64_t dva_ms_id;

	if (DVA_GET_ASIZE(dva) == 0)
		return (B_TRUE);

	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
		return (B_TRUE);

	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;

	return (msp->ms_id != dva_ms_id);
}

/*
 * ==========================================================================
 * Metaslab allocation tracing facility
 * ==========================================================================
 */

/*
 * Add an allocation trace element to the allocation tracing list.
 */
static void
metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
    metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
    int allocator)
{
	metaslab_alloc_trace_t *mat;

	if (!metaslab_trace_enabled)
		return;

	/*
	 * When the tracing list reaches its maximum we remove
	 * the second element in the list before adding a new one.
	 * By removing the second element we preserve the original
	 * entry as a clue to what allocations steps have already been
	 * performed.
	 */
	if (zal->zal_size == metaslab_trace_max_entries) {
		metaslab_alloc_trace_t *mat_next;
#ifdef ZFS_DEBUG
		panic("too many entries in allocation list");
#endif
		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
		zal->zal_size--;
		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
		list_remove(&zal->zal_list, mat_next);
		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
	}

	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
	list_link_init(&mat->mat_list_node);
	mat->mat_mg = mg;
	mat->mat_msp = msp;
	mat->mat_size = psize;
	mat->mat_dva_id = dva_id;
	mat->mat_offset = offset;
	mat->mat_weight = 0;
	mat->mat_allocator = allocator;

	if (msp != NULL)
		mat->mat_weight = msp->ms_weight;

	/*
	 * The list is part of the zio so locking is not required. Only
	 * a single thread will perform allocations for a given zio.
	 */
	list_insert_tail(&zal->zal_list, mat);
	zal->zal_size++;

	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
}

void
metaslab_trace_init(zio_alloc_list_t *zal)
{
	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
	    offsetof(metaslab_alloc_trace_t, mat_list_node));
	zal->zal_size = 0;
}

void
metaslab_trace_fini(zio_alloc_list_t *zal)
{
	metaslab_alloc_trace_t *mat;

	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
		kmem_cache_free(metaslab_alloc_trace_cache, mat);
	list_destroy(&zal->zal_list);
	zal->zal_size = 0;
}

/*
 * ==========================================================================
 * Metaslab block operations
 * ==========================================================================
 */

static void
metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
    int flags, int allocator)
{
	if (!(flags & METASLAB_ASYNC_ALLOC) ||
	    (flags & METASLAB_DONT_THROTTLE))
		return;

	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
	if (!mg->mg_class->mc_alloc_throttle_enabled)
		return;

	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
}

static void
metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
{
	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
	metaslab_class_allocator_t *mca =
	    &mg->mg_class->mc_allocator[allocator];
	uint64_t max = mg->mg_max_alloc_queue_depth;
	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
	while (cur < max) {
		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
		    cur, cur + 1) == cur) {
			atomic_inc_64(&mca->mca_alloc_max_slots);
			return;
		}
		cur = mga->mga_cur_max_alloc_queue_depth;
	}
}

void
metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
    int flags, int allocator, boolean_t io_complete)
{
	if (!(flags & METASLAB_ASYNC_ALLOC) ||
	    (flags & METASLAB_DONT_THROTTLE))
		return;

	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
	if (!mg->mg_class->mc_alloc_throttle_enabled)
		return;

	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
	if (io_complete)
		metaslab_group_increment_qdepth(mg, allocator);
}

void
metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
    int allocator)
{
#ifdef ZFS_DEBUG
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);

	for (int d = 0; d < ndvas; d++) {
		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
	}
#endif
}

static uint64_t
metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
{
	uint64_t start;
	range_tree_t *rt = msp->ms_allocatable;
	metaslab_class_t *mc = msp->ms_group->mg_class;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	VERIFY(!msp->ms_condensing);
	VERIFY0(msp->ms_disabled);

	start = mc->mc_ops->msop_alloc(msp, size);
	if (start != -1ULL) {
		metaslab_group_t *mg = msp->ms_group;
		vdev_t *vd = mg->mg_vd;

		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
		range_tree_remove(rt, start, size);
		range_tree_clear(msp->ms_trim, start, size);

		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);

		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
		msp->ms_allocating_total += size;

		/* Track the last successful allocation */
		msp->ms_alloc_txg = txg;
		metaslab_verify_space(msp, txg);
	}

	/*
	 * Now that we've attempted the allocation we need to update the
	 * metaslab's maximum block size since it may have changed.
	 */
	msp->ms_max_size = metaslab_largest_allocatable(msp);
	return (start);
}

/*
 * Find the metaslab with the highest weight that is less than what we've
 * already tried.  In the common case, this means that we will examine each
 * metaslab at most once. Note that concurrent callers could reorder metaslabs
 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
 * activated by another thread, and we fail to allocate from the metaslab we
 * have selected, we may not try the newly-activated metaslab, and instead
 * activate another metaslab.  This is not optimal, but generally does not cause
 * any problems (a possible exception being if every metaslab is completely full
 * except for the newly-activated metaslab which we fail to examine).
 */
static metaslab_t *
find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
    dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
    boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
    boolean_t *was_active)
{
	avl_index_t idx;
	avl_tree_t *t = &mg->mg_metaslab_tree;
	metaslab_t *msp = avl_find(t, search, &idx);
	if (msp == NULL)
		msp = avl_nearest(t, idx, AVL_AFTER);

	uint_t tries = 0;
	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
		int i;

		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
			return (NULL);
		}
		tries++;

		if (!metaslab_should_allocate(msp, asize, try_hard)) {
			metaslab_trace_add(zal, mg, msp, asize, d,
			    TRACE_TOO_SMALL, allocator);
			continue;
		}

		/*
		 * If the selected metaslab is condensing or disabled,
		 * skip it.
		 */
		if (msp->ms_condensing || msp->ms_disabled > 0)
			continue;

