aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/dbuf.c
blob: 191e5e043942115bce471bf84ff3b1a4d062949e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 * Copyright (c) 2019, Klara Inc.
 * Copyright (c) 2019, Allan Jude
 */

#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/dmu.h>
#include <sys/dmu_send.h>
#include <sys/dmu_impl.h>
#include <sys/dbuf.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dmu_tx.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu_zfetch.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/zfeature.h>
#include <sys/blkptr.h>
#include <sys/range_tree.h>
#include <sys/trace_zfs.h>
#include <sys/callb.h>
#include <sys/abd.h>
#include <sys/vdev.h>
#include <cityhash.h>
#include <sys/spa_impl.h>
#include <sys/wmsum.h>
#include <sys/vdev_impl.h>

static kstat_t *dbuf_ksp;

typedef struct dbuf_stats {
	/*
	 * Various statistics about the size of the dbuf cache.
	 */
	kstat_named_t cache_count;
	kstat_named_t cache_size_bytes;
	kstat_named_t cache_size_bytes_max;
	/*
	 * Statistics regarding the bounds on the dbuf cache size.
	 */
	kstat_named_t cache_target_bytes;
	kstat_named_t cache_lowater_bytes;
	kstat_named_t cache_hiwater_bytes;
	/*
	 * Total number of dbuf cache evictions that have occurred.
	 */
	kstat_named_t cache_total_evicts;
	/*
	 * The distribution of dbuf levels in the dbuf cache and
	 * the total size of all dbufs at each level.
	 */
	kstat_named_t cache_levels[DN_MAX_LEVELS];
	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
	/*
	 * Statistics about the dbuf hash table.
	 */
	kstat_named_t hash_hits;
	kstat_named_t hash_misses;
	kstat_named_t hash_collisions;
	kstat_named_t hash_elements;
	kstat_named_t hash_elements_max;
	/*
	 * Number of sublists containing more than one dbuf in the dbuf
	 * hash table. Keep track of the longest hash chain.
	 */
	kstat_named_t hash_chains;
	kstat_named_t hash_chain_max;
	/*
	 * Number of times a dbuf_create() discovers that a dbuf was
	 * already created and in the dbuf hash table.
	 */
	kstat_named_t hash_insert_race;
	/*
	 * Number of entries in the hash table dbuf and mutex arrays.
	 */
	kstat_named_t hash_table_count;
	kstat_named_t hash_mutex_count;
	/*
	 * Statistics about the size of the metadata dbuf cache.
	 */
	kstat_named_t metadata_cache_count;
	kstat_named_t metadata_cache_size_bytes;
	kstat_named_t metadata_cache_size_bytes_max;
	/*
	 * For diagnostic purposes, this is incremented whenever we can't add
	 * something to the metadata cache because it's full, and instead put
	 * the data in the regular dbuf cache.
	 */
	kstat_named_t metadata_cache_overflow;
} dbuf_stats_t;

dbuf_stats_t dbuf_stats = {
	{ "cache_count",			KSTAT_DATA_UINT64 },
	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
	{ "hash_hits",				KSTAT_DATA_UINT64 },
	{ "hash_misses",			KSTAT_DATA_UINT64 },
	{ "hash_collisions",			KSTAT_DATA_UINT64 },
	{ "hash_elements",			KSTAT_DATA_UINT64 },
	{ "hash_elements_max",			KSTAT_DATA_UINT64 },
	{ "hash_chains",			KSTAT_DATA_UINT64 },
	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
	{ "hash_table_count",			KSTAT_DATA_UINT64 },
	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
};

struct {
	wmsum_t cache_count;
	wmsum_t cache_total_evicts;
	wmsum_t cache_levels[DN_MAX_LEVELS];
	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
	wmsum_t hash_hits;
	wmsum_t hash_misses;
	wmsum_t hash_collisions;
	wmsum_t hash_chains;
	wmsum_t hash_insert_race;
	wmsum_t metadata_cache_count;
	wmsum_t metadata_cache_overflow;
} dbuf_sums;

#define	DBUF_STAT_INCR(stat, val)	\
	wmsum_add(&dbuf_sums.stat, val);
#define	DBUF_STAT_DECR(stat, val)	\
	DBUF_STAT_INCR(stat, -(val));
#define	DBUF_STAT_BUMP(stat)		\
	DBUF_STAT_INCR(stat, 1);
#define	DBUF_STAT_BUMPDOWN(stat)	\
	DBUF_STAT_INCR(stat, -1);
#define	DBUF_STAT_MAX(stat, v) {					\
	uint64_t _m;							\
	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
		continue;						\
}

static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);

/*
 * Global data structures and functions for the dbuf cache.
 */
static kmem_cache_t *dbuf_kmem_cache;
static taskq_t *dbu_evict_taskq;

static kthread_t *dbuf_cache_evict_thread;
static kmutex_t dbuf_evict_lock;
static kcondvar_t dbuf_evict_cv;
static boolean_t dbuf_evict_thread_exit;

