1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/refcount.h>
#include <sys/zap.h>
#include <sys/zfs_context.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
/*
* Deadlist concurrency:
*
* Deadlists can only be modified from the syncing thread.
*
* Except for dsl_deadlist_insert(), it can only be modified with the
* dp_config_rwlock held with RW_WRITER.
*
* The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
* be called concurrently, from open context, with the dl_config_rwlock held
* with RW_READER.
*
* Therefore, we only need to provide locking between dsl_deadlist_insert() and
* the accessors, protecting:
* dl_phys->dl_used,comp,uncomp
* and protecting the dl_tree from being loaded.
* The locking is provided by dl_lock. Note that locking on the bpobj_t
* provides its own locking, and dl_oldfmt is immutable.
*/
/*
* Livelist Overview
* ================
*
* Livelists use the same 'deadlist_t' struct as deadlists and are also used
* to track blkptrs over the lifetime of a dataset. Livelists however, belong
* to clones and track the blkptrs that are clone-specific (were born after
* the clone's creation). The exception is embedded block pointers which are
* not included in livelists because they do not need to be freed.
*
* When it comes time to delete the clone, the livelist provides a quick
* reference as to what needs to be freed. For this reason, livelists also track
* when clone-specific blkptrs are freed before deletion to prevent double
* frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
* deletion algorithm iterates backwards over the livelist, matching
* FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
* are also updated in the case when blkptrs are remapped: the old version
* of the blkptr is cancelled out with a FREE and the new version is tracked
* with an ALLOC.
*
* To bound the amount of memory required for deletion, livelists over a
* certain size are spread over multiple entries. Entries are grouped by
* birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
* be in the same entry. This allows us to delete livelists incrementally
* over multiple syncs, one entry at a time.
*
* During the lifetime of the clone, livelists can get extremely large.
* Their size is managed by periodic condensing (preemptively cancelling out
* FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
* the shared space between the clone and its origin is so small that it
* doesn't make sense to use livelists anymore.
*/
/*
* The threshold sublist size at which we create a new sub-livelist for the
* next txg. However, since blkptrs of the same transaction group must be in
* the same sub-list, the actual sublist size may exceed this. When picking the
* size we had to balance the fact that larger sublists mean fewer sublists
* (decreasing the cost of insertion) against the consideration that sublists
* will be loaded into memory and shouldn't take up an inordinate amount of
* space. We settled on ~500000 entries, corresponding to roughly 128M.
*/
unsigned long zfs_livelist_max_entries = 500000;
/*
* We can approximate how much of a performance gain a livelist will give us
* based on the percentage of blocks shared between the clone and its origin.
* 0 percent shared means that the clone has completely diverged and that the
* old method is maximally effective: every read from the block tree will
* result in lots of frees. Livelists give us gains when they track blocks
* scattered across the tree, when one read in the old method might only
* result in a few frees. Once the clone has been overwritten enough,
* writes are no longer sparse and we'll no longer get much of a benefit from
* tracking them with a livelist. We chose a lower limit of 75 percent shared
* (25 percent overwritten). This means that 1/4 of all block pointers will be
* freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
* to make deletion 4x faster. Once the amount of shared space drops below this
* threshold, the clone will revert to the old deletion method.
*/
int zfs_livelist_min_percent_shared = 75;
static int
dsl_deadlist_compare(const void *arg1, const void *arg2)
{
const dsl_deadlist_entry_t *dle1 = arg1;
const dsl_deadlist_entry_t *dle2 = arg2;
return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
}
static int
dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
{
const dsl_deadlist_cache_entry_t *dlce1 = arg1;
const dsl_deadlist_cache_entry_t *dlce2 = arg2;
return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
}
static void
dsl_deadlist_load_tree(dsl_deadlist_t *dl)
{
zap_cursor_t zc;
zap_attribute_t za;
ASSERT(MUTEX_HELD(&dl->dl_lock));
ASSERT(!dl->dl_oldfmt);
if (dl->dl_havecache) {
/*
* After loading the tree, the caller may modify the tree,
* e.g. to add or remove nodes, or to make a node no longer
* refer to the empty_bpobj. These changes would make the
* dl_cache incorrect. Therefore we discard the cache here,
* so that it can't become incorrect.