		*was_active = msp->ms_allocator != -1;
		/*
		 * If we're activating as primary, this is our first allocation
		 * from this disk, so we don't need to check how close we are.
		 * If the metaslab under consideration was already active,
		 * we're getting desperate enough to steal another allocator's
		 * metaslab, so we still don't care about distances.
		 */
		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
			break;

		for (i = 0; i < d; i++) {
			if (want_unique &&
			    !metaslab_is_unique(msp, &dva[i]))
				break;  /* try another metaslab */
		}
		if (i == d)
			break;
	}

	if (msp != NULL) {
		search->ms_weight = msp->ms_weight;
		search->ms_start = msp->ms_start + 1;
		search->ms_allocator = msp->ms_allocator;
		search->ms_primary = msp->ms_primary;
	}
	return (msp);
}

static void
metaslab_active_mask_verify(metaslab_t *msp)
{
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
		return;

	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
		return;

	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
		VERIFY3S(msp->ms_allocator, !=, -1);
		VERIFY(msp->ms_primary);
		return;
	}

	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
		VERIFY3S(msp->ms_allocator, !=, -1);
		VERIFY(!msp->ms_primary);
		return;
	}

	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
		VERIFY3S(msp->ms_allocator, ==, -1);
		return;
	}
}

static uint64_t
metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
    uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
    int allocator, boolean_t try_hard)
{
	metaslab_t *msp = NULL;
	uint64_t offset = -1ULL;

	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
	for (int i = 0; i < d; i++) {
		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
			activation_weight = METASLAB_WEIGHT_SECONDARY;
		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
			activation_weight = METASLAB_WEIGHT_CLAIM;
			break;
		}
	}

	/*
	 * If we don't have enough metaslabs active to fill the entire array, we
	 * just use the 0th slot.
	 */
	if (mg->mg_ms_ready < mg->mg_allocators * 3)
		allocator = 0;
	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];

	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);

	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
	search->ms_weight = UINT64_MAX;
	search->ms_start = 0;
	/*
	 * At the end of the metaslab tree are the already-active metaslabs,
	 * first the primaries, then the secondaries. When we resume searching
	 * through the tree, we need to consider ms_allocator and ms_primary so
	 * we start in the location right after where we left off, and don't
	 * accidentally loop forever considering the same metaslabs.
	 */
	search->ms_allocator = -1;
	search->ms_primary = B_TRUE;
	for (;;) {
		boolean_t was_active = B_FALSE;

		mutex_enter(&mg->mg_lock);

		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
		    mga->mga_primary != NULL) {
			msp = mga->mga_primary;

			/*
			 * Even though we don't hold the ms_lock for the
			 * primary metaslab, those fields should not
			 * change while we hold the mg_lock. Thus it is
			 * safe to make assertions on them.
			 */
			ASSERT(msp->ms_primary);
			ASSERT3S(msp->ms_allocator, ==, allocator);
			ASSERT(msp->ms_loaded);

			was_active = B_TRUE;
			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
		    mga->mga_secondary != NULL) {
			msp = mga->mga_secondary;

			/*
			 * See comment above about the similar assertions
			 * for the primary metaslab.
			 */
			ASSERT(!msp->ms_primary);
			ASSERT3S(msp->ms_allocator, ==, allocator);
			ASSERT(msp->ms_loaded);

			was_active = B_TRUE;
			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
		} else {
			msp = find_valid_metaslab(mg, activation_weight, dva, d,
			    want_unique, asize, allocator, try_hard, zal,
			    search, &was_active);
		}

		mutex_exit(&mg->mg_lock);
		if (msp == NULL) {
			kmem_free(search, sizeof (*search));
			return (-1ULL);
		}
		mutex_enter(&msp->ms_lock);

		metaslab_active_mask_verify(msp);

		/*
		 * This code is disabled out because of issues with
		 * tracepoints in non-gpl kernel modules.
		 */
#if 0
		DTRACE_PROBE3(ms__activation__attempt,
		    metaslab_t *, msp, uint64_t, activation_weight,
		    boolean_t, was_active);
#endif

		/*
		 * Ensure that the metaslab we have selected is still
		 * capable of handling our request. It's possible that
		 * another thread may have changed the weight while we
		 * were blocked on the metaslab lock. We check the
		 * active status first to see if we need to set_selected_txg
		 * a new metaslab.
		 */
		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
			ASSERT3S(msp->ms_allocator, ==, -1);
			mutex_exit(&msp->ms_lock);
			continue;
		}

		/*
		 * If the metaslab was activated for another allocator
		 * while we were waiting in the ms_lock above, or it's
		 * a primary and we're seeking a secondary (or vice versa),
		 * we go back and select a new metaslab.
		 */
		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
		    (msp->ms_allocator != -1) &&
		    (msp->ms_allocator != allocator || ((activation_weight ==
		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
			ASSERT(msp->ms_loaded);
			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
			    msp->ms_allocator != -1);
			mutex_exit(&msp->ms_lock);
			continue;
		}

		/*
		 * This metaslab was used for claiming regions allocated
		 * by the ZIL during pool import. Once these regions are
		 * claimed we don't need to keep the CLAIM bit set
		 * anymore. Passivate this metaslab to zero its activation
		 * mask.
		 */
		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
		    activation_weight != METASLAB_WEIGHT_CLAIM) {
			ASSERT(msp->ms_loaded);
			ASSERT3S(msp->ms_allocator, ==, -1);
			metaslab_passivate(msp, msp->ms_weight &
			    ~METASLAB_WEIGHT_CLAIM);
			mutex_exit(&msp->ms_lock);
			continue;
		}

		metaslab_set_selected_txg(msp, txg);

		int activation_error =
		    metaslab_activate(msp, allocator, activation_weight);
		metaslab_active_mask_verify(msp);