/*
 * There are two dbuf caches; each dbuf can only be in one of them at a time.
 *
 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
 *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
 *    that represent the metadata that describes filesystems/snapshots/
 *    bookmarks/properties/etc. We only evict from this cache when we export a
 *    pool, to short-circuit as much I/O as possible for all administrative
 *    commands that need the metadata. There is no eviction policy for this
 *    cache, because we try to only include types in it which would occupy a
 *    very small amount of space per object but create a large impact on the
 *    performance of these commands. Instead, after it reaches a maximum size
 *    (which should only happen on very small memory systems with a very large
 *    number of filesystem objects), we stop taking new dbufs into the
 *    metadata cache, instead putting them in the normal dbuf cache.
 *
 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
 *    are not currently held but have been recently released. These dbufs
 *    are not eligible for arc eviction until they are aged out of the cache.
 *    Dbufs that are aged out of the cache will be immediately destroyed and
 *    become eligible for arc eviction.
 *
 * Dbufs are added to these caches once the last hold is released. If a dbuf is
 * later accessed and still exists in the dbuf cache, then it will be removed
 * from the cache and later re-added to the head of the cache.
 *
 * If a given dbuf meets the requirements for the metadata cache, it will go
 * there, otherwise it will be considered for the generic LRU dbuf cache. The
 * caches and the refcounts tracking their sizes are stored in an array indexed
 * by those caches' matching enum values (from dbuf_cached_state_t).
 */
typedef struct dbuf_cache {
	multilist_t cache;
	zfs_refcount_t size ____cacheline_aligned;
} dbuf_cache_t;
dbuf_cache_t dbuf_caches[DB_CACHE_MAX];

/* Size limits for the caches */
static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;

/* Set the default sizes of the caches to log2 fraction of arc size */
static uint_t dbuf_cache_shift = 5;
static uint_t dbuf_metadata_cache_shift = 6;

/* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
static uint_t dbuf_mutex_cache_shift = 0;

static unsigned long dbuf_cache_target_bytes(void);
static unsigned long dbuf_metadata_cache_target_bytes(void);

/*
 * The LRU dbuf cache uses a three-stage eviction policy:
 *	- A low water marker designates when the dbuf eviction thread
 *	should stop evicting from the dbuf cache.
 *	- When we reach the maximum size (aka mid water mark), we
 *	signal the eviction thread to run.
 *	- The high water mark indicates when the eviction thread
 *	is unable to keep up with the incoming load and eviction must
 *	happen in the context of the calling thread.
 *
 * The dbuf cache:
 *                                                 (max size)
 *                                      low water   mid water   hi water
 * +----------------------------------------+----------+----------+
 * |                                        |          |          |
 * |                                        |          |          |
 * |                                        |          |          |
 * |                                        |          |          |
 * +----------------------------------------+----------+----------+
 *                                        stop        signal     evict
 *                                      evicting     eviction   directly
 *                                                    thread
 *
 * The high and low water marks indicate the operating range for the eviction
 * thread. The low water mark is, by default, 90% of the total size of the
 * cache and the high water mark is at 110% (both of these percentages can be
 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
 * respectively). The eviction thread will try to ensure that the cache remains
 * within this range by waking up every second and checking if the cache is
 * above the low water mark. The thread can also be woken up by callers adding
 * elements into the cache if the cache is larger than the mid water (i.e max
 * cache size). Once the eviction thread is woken up and eviction is required,
 * it will continue evicting buffers until it's able to reduce the cache size
 * to the low water mark. If the cache size continues to grow and hits the high
 * water mark, then callers adding elements to the cache will begin to evict
 * directly from the cache until the cache is no longer above the high water
 * mark.
 */

/*
 * The percentage above and below the maximum cache size.
 */
static uint_t dbuf_cache_hiwater_pct = 10;
static uint_t dbuf_cache_lowater_pct = 10;

static int
dbuf_cons(void *vdb, void *unused, int kmflag)
{
	(void) unused, (void) kmflag;
	dmu_buf_impl_t *db = vdb;
	memset(db, 0, sizeof (dmu_buf_impl_t));

	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
	rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
	multilist_link_init(&db->db_cache_link);
	zfs_refcount_create(&db->db_holds);

	return (0);
}

static void
dbuf_dest(void *vdb, void *unused)
{
	(void) unused;
	dmu_buf_impl_t *db = vdb;
	mutex_destroy(&db->db_mtx);
	rw_destroy(&db->db_rwlock);
	cv_destroy(&db->db_changed);
	ASSERT(!multilist_link_active(&db->db_cache_link));
	zfs_refcount_destroy(&db->db_holds);
}

/*
 * dbuf hash table routines
 */
static dbuf_hash_table_t dbuf_hash_table;

/*
 * We use Cityhash for this. It's fast, and has good hash properties without
 * requiring any large static buffers.
 */
static uint64_t
dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
{
	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
}

#define	DTRACE_SET_STATE(db, why) \
	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
	    const char *, why)

#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
	((dbuf)->db.db_object == (obj) &&		\
	(dbuf)->db_objset == (os) &&			\
	(dbuf)->db_level == (level) &&			\
	(dbuf)->db_blkid == (blkid))

dmu_buf_impl_t *
dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
    uint64_t *hash_out)
{
	dbuf_hash_table_t *h = &dbuf_hash_table;
	uint64_t hv;
	uint64_t idx;
	dmu_buf_impl_t *db;

	hv = dbuf_hash(os, obj, level, blkid);
	idx = hv & h->hash_table_mask;

	mutex_enter(DBUF_HASH_MUTEX(h, idx));
	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
			mutex_enter(&db->db_mtx);
			if (db->db_state != DB_EVICTING) {
				mutex_exit(DBUF_HASH_MUTEX(h, idx));
				return (db);
			}
			mutex_exit(&db->db_mtx);
		}
	}
	mutex_exit(DBUF_HASH_MUTEX(h, idx));
	if (hash_out != NULL)
		*hash_out = hv;
	return (NULL);
}