*/
dsl_deadlist_cache_entry_t *dlce;
void *cookie = NULL;
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
!= NULL) {
kmem_free(dlce, sizeof (*dlce));
}
avl_destroy(&dl->dl_cache);
dl->dl_havecache = B_FALSE;
}
if (dl->dl_havetree)
return;
avl_create(&dl->dl_tree, dsl_deadlist_compare,
sizeof (dsl_deadlist_entry_t),
offsetof(dsl_deadlist_entry_t, dle_node));
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
/*
* Prefetch all the bpobj's so that we do that i/o
* in parallel. Then open them all in a second pass.
*/
dle->dle_bpobj.bpo_object = za.za_first_integer;
dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
avl_add(&dl->dl_tree, dle);
}
zap_cursor_fini(&zc);
for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
dle->dle_bpobj.bpo_object));
}
dl->dl_havetree = B_TRUE;
}
/*
* Load only the non-empty bpobj's into the dl_cache. The cache is an analog
* of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
* is used only for gathering space statistics. The dl_cache has two
* advantages over the dl_tree:
*
* 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
* mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
* many times and to inquire about its (zero) space stats many times.
*
* 2. The dl_cache uses less memory than the dl_tree. We only need to load
* the dl_tree of snapshots when deleting a snapshot, after which we free the
* dl_tree with dsl_deadlist_discard_tree
*/
static void
dsl_deadlist_load_cache(dsl_deadlist_t *dl)
{
zap_cursor_t zc;
zap_attribute_t za;
ASSERT(MUTEX_HELD(&dl->dl_lock));
ASSERT(!dl->dl_oldfmt);
if (dl->dl_havecache)
return;
uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
sizeof (dsl_deadlist_cache_entry_t),
offsetof(dsl_deadlist_cache_entry_t, dlce_node));
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
if (za.za_first_integer == empty_bpobj)
continue;
dsl_deadlist_cache_entry_t *dlce =
kmem_zalloc(sizeof (*dlce), KM_SLEEP);
dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
/*
* Prefetch all the bpobj's so that we do that i/o
* in parallel. Then open them all in a second pass.
*/
dlce->dlce_bpobj = za.za_first_integer;
dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
avl_add(&dl->dl_cache, dlce);
}
zap_cursor_fini(&zc);
for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
bpobj_t bpo;
VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
VERIFY0(bpobj_space(&bpo,
&dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
bpobj_close(&bpo);
}
dl->dl_havecache = B_TRUE;
}
/*
* Discard the tree to save memory.
*/
void
dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
{
mutex_enter(&dl->dl_lock);
if (!dl->dl_havetree) {
mutex_exit(&dl->dl_lock);
return;
}
dsl_deadlist_entry_t *dle;
void *cookie = NULL;
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
}
avl_destroy(&dl->dl_tree);
dl->dl_havetree = B_FALSE;
mutex_exit(&dl->dl_lock);
}
void
dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
{
dsl_deadlist_entry_t *dle;
ASSERT(dsl_deadlist_is_open(dl));
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
mutex_exit(&dl->dl_lock);
for (dle = avl_first(&dl->dl_tree); dle != NULL;
dle = AVL_NEXT(&dl->dl_tree, dle)) {
if (func(args, dle) != 0)
break;
}
}
void
dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
{
dmu_object_info_t doi;
ASSERT(!dsl_deadlist_is_open(dl));
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
dl->dl_os = os;
dl->dl_object = object;
VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
dmu_object_info_from_db(dl->dl_dbuf, &doi);
if (doi.doi_type == DMU_OT_BPOBJ) {
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_oldfmt = B_TRUE;
VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
return;
}
dl->dl_oldfmt = B_FALSE;
dl->dl_phys = dl->dl_dbuf->db_data;
dl->dl_havetree = B_FALSE;
dl->dl_havecache = B_FALSE;
}
boolean_t
dsl_deadlist_is_open(dsl_deadlist_t *dl)
{
return (dl->dl_os != NULL);
}
void
dsl_deadlist_close(dsl_deadlist_t *dl)
{
ASSERT(dsl_deadlist_is_open(dl));
mutex_destroy(&dl->dl_lock);
if (dl->dl_oldfmt) {
dl->dl_oldfmt = B_FALSE;
bpobj_close(&dl->dl_bpobj);