		/*
		 * If the metaslab was activated by another thread for
		 * another allocator or activation_weight (EBUSY), or it
		 * failed because another metaslab was assigned as primary
		 * for this allocator (EEXIST) we continue using this
		 * metaslab for our allocation, rather than going on to a
		 * worse metaslab (we waited for that metaslab to be loaded
		 * after all).
		 *
		 * If the activation failed due to an I/O error or ENOSPC we
		 * skip to the next metaslab.
		 */
		boolean_t activated;
		if (activation_error == 0) {
			activated = B_TRUE;
		} else if (activation_error == EBUSY ||
		    activation_error == EEXIST) {
			activated = B_FALSE;
		} else {
			mutex_exit(&msp->ms_lock);
			continue;
		}
		ASSERT(msp->ms_loaded);

		/*
		 * Now that we have the lock, recheck to see if we should
		 * continue to use this metaslab for this allocation. The
		 * the metaslab is now loaded so metaslab_should_allocate()
		 * can accurately determine if the allocation attempt should
		 * proceed.
		 */
		if (!metaslab_should_allocate(msp, asize, try_hard)) {
			/* Passivate this metaslab and select a new one. */
			metaslab_trace_add(zal, mg, msp, asize, d,
			    TRACE_TOO_SMALL, allocator);
			goto next;
		}

		/*
		 * If this metaslab is currently condensing then pick again
		 * as we can't manipulate this metaslab until it's committed
		 * to disk. If this metaslab is being initialized, we shouldn't
		 * allocate from it since the allocated region might be
		 * overwritten after allocation.
		 */
		if (msp->ms_condensing) {
			metaslab_trace_add(zal, mg, msp, asize, d,
			    TRACE_CONDENSING, allocator);
			if (activated) {
				metaslab_passivate(msp, msp->ms_weight &
				    ~METASLAB_ACTIVE_MASK);
			}
			mutex_exit(&msp->ms_lock);
			continue;
		} else if (msp->ms_disabled > 0) {
			metaslab_trace_add(zal, mg, msp, asize, d,
			    TRACE_DISABLED, allocator);
			if (activated) {
				metaslab_passivate(msp, msp->ms_weight &
				    ~METASLAB_ACTIVE_MASK);
			}
			mutex_exit(&msp->ms_lock);
			continue;
		}

		offset = metaslab_block_alloc(msp, asize, txg);
		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);

		if (offset != -1ULL) {
			/* Proactively passivate the metaslab, if needed */
			if (activated)
				metaslab_segment_may_passivate(msp);
			break;
		}
next:
		ASSERT(msp->ms_loaded);

		/*
		 * This code is disabled out because of issues with
		 * tracepoints in non-gpl kernel modules.
		 */
#if 0
		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
		    uint64_t, asize);
#endif

		/*
		 * We were unable to allocate from this metaslab so determine
		 * a new weight for this metaslab. Now that we have loaded
		 * the metaslab we can provide a better hint to the metaslab
		 * selector.
		 *
		 * For space-based metaslabs, we use the maximum block size.
		 * This information is only available when the metaslab
		 * is loaded and is more accurate than the generic free
		 * space weight that was calculated by metaslab_weight().
		 * This information allows us to quickly compare the maximum
		 * available allocation in the metaslab to the allocation
		 * size being requested.
		 *
		 * For segment-based metaslabs, determine the new weight
		 * based on the highest bucket in the range tree. We
		 * explicitly use the loaded segment weight (i.e. the range
		 * tree histogram) since it contains the space that is
		 * currently available for allocation and is accurate
		 * even within a sync pass.
		 */
		uint64_t weight;
		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
			weight = metaslab_largest_allocatable(msp);
			WEIGHT_SET_SPACEBASED(weight);
		} else {
			weight = metaslab_weight_from_range_tree(msp);
		}

		if (activated) {
			metaslab_passivate(msp, weight);
		} else {
			/*
			 * For the case where we use the metaslab that is
			 * active for another allocator we want to make
			 * sure that we retain the activation mask.
			 *
			 * Note that we could attempt to use something like
			 * metaslab_recalculate_weight_and_sort() that
			 * retains the activation mask here. That function
			 * uses metaslab_weight() to set the weight though
			 * which is not as accurate as the calculations
			 * above.
			 */
			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
			metaslab_group_sort(mg, msp, weight);
		}
		metaslab_active_mask_verify(msp);

		/*
		 * We have just failed an allocation attempt, check
		 * that metaslab_should_allocate() agrees. Otherwise,
		 * we may end up in an infinite loop retrying the same
		 * metaslab.
		 */
		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));

		mutex_exit(&msp->ms_lock);
	}
	mutex_exit(&msp->ms_lock);
	kmem_free(search, sizeof (*search));
	return (offset);
}

static uint64_t
metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
    uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
    int allocator, boolean_t try_hard)
{
	uint64_t offset;
	ASSERT(mg->mg_initialized);

	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
	    dva, d, allocator, try_hard);

	mutex_enter(&mg->mg_lock);
	if (offset == -1ULL) {
		mg->mg_failed_allocations++;
		metaslab_trace_add(zal, mg, NULL, asize, d,
		    TRACE_GROUP_FAILURE, allocator);
		if (asize == SPA_GANGBLOCKSIZE) {
			/*
			 * This metaslab group was unable to allocate
			 * the minimum gang block size so it must be out of
			 * space. We must notify the allocation throttle
			 * to start skipping allocation attempts to this
			 * metaslab group until more space becomes available.
			 * Note: this failure cannot be caused by the
			 * allocation throttle since the allocation throttle
			 * is only responsible for skipping devices and
			 * not failing block allocations.
			 */
			mg->mg_no_free_space = B_TRUE;
		}
	}
	mg->mg_allocations++;
	mutex_exit(&mg->mg_lock);
	return (offset);
}

/*
 * Allocate a block for the specified i/o.
 */
int
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
    zio_alloc_list_t *zal, int allocator)
{
	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
	metaslab_group_t *mg, *fast_mg, *rotor;
	vdev_t *vd;
	boolean_t try_hard = B_FALSE;

	ASSERT(!DVA_IS_VALID(&dva[d]));

	/*
	 * For testing, make some blocks above a certain size be gang blocks.
	 * This will result in more split blocks when using device removal,
	 * and a large number of split blocks coupled with ztest-induced
	 * damage can result in extremely long reconstruction times.  This
	 * will also test spilling from special to normal.
	 */
	if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
		    allocator);
		return (SET_ERROR(ENOSPC));
	}