static dmu_buf_impl_t *
dbuf_find_bonus(objset_t *os, uint64_t object)
{
	dnode_t *dn;
	dmu_buf_impl_t *db = NULL;

	if (dnode_hold(os, object, FTAG, &dn) == 0) {
		rw_enter(&dn->dn_struct_rwlock, RW_READER);
		if (dn->dn_bonus != NULL) {
			db = dn->dn_bonus;
			mutex_enter(&db->db_mtx);
		}
		rw_exit(&dn->dn_struct_rwlock);
		dnode_rele(dn, FTAG);
	}
	return (db);
}

/*
 * Insert an entry into the hash table.  If there is already an element
 * equal to elem in the hash table, then the already existing element
 * will be returned and the new element will not be inserted.
 * Otherwise returns NULL.
 */
static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t *db)
{
	dbuf_hash_table_t *h = &dbuf_hash_table;
	objset_t *os = db->db_objset;
	uint64_t obj = db->db.db_object;
	int level = db->db_level;
	uint64_t blkid, idx;
	dmu_buf_impl_t *dbf;
	uint32_t i;

	blkid = db->db_blkid;
	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
	idx = db->db_hash & h->hash_table_mask;

	mutex_enter(DBUF_HASH_MUTEX(h, idx));
	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
	    dbf = dbf->db_hash_next, i++) {
		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
			mutex_enter(&dbf->db_mtx);
			if (dbf->db_state != DB_EVICTING) {
				mutex_exit(DBUF_HASH_MUTEX(h, idx));
				return (dbf);
			}
			mutex_exit(&dbf->db_mtx);
		}
	}

	if (i > 0) {
		DBUF_STAT_BUMP(hash_collisions);
		if (i == 1)
			DBUF_STAT_BUMP(hash_chains);

		DBUF_STAT_MAX(hash_chain_max, i);
	}

	mutex_enter(&db->db_mtx);
	db->db_hash_next = h->hash_table[idx];
	h->hash_table[idx] = db;
	mutex_exit(DBUF_HASH_MUTEX(h, idx));
	uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
	DBUF_STAT_MAX(hash_elements_max, he);

	return (NULL);
}

/*
 * This returns whether this dbuf should be stored in the metadata cache, which
 * is based on whether it's from one of the dnode types that store data related
 * to traversing dataset hierarchies.
 */
static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
{
	DB_DNODE_ENTER(db);
	dmu_object_type_t type = DB_DNODE(db)->dn_type;
	DB_DNODE_EXIT(db);

	/* Check if this dbuf is one of the types we care about */
	if (DMU_OT_IS_METADATA_CACHED(type)) {
		/* If we hit this, then we set something up wrong in dmu_ot */
		ASSERT(DMU_OT_IS_METADATA(type));

		/*
		 * Sanity check for small-memory systems: don't allocate too
		 * much memory for this purpose.
		 */
		if (zfs_refcount_count(
		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
		    dbuf_metadata_cache_target_bytes()) {
			DBUF_STAT_BUMP(metadata_cache_overflow);
			return (B_FALSE);
		}

		return (B_TRUE);
	}

	return (B_FALSE);
}

/*
 * Remove an entry from the hash table.  It must be in the EVICTING state.
 */
static void
dbuf_hash_remove(dmu_buf_impl_t *db)
{
	dbuf_hash_table_t *h = &dbuf_hash_table;
	uint64_t idx;
	dmu_buf_impl_t *dbf, **dbp;

	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
	    db->db_blkid), ==, db->db_hash);
	idx = db->db_hash & h->hash_table_mask;

	/*
	 * We mustn't hold db_mtx to maintain lock ordering:
	 * DBUF_HASH_MUTEX > db_mtx.
	 */
	ASSERT(zfs_refcount_is_zero(&db->db_holds));
	ASSERT(db->db_state == DB_EVICTING);
	ASSERT(!MUTEX_HELD(&db->db_mtx));

	mutex_enter(DBUF_HASH_MUTEX(h, idx));
	dbp = &h->hash_table[idx];
	while ((dbf = *dbp) != db) {
		dbp = &dbf->db_hash_next;
		ASSERT(dbf != NULL);
	}
	*dbp = db->db_hash_next;
	db->db_hash_next = NULL;
	if (h->hash_table[idx] &&
	    h->hash_table[idx]->db_hash_next == NULL)
		DBUF_STAT_BUMPDOWN(hash_chains);
	mutex_exit(DBUF_HASH_MUTEX(h, idx));
	atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
}

typedef enum {
	DBVU_EVICTING,
	DBVU_NOT_EVICTING
} dbvu_verify_type_t;

static void
dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
{
#ifdef ZFS_DEBUG
	int64_t holds;

	if (db->db_user == NULL)
		return;

	/* Only data blocks support the attachment of user data. */
	ASSERT(db->db_level == 0);