dl->dl_os = NULL;
dl->dl_object = 0;
return;
}
if (dl->dl_havetree) {
dsl_deadlist_entry_t *dle;
void *cookie = NULL;
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
!= NULL) {
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
}
avl_destroy(&dl->dl_tree);
}
if (dl->dl_havecache) {
dsl_deadlist_cache_entry_t *dlce;
void *cookie = NULL;
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
!= NULL) {
kmem_free(dlce, sizeof (*dlce));
}
avl_destroy(&dl->dl_cache);
}
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_phys = NULL;
dl->dl_os = NULL;
dl->dl_object = 0;
}
uint64_t
dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
{
if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
sizeof (dsl_deadlist_phys_t), tx));
}
void
dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
{
dmu_object_info_t doi;
zap_cursor_t zc;
zap_attribute_t za;
VERIFY0(dmu_object_info(os, dlobj, &doi));
if (doi.doi_type == DMU_OT_BPOBJ) {
bpobj_free(os, dlobj, tx);
return;
}
for (zap_cursor_init(&zc, os, dlobj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
uint64_t obj = za.za_first_integer;
if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
bpobj_decr_empty(os, tx);
else
bpobj_free(os, obj, tx);
}
zap_cursor_fini(&zc);
VERIFY0(dmu_object_free(os, dlobj, tx));
}
static void
dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
{
ASSERT(MUTEX_HELD(&dl->dl_lock));
if (dle->dle_bpobj.bpo_object ==
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
bpobj_close(&dle->dle_bpobj);
bpobj_decr_empty(dl->dl_os, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
dle->dle_mintxg, obj, tx));
}
bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
}
static void
dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
uint64_t obj, dmu_tx_t *tx)
{
ASSERT(MUTEX_HELD(&dl->dl_lock));
if (dle->dle_bpobj.bpo_object !=
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
} else {
bpobj_close(&dle->dle_bpobj);
bpobj_decr_empty(dl->dl_os, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
dle->dle_mintxg, obj, tx));
}
}
void
dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
if (dl->dl_oldfmt) {
bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
return;
}
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
int sign = bp_freed ? -1 : +1;
dl->dl_phys->dl_used +=
sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
dle_tofind.dle_mintxg = bp->blk_birth;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
else
dle = AVL_PREV(&dl->dl_tree, dle);
if (dle == NULL) {
zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
bp, (longlong_t)bp->blk_birth);
dle = avl_first(&dl->dl_tree);
}
ASSERT3P(dle, !=, NULL);
dle_enqueue(dl, dle, bp, bp_freed, tx);
mutex_exit(&dl->dl_lock);
}
int
dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, B_FALSE, tx);
return (0);
}
int
dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, B_TRUE, tx);
return (0);
}
/*
* Insert new key in deadlist, which must be > all current entries.
* mintxg is not inclusive.
*/
void
dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
uint64_t obj;
dsl_deadlist_entry_t *dle;
if (dl->dl_oldfmt)
return;
dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
dle->dle_mintxg = mintxg;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
avl_add(&dl->dl_tree, dle);
VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
mintxg, obj, tx));
mutex_exit(&dl->dl_lock);
}
/*
* Remove this key, merging its entries into the previous key.
*/
void
dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle, *dle_prev;
if (dl->dl_oldfmt)
return;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
ASSERT3P(dle, !=, NULL);
dle_prev = AVL_PREV(&dl->dl_tree, dle);
dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
avl_remove(&dl->dl_tree, dle);
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
mutex_exit(&dl->dl_lock);
}
/*
* Remove a deadlist entry and all of its contents by removing the entry from
* the deadlist's avl tree, freeing the entry's bpobj and adjusting the
* deadlist's space accounting accordingly.