	/*
	 * Start at the rotor and loop through all mgs until we find something.
	 * Note that there's no locking on mca_rotor or mca_aliquot because
	 * nothing actually breaks if we miss a few updates -- we just won't
	 * allocate quite as evenly.  It all balances out over time.
	 *
	 * If we are doing ditto or log blocks, try to spread them across
	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
	 * allocated all of our ditto blocks, then try and spread them out on
	 * that vdev as much as possible.  If it turns out to not be possible,
	 * gradually lower our standards until anything becomes acceptable.
	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
	 * gives us hope of containing our fault domains to something we're
	 * able to reason about.  Otherwise, any two top-level vdev failures
	 * will guarantee the loss of data.  With consecutive allocation,
	 * only two adjacent top-level vdev failures will result in data loss.
	 *
	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
	 * ourselves on the same vdev as our gang block header.  That
	 * way, we can hope for locality in vdev_cache, plus it makes our
	 * fault domains something tractable.
	 */
	if (hintdva) {
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));

		/*
		 * It's possible the vdev we're using as the hint no
		 * longer exists or its mg has been closed (e.g. by
		 * device removal).  Consult the rotor when
		 * all else fails.
		 */
		if (vd != NULL && vd->vdev_mg != NULL) {
			mg = vdev_get_mg(vd, mc);

			if (flags & METASLAB_HINTBP_AVOID)
				mg = mg->mg_next;
		} else {
			mg = mca->mca_rotor;
		}
	} else if (d != 0) {
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
		mg = vd->vdev_mg->mg_next;
	} else if (flags & METASLAB_FASTWRITE) {
		mg = fast_mg = mca->mca_rotor;

		do {
			if (fast_mg->mg_vd->vdev_pending_fastwrite <
			    mg->mg_vd->vdev_pending_fastwrite)
				mg = fast_mg;
		} while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);

	} else {
		ASSERT(mca->mca_rotor != NULL);
		mg = mca->mca_rotor;
	}

	/*
	 * If the hint put us into the wrong metaslab class, or into a
	 * metaslab group that has been passivated, just follow the rotor.
	 */
	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
		mg = mca->mca_rotor;

	rotor = mg;
top:
	do {
		boolean_t allocatable;

		ASSERT(mg->mg_activation_count == 1);
		vd = mg->mg_vd;

		/*
		 * Don't allocate from faulted devices.
		 */
		if (try_hard) {
			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
			allocatable = vdev_allocatable(vd);
			spa_config_exit(spa, SCL_ZIO, FTAG);
		} else {
			allocatable = vdev_allocatable(vd);
		}

		/*
		 * Determine if the selected metaslab group is eligible
		 * for allocations. If we're ganging then don't allow
		 * this metaslab group to skip allocations since that would
		 * inadvertently return ENOSPC and suspend the pool
		 * even though space is still available.
		 */
		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
			allocatable = metaslab_group_allocatable(mg, rotor,
			    psize, allocator, d);
		}

		if (!allocatable) {
			metaslab_trace_add(zal, mg, NULL, psize, d,
			    TRACE_NOT_ALLOCATABLE, allocator);
			goto next;
		}

		ASSERT(mg->mg_initialized);

		/*
		 * Avoid writing single-copy data to an unhealthy,
		 * non-redundant vdev, unless we've already tried all
		 * other vdevs.
		 */
		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
		    d == 0 && !try_hard && vd->vdev_children == 0) {
			metaslab_trace_add(zal, mg, NULL, psize, d,
			    TRACE_VDEV_ERROR, allocator);
			goto next;
		}

		ASSERT(mg->mg_class == mc);

		uint64_t asize = vdev_psize_to_asize(vd, psize);
		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);

		/*
		 * If we don't need to try hard, then require that the
		 * block be on a different metaslab from any other DVAs
		 * in this BP (unique=true).  If we are trying hard, then
		 * allow any metaslab to be used (unique=false).
		 */
		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
		    !try_hard, dva, d, allocator, try_hard);

		if (offset != -1ULL) {
			/*
			 * If we've just selected this metaslab group,
			 * figure out whether the corresponding vdev is
			 * over- or under-used relative to the pool,
			 * and set an allocation bias to even it out.
			 *
			 * Bias is also used to compensate for unequally
			 * sized vdevs so that space is allocated fairly.
			 */
			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
				vdev_stat_t *vs = &vd->vdev_stat;
				int64_t vs_free = vs->vs_space - vs->vs_alloc;
				int64_t mc_free = mc->mc_space - mc->mc_alloc;
				int64_t ratio;

				/*
				 * Calculate how much more or less we should
				 * try to allocate from this device during
				 * this iteration around the rotor.
				 *
				 * This basically introduces a zero-centered
				 * bias towards the devices with the most
				 * free space, while compensating for vdev
				 * size differences.
				 *
				 * Examples:
				 *  vdev V1 = 16M/128M
				 *  vdev V2 = 16M/128M
				 *  ratio(V1) = 100% ratio(V2) = 100%
				 *
				 *  vdev V1 = 16M/128M
				 *  vdev V2 = 64M/128M
				 *  ratio(V1) = 127% ratio(V2) =  72%
				 *
				 *  vdev V1 = 16M/128M
				 *  vdev V2 = 64M/512M
				 *  ratio(V1) =  40% ratio(V2) = 160%
				 */
				ratio = (vs_free * mc->mc_alloc_groups * 100) /
				    (mc_free + 1);
				mg->mg_bias = ((ratio - 100) *
				    (int64_t)mg->mg_aliquot) / 100;
			} else if (!metaslab_bias_enabled) {
				mg->mg_bias = 0;
			}

			if ((flags & METASLAB_FASTWRITE) ||
			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
			    mg->mg_aliquot + mg->mg_bias) {
				mca->mca_rotor = mg->mg_next;
				mca->mca_aliquot = 0;
			}