	/* Clients must resolve a dbuf before attaching user data. */
	ASSERT(db->db.db_data != NULL);
	ASSERT3U(db->db_state, ==, DB_CACHED);

	holds = zfs_refcount_count(&db->db_holds);
	if (verify_type == DBVU_EVICTING) {
		/*
		 * Immediate eviction occurs when holds == dirtycnt.
		 * For normal eviction buffers, holds is zero on
		 * eviction, except when dbuf_fix_old_data() calls
		 * dbuf_clear_data().  However, the hold count can grow
		 * during eviction even though db_mtx is held (see
		 * dmu_bonus_hold() for an example), so we can only
		 * test the generic invariant that holds >= dirtycnt.
		 */
		ASSERT3U(holds, >=, db->db_dirtycnt);
	} else {
		if (db->db_user_immediate_evict == TRUE)
			ASSERT3U(holds, >=, db->db_dirtycnt);
		else
			ASSERT3U(holds, >, 0);
	}
#endif
}

static void
dbuf_evict_user(dmu_buf_impl_t *db)
{
	dmu_buf_user_t *dbu = db->db_user;

	ASSERT(MUTEX_HELD(&db->db_mtx));

	if (dbu == NULL)
		return;

	dbuf_verify_user(db, DBVU_EVICTING);
	db->db_user = NULL;

#ifdef ZFS_DEBUG
	if (dbu->dbu_clear_on_evict_dbufp != NULL)
		*dbu->dbu_clear_on_evict_dbufp = NULL;
#endif

	/*
	 * There are two eviction callbacks - one that we call synchronously
	 * and one that we invoke via a taskq.  The async one is useful for
	 * avoiding lock order reversals and limiting stack depth.
	 *
	 * Note that if we have a sync callback but no async callback,
	 * it's likely that the sync callback will free the structure
	 * containing the dbu.  In that case we need to take care to not
	 * dereference dbu after calling the sync evict func.
	 */
	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);

	if (dbu->dbu_evict_func_sync != NULL)
		dbu->dbu_evict_func_sync(dbu);

	if (has_async) {
		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
		    dbu, 0, &dbu->dbu_tqent);
	}
}

boolean_t
dbuf_is_metadata(dmu_buf_impl_t *db)
{
	/*
	 * Consider indirect blocks and spill blocks to be meta data.
	 */
	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
		return (B_TRUE);
	} else {
		boolean_t is_metadata;

		DB_DNODE_ENTER(db);
		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
		DB_DNODE_EXIT(db);

		return (is_metadata);
	}
}

/*
 * We want to exclude buffers that are on a special allocation class from
 * L2ARC.
 */
boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t *db)
{
	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
	    (db->db_objset->os_secondary_cache ==
	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
		if (l2arc_exclude_special == 0)
			return (B_TRUE);

		blkptr_t *bp = db->db_blkptr;
		if (bp == NULL || BP_IS_HOLE(bp))
			return (B_FALSE);
		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
		vdev_t *vd = NULL;

		if (vdev < rvd->vdev_children)
			vd = rvd->vdev_child[vdev];

		if (vd == NULL)
			return (B_TRUE);

		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
			return (B_TRUE);
	}
	return (B_FALSE);
}

static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
{
	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
	    (level > 0 ||
	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
		if (l2arc_exclude_special == 0)
			return (B_TRUE);

		if (bp == NULL || BP_IS_HOLE(bp))
			return (B_FALSE);
		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
		vdev_t *vd = NULL;

		if (vdev < rvd->vdev_children)
			vd = rvd->vdev_child[vdev];

		if (vd == NULL)
			return (B_TRUE);

		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
			return (B_TRUE);
	}
	return (B_FALSE);
}


/*
 * This function *must* return indices evenly distributed between all
 * sublists of the multilist. This is needed due to how the dbuf eviction
 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
 * distributed between all sublists and uses this assumption when
 * deciding which sublist to evict from and how much to evict from it.
 */
static unsigned int
dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
{
	dmu_buf_impl_t *db = obj;

	/*
	 * The assumption here, is the hash value for a given
	 * dmu_buf_impl_t will remain constant throughout it's lifetime
	 * (i.e. it's objset, object, level and blkid fields don't change).
	 * Thus, we don't need to store the dbuf's sublist index
	 * on insertion, as this index can be recalculated on removal.
	 *
	 * Also, the low order bits of the hash value are thought to be
	 * distributed evenly. Otherwise, in the case that the multilist
	 * has a power of two number of sublists, each sublists' usage
	 * would not be evenly distributed. In this context full 64bit
	 * division would be a waste of time, so limit it to 32 bits.
	 */
	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
	    db->db_level, db->db_blkid) %
	    multilist_get_num_sublists(ml));
}

/*
 * The target size of the dbuf cache can grow with the ARC target,
 * unless limited by the tunable dbuf_cache_max_bytes.
 */
static inline unsigned long
dbuf_cache_target_bytes(void)
{
	return (MIN(dbuf_cache_max_bytes,
	    arc_target_bytes() >> dbuf_cache_shift));
}

/*
 * The target size of the dbuf metadata cache can grow with the ARC target,
 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
 */
static inline unsigned long
dbuf_metadata_cache_target_bytes(void)
{
	return (MIN(dbuf_metadata_cache_max_bytes,
	    arc_target_bytes() >> dbuf_metadata_cache_shift));
}

static inline uint64_t
dbuf_cache_hiwater_bytes(void)
{
	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
	return (dbuf_cache_target +
	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
}

static inline uint64_t
dbuf_cache_lowater_bytes(void)
{
	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
	return (dbuf_cache_target -
	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
}

static inline boolean_t
dbuf_cache_above_lowater(void)
{
	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
	    dbuf_cache_lowater_bytes());
}