*/
void
dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
uint64_t used, comp, uncomp;
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
objset_t *os = dl->dl_os;
if (dl->dl_oldfmt)
return;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
VERIFY3P(dle, !=, NULL);
avl_remove(&dl->dl_tree, dle);
VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
bpobj_decr_empty(os, tx);
} else {
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
}
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
mutex_exit(&dl->dl_lock);
}
/*
* Clear out the contents of a deadlist_entry by freeing its bpobj,
* replacing it with an empty bpobj and adjusting the deadlist's
* space accounting
*/
void
dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
dmu_tx_t *tx)
{
uint64_t new_obj, used, comp, uncomp;
objset_t *os = dl->dl_os;
mutex_enter(&dl->dl_lock);
VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
bpobj_decr_empty(os, tx);
else
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
bpobj_close(&dle->dle_bpobj);
new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
new_obj, tx));
ASSERT(bpobj_is_empty(&dle->dle_bpobj));
mutex_exit(&dl->dl_lock);
}
/*
* Return the first entry in deadlist's avl tree
*/
dsl_deadlist_entry_t *
dsl_deadlist_first(dsl_deadlist_t *dl)
{
dsl_deadlist_entry_t *dle;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle = avl_first(&dl->dl_tree);
mutex_exit(&dl->dl_lock);
return (dle);
}
/*
* Return the last entry in deadlist's avl tree
*/
dsl_deadlist_entry_t *
dsl_deadlist_last(dsl_deadlist_t *dl)
{
dsl_deadlist_entry_t *dle;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle = avl_last(&dl->dl_tree);
mutex_exit(&dl->dl_lock);
return (dle);
}
/*
* Walk ds's snapshots to regenerate generate ZAP & AVL.
*/
static void
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
uint64_t mrs_obj, dmu_tx_t *tx)
{
dsl_deadlist_t dl = { 0 };
dsl_pool_t *dp = dmu_objset_pool(os);
dsl_deadlist_open(&dl, os, dlobj);
if (dl.dl_oldfmt) {
dsl_deadlist_close(&dl);
return;
}
while (mrs_obj != 0) {
dsl_dataset_t *ds;
VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
dsl_deadlist_add_key(&dl,
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
dsl_dataset_rele(ds, FTAG);
}
dsl_deadlist_close(&dl);
}
uint64_t
dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
uint64_t mrs_obj, dmu_tx_t *tx)
{
dsl_deadlist_entry_t *dle;
uint64_t newobj;
newobj = dsl_deadlist_alloc(dl->dl_os, tx);
if (dl->dl_oldfmt) {
dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
return (newobj);
}
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
for (dle = avl_first(&dl->dl_tree); dle;
dle = AVL_NEXT(&dl->dl_tree, dle)) {
uint64_t obj;
if (dle->dle_mintxg >= maxtxg)
break;
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(zap_add_int_key(dl->dl_os, newobj,
dle->dle_mintxg, obj, tx));
}
mutex_exit(&dl->dl_lock);
return (newobj);
}
void
dsl_deadlist_space(dsl_deadlist_t *dl,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
ASSERT(dsl_deadlist_is_open(dl));
if (dl->dl_oldfmt) {
VERIFY0(bpobj_space(&dl->dl_bpobj,
usedp, compp, uncompp));
return;
}
mutex_enter(&dl->dl_lock);
*usedp = dl->dl_phys->dl_used;
*compp = dl->dl_phys->dl_comp;
*uncompp = dl->dl_phys->dl_uncomp;
mutex_exit(&dl->dl_lock);
}
/*
* return space used in the range (mintxg, maxtxg].
* Includes maxtxg, does not include mintxg.
* mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
* UINT64_MAX).
*/
void
dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
dsl_deadlist_cache_entry_t *dlce;
dsl_deadlist_cache_entry_t dlce_tofind;
avl_index_t where;
if (dl->dl_oldfmt) {
VERIFY0(bpobj_space_range(&dl->dl_bpobj,
mintxg, maxtxg, usedp, compp, uncompp));
return;
}
*usedp = *compp = *uncompp = 0;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_cache(dl);
dlce_tofind.dlce_mintxg = mintxg;
dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
/*
* If this mintxg doesn't exist, it may be an empty_bpobj which
* is omitted from the sparse tree. Start at the next non-empty
* entry.
*/
if (dlce == NULL)
dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
for (; dlce && dlce->dlce_mintxg < maxtxg;
dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
*usedp += dlce->dlce_bytes;
*compp += dlce->dlce_comp;
*uncompp += dlce->dlce_uncomp;
}
mutex_exit(&dl->dl_lock);
}
static void
dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
uint64_t used, comp, uncomp;
bpobj_t bpo;
ASSERT(MUTEX_HELD(&dl->dl_lock));
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
bpobj_close(&bpo);
dsl_deadlist_load_tree(dl);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used += used;
dl->dl_phys->dl_comp += comp;
dl->dl_phys->dl_uncomp += uncomp;
dle_tofind.dle_mintxg = birth;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
dle_enqueue_subobj(dl, dle, obj, tx);
}
static int
dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, bp_freed, tx);
return (0);
}
/*
* Merge the deadlist pointed to by 'obj' into dl. obj will be left as
* an empty deadlist.