			DVA_SET_VDEV(&dva[d], vd->vdev_id);
			DVA_SET_OFFSET(&dva[d], offset);
			DVA_SET_GANG(&dva[d],
			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
			DVA_SET_ASIZE(&dva[d], asize);

			if (flags & METASLAB_FASTWRITE) {
				atomic_add_64(&vd->vdev_pending_fastwrite,
				    psize);
			}

			return (0);
		}
next:
		mca->mca_rotor = mg->mg_next;
		mca->mca_aliquot = 0;
	} while ((mg = mg->mg_next) != rotor);

	/*
	 * If we haven't tried hard, perhaps do so now.
	 */
	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
	    psize <= 1 << spa->spa_min_ashift)) {
		METASLABSTAT_BUMP(metaslabstat_try_hard);
		try_hard = B_TRUE;
		goto top;
	}

	memset(&dva[d], 0, sizeof (dva_t));

	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
	return (SET_ERROR(ENOSPC));
}

void
metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
    boolean_t checkpoint)
{
	metaslab_t *msp;
	spa_t *spa = vd->vdev_spa;

	ASSERT(vdev_is_concrete(vd));
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	VERIFY(!msp->ms_condensing);
	VERIFY3U(offset, >=, msp->ms_start);
	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));

	metaslab_check_free_impl(vd, offset, asize);

	mutex_enter(&msp->ms_lock);
	if (range_tree_is_empty(msp->ms_freeing) &&
	    range_tree_is_empty(msp->ms_checkpointing)) {
		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
	}

	if (checkpoint) {
		ASSERT(spa_has_checkpoint(spa));
		range_tree_add(msp->ms_checkpointing, offset, asize);
	} else {
		range_tree_add(msp->ms_freeing, offset, asize);
	}
	mutex_exit(&msp->ms_lock);
}

void
metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
    uint64_t size, void *arg)
{
	(void) inner_offset;
	boolean_t *checkpoint = arg;

	ASSERT3P(checkpoint, !=, NULL);

	if (vd->vdev_ops->vdev_op_remap != NULL)
		vdev_indirect_mark_obsolete(vd, offset, size);
	else
		metaslab_free_impl(vd, offset, size, *checkpoint);
}

static void
metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
    boolean_t checkpoint)
{
	spa_t *spa = vd->vdev_spa;

	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);

	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
		return;

	if (spa->spa_vdev_removal != NULL &&
	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
	    vdev_is_concrete(vd)) {
		/*
		 * Note: we check if the vdev is concrete because when
		 * we complete the removal, we first change the vdev to be
		 * an indirect vdev (in open context), and then (in syncing
		 * context) clear spa_vdev_removal.
		 */
		free_from_removing_vdev(vd, offset, size);
	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
		vdev_indirect_mark_obsolete(vd, offset, size);
		vd->vdev_ops->vdev_op_remap(vd, offset, size,
		    metaslab_free_impl_cb, &checkpoint);
	} else {
		metaslab_free_concrete(vd, offset, size, checkpoint);
	}
}

typedef struct remap_blkptr_cb_arg {
	blkptr_t *rbca_bp;
	spa_remap_cb_t rbca_cb;
	vdev_t *rbca_remap_vd;
	uint64_t rbca_remap_offset;
	void *rbca_cb_arg;
} remap_blkptr_cb_arg_t;

static void
remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
    uint64_t size, void *arg)
{
	remap_blkptr_cb_arg_t *rbca = arg;
	blkptr_t *bp = rbca->rbca_bp;

	/* We can not remap split blocks. */
	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
		return;
	ASSERT0(inner_offset);

	if (rbca->rbca_cb != NULL) {
		/*
		 * At this point we know that we are not handling split
		 * blocks and we invoke the callback on the previous
		 * vdev which must be indirect.
		 */
		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);

		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);

		/* set up remap_blkptr_cb_arg for the next call */
		rbca->rbca_remap_vd = vd;
		rbca->rbca_remap_offset = offset;
	}

	/*
	 * The phys birth time is that of dva[0].  This ensures that we know
	 * when each dva was written, so that resilver can determine which
	 * blocks need to be scrubbed (i.e. those written during the time
	 * the vdev was offline).  It also ensures that the key used in
	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
	 * we didn't change the phys_birth, a lookup in the ARC for a
	 * remapped BP could find the data that was previously stored at
	 * this vdev + offset.
	 */
	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
	    DVA_GET_VDEV(&bp->blk_dva[0]));
	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));

	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
}

/*
 * If the block pointer contains any indirect DVAs, modify them to refer to
 * concrete DVAs.  Note that this will sometimes not be possible, leaving
 * the indirect DVA in place.  This happens if the indirect DVA spans multiple
 * segments in the mapping (i.e. it is a "split block").
 *
 * If the BP was remapped, calls the callback on the original dva (note the
 * callback can be called multiple times if the original indirect DVA refers
 * to another indirect DVA, etc).
 *
 * Returns TRUE if the BP was remapped.
 */
boolean_t
spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
{
	remap_blkptr_cb_arg_t rbca;

	if (!zfs_remap_blkptr_enable)
		return (B_FALSE);

	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
		return (B_FALSE);

	/*
	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
	 */
	if (BP_GET_DEDUP(bp))
		return (B_FALSE);

	/*
	 * Gang blocks can not be remapped, because
	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
	 * the BP used to read the gang block header (GBH) being the same
	 * as the DVA[0] that we allocated for the GBH.
	 */
	if (BP_IS_GANG(bp))
		return (B_FALSE);

	/*
	 * Embedded BP's have no DVA to remap.
	 */
	if (BP_GET_NDVAS(bp) < 1)
		return (B_FALSE);

	/*
	 * Note: we only remap dva[0].  If we remapped other dvas, we
	 * would no longer know what their phys birth txg is.
	 */
	dva_t *dva = &bp->blk_dva[0];