/*
 * Evict the oldest eligible dbuf from the dbuf cache.
 */
static void
dbuf_evict_one(void)
{
	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
	multilist_sublist_t *mls = multilist_sublist_lock(
	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);

	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));

	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
		db = multilist_sublist_prev(mls, db);
	}

	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
	    multilist_sublist_t *, mls);

	if (db != NULL) {
		multilist_sublist_remove(mls, db);
		multilist_sublist_unlock(mls);
		(void) zfs_refcount_remove_many(
		    &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
		DBUF_STAT_BUMPDOWN(cache_count);
		DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
		    db->db.db_size);
		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
		db->db_caching_status = DB_NO_CACHE;
		dbuf_destroy(db);
		DBUF_STAT_BUMP(cache_total_evicts);
	} else {
		multilist_sublist_unlock(mls);
	}
}

/*
 * The dbuf evict thread is responsible for aging out dbufs from the
 * cache. Once the cache has reached it's maximum size, dbufs are removed
 * and destroyed. The eviction thread will continue running until the size
 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
 * out of the cache it is destroyed and becomes eligible for arc eviction.
 */
static __attribute__((noreturn)) void
dbuf_evict_thread(void *unused)
{
	(void) unused;
	callb_cpr_t cpr;

	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);

	mutex_enter(&dbuf_evict_lock);
	while (!dbuf_evict_thread_exit) {
		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
			CALLB_CPR_SAFE_BEGIN(&cpr);
			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
		}
		mutex_exit(&dbuf_evict_lock);

		/*
		 * Keep evicting as long as we're above the low water mark
		 * for the cache. We do this without holding the locks to
		 * minimize lock contention.
		 */
		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
			dbuf_evict_one();
		}

		mutex_enter(&dbuf_evict_lock);
	}

	dbuf_evict_thread_exit = B_FALSE;
	cv_broadcast(&dbuf_evict_cv);
	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
	thread_exit();
}

/*
 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
 * If the dbuf cache is at its high water mark, then evict a dbuf from the
 * dbuf cache using the caller's context.
 */
static void
dbuf_evict_notify(uint64_t size)
{
	/*
	 * We check if we should evict without holding the dbuf_evict_lock,
	 * because it's OK to occasionally make the wrong decision here,
	 * and grabbing the lock results in massive lock contention.
	 */
	if (size > dbuf_cache_target_bytes()) {
		if (size > dbuf_cache_hiwater_bytes())
			dbuf_evict_one();
		cv_signal(&dbuf_evict_cv);
	}
}

static int
dbuf_kstat_update(kstat_t *ksp, int rw)
{
	dbuf_stats_t *ds = ksp->ks_data;
	dbuf_hash_table_t *h = &dbuf_hash_table;

	if (rw == KSTAT_WRITE)
		return (SET_ERROR(EACCES));

	ds->cache_count.value.ui64 =
	    wmsum_value(&dbuf_sums.cache_count);
	ds->cache_size_bytes.value.ui64 =
	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
	ds->cache_total_evicts.value.ui64 =
	    wmsum_value(&dbuf_sums.cache_total_evicts);
	for (int i = 0; i < DN_MAX_LEVELS; i++) {
		ds->cache_levels[i].value.ui64 =
		    wmsum_value(&dbuf_sums.cache_levels[i]);
		ds->cache_levels_bytes[i].value.ui64 =
		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
	}
	ds->hash_hits.value.ui64 =
	    wmsum_value(&dbuf_sums.hash_hits);
	ds->hash_misses.value.ui64 =
	    wmsum_value(&dbuf_sums.hash_misses);
	ds->hash_collisions.value.ui64 =
	    wmsum_value(&dbuf_sums.hash_collisions);
	ds->hash_chains.value.ui64 =
	    wmsum_value(&dbuf_sums.hash_chains);
	ds->hash_insert_race.value.ui64 =
	    wmsum_value(&dbuf_sums.hash_insert_race);
	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
	ds->metadata_cache_count.value.ui64 =
	    wmsum_value(&dbuf_sums.metadata_cache_count);
	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
	ds->metadata_cache_overflow.value.ui64 =
	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
	return (0);
}

void
dbuf_init(void)
{
	uint64_t hmsize, hsize = 1ULL << 16;
	dbuf_hash_table_t *h = &dbuf_hash_table;

	/*
	 * The hash table is big enough to fill one eighth of physical memory
	 * with an average block size of zfs_arc_average_blocksize (default 8K).
	 * By default, the table will take up
	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
	 */
	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
		hsize <<= 1;

	h->hash_table = NULL;
	while (h->hash_table == NULL) {
		h->hash_table_mask = hsize - 1;

		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
		if (h->hash_table == NULL)
			hsize >>= 1;

		ASSERT3U(hsize, >=, 1ULL << 10);
	}

	/*
	 * The hash table buckets are protected by an array of mutexes where
	 * each mutex is reponsible for protecting 128 buckets.  A minimum
	 * array size of 8192 is targeted to avoid contention.
	 */
	if (dbuf_mutex_cache_shift == 0)
		hmsize = MAX(hsize >> 7, 1ULL << 13);
	else
		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);

	h->hash_mutexes = NULL;
	while (h->hash_mutexes == NULL) {
		h->hash_mutex_mask = hmsize - 1;