*/
void
dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
dmu_buf_t *bonus;
dsl_deadlist_phys_t *dlp;
dmu_object_info_t doi;
VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
if (doi.doi_type == DMU_OT_BPOBJ) {
bpobj_t bpo;
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
bpobj_close(&bpo);
return;
}
mutex_enter(&dl->dl_lock);
for (zap_cursor_init(&zc, dl->dl_os, obj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
}
zap_cursor_fini(&zc);
VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
dlp = bonus->db_data;
dmu_buf_will_dirty(bonus, tx);
bzero(dlp, sizeof (*dlp));
dmu_buf_rele(bonus, FTAG);
mutex_exit(&dl->dl_lock);
}
/*
* Remove entries on dl that are born > mintxg, and put them on the bpobj.
*/
void
dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
ASSERT(!dl->dl_oldfmt);
mutex_enter(&dl->dl_lock);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
while (dle) {
uint64_t used, comp, uncomp;
dsl_deadlist_entry_t *dle_next;
bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
VERIFY0(bpobj_space(&dle->dle_bpobj,
&used, &comp, &uncomp));
ASSERT3U(dl->dl_phys->dl_used, >=, used);
ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
dle->dle_mintxg, tx));
dle_next = AVL_NEXT(&dl->dl_tree, dle);
avl_remove(&dl->dl_tree, dle);
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
dle = dle_next;
}
mutex_exit(&dl->dl_lock);
}
typedef struct livelist_entry {
const blkptr_t *le_bp;
avl_node_t le_node;
} livelist_entry_t;
static int
livelist_compare(const void *larg, const void *rarg)
{
const blkptr_t *l = ((livelist_entry_t *)larg)->le_bp;
const blkptr_t *r = ((livelist_entry_t *)rarg)->le_bp;
/* Sort them according to dva[0] */
uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
if (l_dva0_vdev != r_dva0_vdev)
return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
/* if vdevs are equal, sort by offsets. */
uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
if (l_dva0_offset == r_dva0_offset)
ASSERT3U(l->blk_birth, ==, r->blk_birth);
return (TREE_CMP(l_dva0_offset, r_dva0_offset));
}
struct livelist_iter_arg {
avl_tree_t *avl;
bplist_t *to_free;
zthr_t *t;
};
/*
* Expects an AVL tree which is incrementally filled will FREE blkptrs
* and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
* corresponding FREE are stored in the supplied bplist.
*/
static int
dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
struct livelist_iter_arg *lia = arg;
avl_tree_t *avl = lia->avl;
bplist_t *to_free = lia->to_free;
zthr_t *t = lia->t;
ASSERT(tx == NULL);
if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
return (SET_ERROR(EINTR));
if (bp_freed) {
livelist_entry_t *node = kmem_alloc(sizeof (livelist_entry_t),
KM_SLEEP);
blkptr_t *temp_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
*temp_bp = *bp;
node->le_bp = temp_bp;
avl_add(avl, node);
} else {
livelist_entry_t node;
node.le_bp = bp;
livelist_entry_t *found = avl_find(avl, &node, NULL);
if (found != NULL) {
avl_remove(avl, found);
kmem_free((blkptr_t *)found->le_bp, sizeof (blkptr_t));
kmem_free(found, sizeof (livelist_entry_t));
} else {
bplist_append(to_free, bp);
}
}
return (0);
}
/*
* Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
* which have an ALLOC entry but no matching FREE
*/
int
dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
uint64_t *size)
{
avl_tree_t avl;
avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
offsetof(livelist_entry_t, le_node));
/* process the sublist */
struct livelist_iter_arg arg = {
.avl = &avl,
.to_free = to_free,
.t = t
};
int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
avl_destroy(&avl);
return (err);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, ULONG, ZMOD_RW,
"Size to start the next sub-livelist in a livelist");
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
"Threshold at which livelist is disabled");
/* END CSTYLED */
|