	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));

	if (vd->vdev_ops->vdev_op_remap == NULL)
		return (B_FALSE);

	rbca.rbca_bp = bp;
	rbca.rbca_cb = callback;
	rbca.rbca_remap_vd = vd;
	rbca.rbca_remap_offset = offset;
	rbca.rbca_cb_arg = arg;

	/*
	 * remap_blkptr_cb() will be called in order for each level of
	 * indirection, until a concrete vdev is reached or a split block is
	 * encountered. old_vd and old_offset are updated within the callback
	 * as we go from the one indirect vdev to the next one (either concrete
	 * or indirect again) in that order.
	 */
	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);

	/* Check if the DVA wasn't remapped because it is a split block */
	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
		return (B_FALSE);

	return (B_TRUE);
}

/*
 * Undo the allocation of a DVA which happened in the given transaction group.
 */
void
metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
{
	metaslab_t *msp;
	vdev_t *vd;
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);

	ASSERT(DVA_IS_VALID(dva));
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);

	if (txg > spa_freeze_txg(spa))
		return;

	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
		    (u_longlong_t)vdev, (u_longlong_t)offset,
		    (u_longlong_t)size);
		return;
	}

	ASSERT(!vd->vdev_removing);
	ASSERT(vdev_is_concrete(vd));
	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);

	if (DVA_GET_GANG(dva))
		size = vdev_gang_header_asize(vd);

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	mutex_enter(&msp->ms_lock);
	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
	    offset, size);
	msp->ms_allocating_total -= size;

	VERIFY(!msp->ms_condensing);
	VERIFY3U(offset, >=, msp->ms_start);
	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
	    msp->ms_size);
	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
	range_tree_add(msp->ms_allocatable, offset, size);
	mutex_exit(&msp->ms_lock);
}

/*
 * Free the block represented by the given DVA.
 */
void
metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
{
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd = vdev_lookup_top(spa, vdev);

	ASSERT(DVA_IS_VALID(dva));
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);

	if (DVA_GET_GANG(dva)) {
		size = vdev_gang_header_asize(vd);
	}

	metaslab_free_impl(vd, offset, size, checkpoint);
}

/*
 * Reserve some allocation slots. The reservation system must be called
 * before we call into the allocator. If there aren't any available slots
 * then the I/O will be throttled until an I/O completes and its slots are
 * freed up. The function returns true if it was successful in placing
 * the reservation.
 */
boolean_t
metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
    zio_t *zio, int flags)
{
	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
	uint64_t max = mca->mca_alloc_max_slots;

	ASSERT(mc->mc_alloc_throttle_enabled);
	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
		/*
		 * The potential race between _count() and _add() is covered
		 * by the allocator lock in most cases, or irrelevant due to
		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
		 * But even if we assume some other non-existing scenario, the
		 * worst that can happen is few more I/Os get to allocation
		 * earlier, that is not a problem.
		 *
		 * We reserve the slots individually so that we can unreserve
		 * them individually when an I/O completes.
		 */
		for (int d = 0; d < slots; d++)
			zfs_refcount_add(&mca->mca_alloc_slots, zio);
		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
		return (B_TRUE);
	}
	return (B_FALSE);
}

void
metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
    int allocator, zio_t *zio)
{
	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];

	ASSERT(mc->mc_alloc_throttle_enabled);
	for (int d = 0; d < slots; d++)
		zfs_refcount_remove(&mca->mca_alloc_slots, zio);
}

static int
metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
    uint64_t txg)
{
	metaslab_t *msp;
	spa_t *spa = vd->vdev_spa;
	int error = 0;

	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
		return (SET_ERROR(ENXIO));

	ASSERT3P(vd->vdev_ms, !=, NULL);
	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	mutex_enter(&msp->ms_lock);

	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
		if (error == EBUSY) {
			ASSERT(msp->ms_loaded);
			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
			error = 0;
		}
	}

	if (error == 0 &&
	    !range_tree_contains(msp->ms_allocatable, offset, size))
		error = SET_ERROR(ENOENT);

	if (error || txg == 0) {	/* txg == 0 indicates dry run */
		mutex_exit(&msp->ms_lock);
		return (error);
	}

	VERIFY(!msp->ms_condensing);
	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
	    msp->ms_size);
	range_tree_remove(msp->ms_allocatable, offset, size);
	range_tree_clear(msp->ms_trim, offset, size);

	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
		metaslab_class_t *mc = msp->ms_group->mg_class;
		multilist_sublist_t *mls =
		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
		if (!multilist_link_active(&msp->ms_class_txg_node)) {
			msp->ms_selected_txg = txg;
			multilist_sublist_insert_head(mls, msp);
		}
		multilist_sublist_unlock(mls);

		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
			vdev_dirty(vd, VDD_METASLAB, msp, txg);
		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
		    offset, size);
		msp->ms_allocating_total += size;
	}

	mutex_exit(&msp->ms_lock);

	return (0);
}

typedef struct metaslab_claim_cb_arg_t {
	uint64_t	mcca_txg;
	int		mcca_error;
} metaslab_claim_cb_arg_t;

static void
metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
    uint64_t size, void *arg)
{
	(void) inner_offset;
	metaslab_claim_cb_arg_t *mcca_arg = arg;

	if (mcca_arg->mcca_error == 0) {
		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
		    size, mcca_arg->mcca_txg);
	}
}

int
metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
{
	if (vd->vdev_ops->vdev_op_remap != NULL) {
		metaslab_claim_cb_arg_t arg;

		/*
		 * Only zdb(8) can claim on indirect vdevs.  This is used
		 * to detect leaks of mapped space (that are not accounted
		 * for in the obsolete counts, spacemap, or bpobj).
		 */
		ASSERT(!spa_writeable(vd->vdev_spa));
		arg.mcca_error = 0;
		arg.mcca_txg = txg;

		vd->vdev_ops->vdev_op_remap(vd, offset, size,
		    metaslab_claim_impl_cb, &arg);

		if (arg.mcca_error == 0) {
			arg.mcca_error = metaslab_claim_concrete(vd,
			    offset, size, txg);
		}
		return (arg.mcca_error);
	} else {
		return (metaslab_claim_concrete(vd, offset, size, txg));
	}
}