		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
		    KM_SLEEP);
		if (h->hash_mutexes == NULL)
			hmsize >>= 1;
	}

	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
	    sizeof (dmu_buf_impl_t),
	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);

	for (int i = 0; i < hmsize; i++)
		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);

	dbuf_stats_init(h);

	/*
	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
	 * configuration is not required.
	 */
	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);

	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
		multilist_create(&dbuf_caches[dcs].cache,
		    sizeof (dmu_buf_impl_t),
		    offsetof(dmu_buf_impl_t, db_cache_link),
		    dbuf_cache_multilist_index_func);
		zfs_refcount_create(&dbuf_caches[dcs].size);
	}

	dbuf_evict_thread_exit = B_FALSE;
	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
	    NULL, 0, &p0, TS_RUN, minclsyspri);

	wmsum_init(&dbuf_sums.cache_count, 0);
	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
	for (int i = 0; i < DN_MAX_LEVELS; i++) {
		wmsum_init(&dbuf_sums.cache_levels[i], 0);
		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
	}
	wmsum_init(&dbuf_sums.hash_hits, 0);
	wmsum_init(&dbuf_sums.hash_misses, 0);
	wmsum_init(&dbuf_sums.hash_collisions, 0);
	wmsum_init(&dbuf_sums.hash_chains, 0);
	wmsum_init(&dbuf_sums.hash_insert_race, 0);
	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);

	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
	    KSTAT_FLAG_VIRTUAL);
	if (dbuf_ksp != NULL) {
		for (int i = 0; i < DN_MAX_LEVELS; i++) {
			snprintf(dbuf_stats.cache_levels[i].name,
			    KSTAT_STRLEN, "cache_level_%d", i);
			dbuf_stats.cache_levels[i].data_type =
			    KSTAT_DATA_UINT64;
			snprintf(dbuf_stats.cache_levels_bytes[i].name,
			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
			dbuf_stats.cache_levels_bytes[i].data_type =
			    KSTAT_DATA_UINT64;
		}
		dbuf_ksp->ks_data = &dbuf_stats;
		dbuf_ksp->ks_update = dbuf_kstat_update;
		kstat_install(dbuf_ksp);
	}
}

void
dbuf_fini(void)
{
	dbuf_hash_table_t *h = &dbuf_hash_table;

	dbuf_stats_destroy();

	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
		mutex_destroy(&h->hash_mutexes[i]);

	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
	    sizeof (kmutex_t));

	kmem_cache_destroy(dbuf_kmem_cache);
	taskq_destroy(dbu_evict_taskq);

	mutex_enter(&dbuf_evict_lock);
	dbuf_evict_thread_exit = B_TRUE;
	while (dbuf_evict_thread_exit) {
		cv_signal(&dbuf_evict_cv);
		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
	}
	mutex_exit(&dbuf_evict_lock);

	mutex_destroy(&dbuf_evict_lock);
	cv_destroy(&dbuf_evict_cv);

	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
		zfs_refcount_destroy(&dbuf_caches[dcs].size);
		multilist_destroy(&dbuf_caches[dcs].cache);
	}

	if (dbuf_ksp != NULL) {
		kstat_delete(dbuf_ksp);
		dbuf_ksp = NULL;
	}

	wmsum_fini(&dbuf_sums.cache_count);
	wmsum_fini(&dbuf_sums.cache_total_evicts);
	for (int i = 0; i < DN_MAX_LEVELS; i++) {
		wmsum_fini(&dbuf_sums.cache_levels[i]);
		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
	}
	wmsum_fini(&dbuf_sums.hash_hits);
	wmsum_fini(&dbuf_sums.hash_misses);
	wmsum_fini(&dbuf_sums.hash_collisions);
	wmsum_fini(&dbuf_sums.hash_chains);
	wmsum_fini(&dbuf_sums.hash_insert_race);
	wmsum_fini(&dbuf_sums.metadata_cache_count);
	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
}

/*
 * Other stuff.
 */

#ifdef ZFS_DEBUG
static void
dbuf_verify(dmu_buf_impl_t *db)
{
	dnode_t *dn;
	dbuf_dirty_record_t *dr;
	uint32_t txg_prev;

	ASSERT(MUTEX_HELD(&db->db_mtx));

	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
		return;

	ASSERT(db->db_objset != NULL);
	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	if (dn == NULL) {
		ASSERT(db->db_parent == NULL);
		ASSERT(db->db_blkptr == NULL);
	} else {
		ASSERT3U(db->db.db_object, ==, dn->dn_object);
		ASSERT3P(db->db_objset, ==, dn->dn_objset);
		ASSERT3U(db->db_level, <, dn->dn_nlevels);
		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
		    db->db_blkid == DMU_SPILL_BLKID ||
		    !avl_is_empty(&dn->dn_dbufs));
	}
	if (db->db_blkid == DMU_BONUS_BLKID) {
		ASSERT(dn != NULL);
		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
	} else if (db->db_blkid == DMU_SPILL_BLKID) {
		ASSERT(dn != NULL);
		ASSERT0(db->db.db_offset);
	} else {
		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
	}

	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
		ASSERT(dr->dr_dbuf == db);
		txg_prev = dr->dr_txg;
		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
		    dr = list_next(&db->db_dirty_records, dr)) {
			ASSERT(dr->dr_dbuf == db);
			ASSERT(txg_prev > dr->dr_txg);
			txg_prev = dr->dr_txg;
		}
	}