/*
 * Intent log support: upon opening the pool after a crash, notify the SPA
 * of blocks that the intent log has allocated for immediate write, but
 * which are still considered free by the SPA because the last transaction
 * group didn't commit yet.
 */
static int
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
{
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd;

	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
		return (SET_ERROR(ENXIO));
	}

	ASSERT(DVA_IS_VALID(dva));

	if (DVA_GET_GANG(dva))
		size = vdev_gang_header_asize(vd);

	return (metaslab_claim_impl(vd, offset, size, txg));
}

int
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
    zio_alloc_list_t *zal, zio_t *zio, int allocator)
{
	dva_t *dva = bp->blk_dva;
	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
	int error = 0;

	ASSERT(bp->blk_birth == 0);
	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);

	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);

	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
		/* no vdevs in this class */
		spa_config_exit(spa, SCL_ALLOC, FTAG);
		return (SET_ERROR(ENOSPC));
	}

	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
	ASSERT(BP_GET_NDVAS(bp) == 0);
	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
	ASSERT3P(zal, !=, NULL);

	for (int d = 0; d < ndvas; d++) {
		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
		    txg, flags, zal, allocator);
		if (error != 0) {
			for (d--; d >= 0; d--) {
				metaslab_unalloc_dva(spa, &dva[d], txg);
				metaslab_group_alloc_decrement(spa,
				    DVA_GET_VDEV(&dva[d]), zio, flags,
				    allocator, B_FALSE);
				memset(&dva[d], 0, sizeof (dva_t));
			}
			spa_config_exit(spa, SCL_ALLOC, FTAG);
			return (error);
		} else {
			/*
			 * Update the metaslab group's queue depth
			 * based on the newly allocated dva.
			 */
			metaslab_group_alloc_increment(spa,
			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
		}
	}
	ASSERT(error == 0);
	ASSERT(BP_GET_NDVAS(bp) == ndvas);

	spa_config_exit(spa, SCL_ALLOC, FTAG);

	BP_SET_BIRTH(bp, txg, 0);

	return (0);
}

void
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);

	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));

	/*
	 * If we have a checkpoint for the pool we need to make sure that
	 * the blocks that we free that are part of the checkpoint won't be
	 * reused until the checkpoint is discarded or we revert to it.
	 *
	 * The checkpoint flag is passed down the metaslab_free code path
	 * and is set whenever we want to add a block to the checkpoint's
	 * accounting. That is, we "checkpoint" blocks that existed at the
	 * time the checkpoint was created and are therefore referenced by
	 * the checkpointed uberblock.
	 *
	 * Note that, we don't checkpoint any blocks if the current
	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
	 * normally as they will be referenced by the checkpointed uberblock.
	 */
	boolean_t checkpoint = B_FALSE;
	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
		/*
		 * At this point, if the block is part of the checkpoint
		 * there is no way it was created in the current txg.
		 */
		ASSERT(!now);
		ASSERT3U(spa_syncing_txg(spa), ==, txg);
		checkpoint = B_TRUE;
	}

	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);

	for (int d = 0; d < ndvas; d++) {
		if (now) {
			metaslab_unalloc_dva(spa, &dva[d], txg);
		} else {
			ASSERT3U(txg, ==, spa_syncing_txg(spa));
			metaslab_free_dva(spa, &dva[d], checkpoint);
		}
	}

	spa_config_exit(spa, SCL_FREE, FTAG);
}

int
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	int error = 0;

	ASSERT(!BP_IS_HOLE(bp));

	if (txg != 0) {
		/*
		 * First do a dry run to make sure all DVAs are claimable,
		 * so we don't have to unwind from partial failures below.
		 */
		if ((error = metaslab_claim(spa, bp, 0)) != 0)
			return (error);
	}

	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);

	for (int d = 0; d < ndvas; d++) {
		error = metaslab_claim_dva(spa, &dva[d], txg);
		if (error != 0)
			break;
	}

	spa_config_exit(spa, SCL_ALLOC, FTAG);

	ASSERT(error == 0 || txg == 0);

	return (error);
}

void
metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	uint64_t psize = BP_GET_PSIZE(bp);
	int d;
	vdev_t *vd;

	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(!BP_IS_EMBEDDED(bp));
	ASSERT(psize > 0);

	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);

	for (d = 0; d < ndvas; d++) {
		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
			continue;
		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
	}

	spa_config_exit(spa, SCL_VDEV, FTAG);
}

void
metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	uint64_t psize = BP_GET_PSIZE(bp);
	int d;
	vdev_t *vd;

	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(!BP_IS_EMBEDDED(bp));
	ASSERT(psize > 0);

	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);

	for (d = 0; d < ndvas; d++) {
		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
			continue;
		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
	}

	spa_config_exit(spa, SCL_VDEV, FTAG);
}

static void
metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
    uint64_t size, void *arg)
{
	(void) inner, (void) arg;

	if (vd->vdev_ops == &vdev_indirect_ops)
		return;

	metaslab_check_free_impl(vd, offset, size);
}

static void
metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
{
	metaslab_t *msp;
	spa_t *spa __maybe_unused = vd->vdev_spa;

	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
		return;

	if (vd->vdev_ops->vdev_op_remap != NULL) {
		vd->vdev_ops->vdev_op_remap(vd, offset, size,
		    metaslab_check_free_impl_cb, NULL);
		return;
	}

	ASSERT(vdev_is_concrete(vd));
	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	mutex_enter(&msp->ms_lock);
	if (msp->ms_loaded) {
		range_tree_verify_not_present(msp->ms_allocatable,
		    offset, size);
	}