	/*
	 * We can't assert that db_size matches dn_datablksz because it
	 * can be momentarily different when another thread is doing
	 * dnode_set_blksz().
	 */
	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
		dr = db->db_data_pending;
		/*
		 * It should only be modified in syncing context, so
		 * make sure we only have one copy of the data.
		 */
		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
	}

	/* verify db->db_blkptr */
	if (db->db_blkptr) {
		if (db->db_parent == dn->dn_dbuf) {
			/* db is pointed to by the dnode */
			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
				ASSERT(db->db_parent == NULL);
			else
				ASSERT(db->db_parent != NULL);
			if (db->db_blkid != DMU_SPILL_BLKID)
				ASSERT3P(db->db_blkptr, ==,
				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
		} else {
			/* db is pointed to by an indirect block */
			int epb __maybe_unused = db->db_parent->db.db_size >>
			    SPA_BLKPTRSHIFT;
			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
			ASSERT3U(db->db_parent->db.db_object, ==,
			    db->db.db_object);
			/*
			 * dnode_grow_indblksz() can make this fail if we don't
			 * have the parent's rwlock.  XXX indblksz no longer
			 * grows.  safe to do this now?
			 */
			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
				ASSERT3P(db->db_blkptr, ==,
				    ((blkptr_t *)db->db_parent->db.db_data +
				    db->db_blkid % epb));
			}
		}
	}
	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
	    (db->db_buf == NULL || db->db_buf->b_data) &&
	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
	    db->db_state != DB_FILL && !dn->dn_free_txg) {
		/*
		 * If the blkptr isn't set but they have nonzero data,
		 * it had better be dirty, otherwise we'll lose that
		 * data when we evict this buffer.
		 *
		 * There is an exception to this rule for indirect blocks; in
		 * this case, if the indirect block is a hole, we fill in a few
		 * fields on each of the child blocks (importantly, birth time)
		 * to prevent hole birth times from being lost when you
		 * partially fill in a hole.
		 */
		if (db->db_dirtycnt == 0) {
			if (db->db_level == 0) {
				uint64_t *buf = db->db.db_data;
				int i;

				for (i = 0; i < db->db.db_size >> 3; i++) {
					ASSERT(buf[i] == 0);
				}
			} else {
				blkptr_t *bps = db->db.db_data;
				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
				    db->db.db_size);
				/*
				 * We want to verify that all the blkptrs in the
				 * indirect block are holes, but we may have
				 * automatically set up a few fields for them.
				 * We iterate through each blkptr and verify
				 * they only have those fields set.
				 */
				for (int i = 0;
				    i < db->db.db_size / sizeof (blkptr_t);
				    i++) {
					blkptr_t *bp = &bps[i];
					ASSERT(ZIO_CHECKSUM_IS_ZERO(
					    &bp->blk_cksum));
					ASSERT(
					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
					    DVA_IS_EMPTY(&bp->blk_dva[2]));
					ASSERT0(bp->blk_fill);
					ASSERT0(bp->blk_pad[0]);
					ASSERT0(bp->blk_pad[1]);
					ASSERT(!BP_IS_EMBEDDED(bp));
					ASSERT(BP_IS_HOLE(bp));
					ASSERT0(bp->blk_phys_birth);
				}
			}
		}
	}
	DB_DNODE_EXIT(db);
}
#endif

static void
dbuf_clear_data(dmu_buf_impl_t *db)
{
	ASSERT(MUTEX_HELD(&db->db_mtx));
	dbuf_evict_user(db);
	ASSERT3P(db->db_buf, ==, NULL);
	db->db.db_data = NULL;
	if (db->db_state != DB_NOFILL) {
		db->db_state = DB_UNCACHED;
		DTRACE_SET_STATE(db, "clear data");
	}
}

static void
dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
{
	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT(buf != NULL);

	db->db_buf = buf;
	ASSERT(buf->b_data != NULL);
	db->db.db_data = buf->b_data;
}

static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
{
	spa_t *spa = db->db_objset->os_spa;

	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
}

/*
 * Loan out an arc_buf for read.  Return the loaned arc_buf.
 */
arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t *db)
{
	arc_buf_t *abuf;

	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
	mutex_enter(&db->db_mtx);
	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
		int blksz = db->db.db_size;
		spa_t *spa = db->db_objset->os_spa;

		mutex_exit(&db->db_mtx);
		abuf = arc_loan_buf(spa, B_FALSE, blksz);
		memcpy(abuf->b_data, db->db.db_data, blksz);
	} else {
		abuf = db->db_buf;
		arc_loan_inuse_buf(abuf, db);
		db->db_buf = NULL;
		dbuf_clear_data(db);
		mutex_exit(&db->db_mtx);
	}
	return (abuf);
}

/*
 * Calculate which level n block references the data at the level 0 offset
 * provided.
 */
uint64_t
dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
{
	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
		/*
		 * The level n blkid is equal to the level 0 blkid divided by
		 * the number of level 0s in a level n block.
		 *
		 * The level 0 blkid is offset >> datablkshift =
		 * offset / 2^datablkshift.
		 *
		 * The number of level 0s in a level n is the number of block
		 * pointers in an indirect block, raised to the power of level.
		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
		 *
		 * Thus, the level n blkid is: offset /
		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
		 * = offset / 2^(datablkshift + level *
		 *   (indblkshift - SPA_BLKPTRSHIFT))
		 * = offset >> (datablkshift + level *
		 *   (indblkshift - SPA_BLKPTRSHIFT))
		 */

		const unsigned exp = dn->dn_datablkshift +
		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);

		if (exp >= 8 * sizeof (offset)) {
			/* This only happens on the highest indirection level */
			ASSERT3U(level, ==, dn->dn_nlevels - 1);
			return (0);
		}