	/*
	 * Check all segments that currently exist in the freeing pipeline.
	 *
	 * It would intuitively make sense to also check the current allocating
	 * tree since metaslab_unalloc_dva() exists for extents that are
	 * allocated and freed in the same sync pass within the same txg.
	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
	 * segment but then we free part of it within the same txg
	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
	 * current allocating tree.
	 */
	range_tree_verify_not_present(msp->ms_freeing, offset, size);
	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
	range_tree_verify_not_present(msp->ms_freed, offset, size);
	for (int j = 0; j < TXG_DEFER_SIZE; j++)
		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
	range_tree_verify_not_present(msp->ms_trim, offset, size);
	mutex_exit(&msp->ms_lock);
}

void
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
{
	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
		return;

	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
		vdev_t *vd = vdev_lookup_top(spa, vdev);
		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);

		if (DVA_GET_GANG(&bp->blk_dva[i]))
			size = vdev_gang_header_asize(vd);

		ASSERT3P(vd, !=, NULL);

		metaslab_check_free_impl(vd, offset, size);
	}
	spa_config_exit(spa, SCL_VDEV, FTAG);
}

static void
metaslab_group_disable_wait(metaslab_group_t *mg)
{
	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
	while (mg->mg_disabled_updating) {
		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
	}
}

static void
metaslab_group_disabled_increment(metaslab_group_t *mg)
{
	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
	ASSERT(mg->mg_disabled_updating);

	while (mg->mg_ms_disabled >= max_disabled_ms) {
		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
	}
	mg->mg_ms_disabled++;
	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
}

/*
 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
 * We must also track how many metaslabs are currently disabled within a
 * metaslab group and limit them to prevent allocation failures from
 * occurring because all metaslabs are disabled.
 */
void
metaslab_disable(metaslab_t *msp)
{
	ASSERT(!MUTEX_HELD(&msp->ms_lock));
	metaslab_group_t *mg = msp->ms_group;

	mutex_enter(&mg->mg_ms_disabled_lock);

	/*
	 * To keep an accurate count of how many threads have disabled
	 * a specific metaslab group, we only allow one thread to mark
	 * the metaslab group at a time. This ensures that the value of
	 * ms_disabled will be accurate when we decide to mark a metaslab
	 * group as disabled. To do this we force all other threads
	 * to wait till the metaslab's mg_disabled_updating flag is no
	 * longer set.
	 */
	metaslab_group_disable_wait(mg);
	mg->mg_disabled_updating = B_TRUE;
	if (msp->ms_disabled == 0) {
		metaslab_group_disabled_increment(mg);
	}
	mutex_enter(&msp->ms_lock);
	msp->ms_disabled++;
	mutex_exit(&msp->ms_lock);

	mg->mg_disabled_updating = B_FALSE;
	cv_broadcast(&mg->mg_ms_disabled_cv);
	mutex_exit(&mg->mg_ms_disabled_lock);
}

void
metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
{
	metaslab_group_t *mg = msp->ms_group;
	spa_t *spa = mg->mg_vd->vdev_spa;

	/*
	 * Wait for the outstanding IO to be synced to prevent newly
	 * allocated blocks from being overwritten.  This used by
	 * initialize and TRIM which are modifying unallocated space.
	 */
	if (sync)
		txg_wait_synced(spa_get_dsl(spa), 0);

	mutex_enter(&mg->mg_ms_disabled_lock);
	mutex_enter(&msp->ms_lock);
	if (--msp->ms_disabled == 0) {
		mg->mg_ms_disabled--;
		cv_broadcast(&mg->mg_ms_disabled_cv);
		if (unload)
			metaslab_unload(msp);
	}
	mutex_exit(&msp->ms_lock);
	mutex_exit(&mg->mg_ms_disabled_lock);
}

void
metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
{
	ms->ms_unflushed_dirty = dirty;
}

static void
metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
{
	vdev_t *vd = ms->ms_group->mg_vd;
	spa_t *spa = vd->vdev_spa;
	objset_t *mos = spa_meta_objset(spa);

	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));

	metaslab_unflushed_phys_t entry = {
		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
	};
	uint64_t entry_size = sizeof (entry);
	uint64_t entry_offset = ms->ms_id * entry_size;

	uint64_t object = 0;
	int err = zap_lookup(mos, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
	    &object);
	if (err == ENOENT) {
		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
		VERIFY0(zap_add(mos, vd->vdev_top_zap,
		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
		    &object, tx));
	} else {
		VERIFY0(err);
	}

	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
	    &entry, tx);
}

void
metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
{
	ms->ms_unflushed_txg = txg;
	metaslab_update_ondisk_flush_data(ms, tx);
}

boolean_t
metaslab_unflushed_dirty(metaslab_t *ms)
{
	return (ms->ms_unflushed_dirty);
}

uint64_t
metaslab_unflushed_txg(metaslab_t *ms)
{
	return (ms->ms_unflushed_txg);
}

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
	"Allocation granularity (a.k.a. stripe size)");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
	"Load all metaslabs when pool is first opened");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
	"Prevent metaslabs from being unloaded");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
	"Preload potential metaslabs during reassessment");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
	"Delay in txgs after metaslab was last used before unloading");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
	"Delay in milliseconds after metaslab was last used before unloading");

/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
	"Percentage of metaslab group size that should be free to make it "
	"eligible for allocation");

ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
	"Percentage of metaslab group size that should be considered eligible "
	"for allocations unless all metaslab groups within the metaslab class "
	"have also crossed this threshold");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
	ZMOD_RW,
	"Use the fragmentation metric to prefer less fragmented metaslabs");
/* END CSTYLED */

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
	ZMOD_RW, "Fragmentation for metaslab to allow allocation");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
	"Prefer metaslabs with lower LBAs");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
	"Enable metaslab group biasing");

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
	ZMOD_RW, "Enable segment-based metaslab selection");

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
	"Segment-based metaslab selection maximum buckets before switching");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
	"Blocks larger than this size are forced to be gang blocks");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
	"Max distance (bytes) to search forward before using size tree");

ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
	"When looking in size tree, use largest segment instead of exact fit");

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
	"Percentage of memory that can be used to store metaslab range trees");

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
	ZMOD_RW, "Try hard to allocate before ganging");

ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
	"Normally only consider this many of the best metaslabs in each vdev");