		ASSERT3U(exp, <, 8 * sizeof (offset));

		return (offset >> exp);
	} else {
		ASSERT3U(offset, <, dn->dn_datablksz);
		return (0);
	}
}

/*
 * This function is used to lock the parent of the provided dbuf. This should be
 * used when modifying or reading db_blkptr.
 */
db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
{
	enum db_lock_type ret = DLT_NONE;
	if (db->db_parent != NULL) {
		rw_enter(&db->db_parent->db_rwlock, rw);
		ret = DLT_PARENT;
	} else if (dmu_objset_ds(db->db_objset) != NULL) {
		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
		    tag);
		ret = DLT_OBJSET;
	}
	/*
	 * We only return a DLT_NONE lock when it's the top-most indirect block
	 * of the meta-dnode of the MOS.
	 */
	return (ret);
}

/*
 * We need to pass the lock type in because it's possible that the block will
 * move from being the topmost indirect block in a dnode (and thus, have no
 * parent) to not the top-most via an indirection increase. This would cause a
 * panic if we didn't pass the lock type in.
 */
void
dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
{
	if (type == DLT_PARENT)
		rw_exit(&db->db_parent->db_rwlock);
	else if (type == DLT_OBJSET)
		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
}

static void
dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
    arc_buf_t *buf, void *vdb)
{
	(void) zb, (void) bp;
	dmu_buf_impl_t *db = vdb;

	mutex_enter(&db->db_mtx);
	ASSERT3U(db->db_state, ==, DB_READ);
	/*
	 * All reads are synchronous, so we must have a hold on the dbuf
	 */
	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
	ASSERT(db->db_buf == NULL);
	ASSERT(db->db.db_data == NULL);
	if (buf == NULL) {
		/* i/o error */
		ASSERT(zio == NULL || zio->io_error != 0);
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
		ASSERT3P(db->db_buf, ==, NULL);
		db->db_state = DB_UNCACHED;
		DTRACE_SET_STATE(db, "i/o error");
	} else if (db->db_level == 0 && db->db_freed_in_flight) {
		/* freed in flight */
		ASSERT(zio == NULL || zio->io_error == 0);
		arc_release(buf, db);
		memset(buf->b_data, 0, db->db.db_size);
		arc_buf_freeze(buf);
		db->db_freed_in_flight = FALSE;
		dbuf_set_data(db, buf);
		db->db_state = DB_CACHED;
		DTRACE_SET_STATE(db, "freed in flight");
	} else {
		/* success */
		ASSERT(zio == NULL || zio->io_error == 0);
		dbuf_set_data(db, buf);
		db->db_state = DB_CACHED;
		DTRACE_SET_STATE(db, "successful read");
	}
	cv_broadcast(&db->db_changed);
	dbuf_rele_and_unlock(db, NULL, B_FALSE);
}

/*
 * Shortcut for performing reads on bonus dbufs.  Returns
 * an error if we fail to verify the dnode associated with
 * a decrypted block. Otherwise success.
 */
static int
dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
{
	int bonuslen, max_bonuslen, err;

	err = dbuf_read_verify_dnode_crypt(db, flags);
	if (err)
		return (err);

	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT(DB_DNODE_HELD(db));
	ASSERT3U(bonuslen, <=, db->db.db_size);
	db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
	if (bonuslen < max_bonuslen)
		memset(db->db.db_data, 0, max_bonuslen);
	if (bonuslen)
		memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
	db->db_state = DB_CACHED;
	DTRACE_SET_STATE(db, "bonus buffer filled");
	return (0);
}

static void
dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
{
	blkptr_t *bps = db->db.db_data;
	uint32_t indbs = 1ULL << dn->dn_indblkshift;
	int n_bps = indbs >> SPA_BLKPTRSHIFT;

	for (int i = 0; i < n_bps; i++) {
		blkptr_t *bp = &bps[i];

		ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
		BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
		    dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
		BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
		BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
		BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
	}
}

/*
 * Handle reads on dbufs that are holes, if necessary.  This function
 * requires that the dbuf's mutex is held. Returns success (0) if action
 * was taken, ENOENT if no action was taken.
 */
static int
dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
{
	ASSERT(MUTEX_HELD(&db->db_mtx));

	int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
	/*
	 * For level 0 blocks only, if the above check fails:
	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
	 * processes the delete record and clears the bp while we are waiting
	 * for the dn_mtx (resulting in a "no" from block_freed).
	 */
	if (!is_hole && db->db_level == 0) {
		is_hole = dnode_block_freed(dn, db->db_blkid) ||
		    BP_IS_HOLE(db->db_blkptr);
	}

	if (is_hole) {
		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
		memset(db->db.db_data, 0, db->db.db_size);

		if (db->db_blkptr != NULL && db->db_level > 0 &&
		    BP_IS_HOLE(db->db_blkptr) &&
		    db->db_blkptr->blk_birth != 0) {
			dbuf_handle_indirect_hole(db, dn);
		}
		db->db_state = DB_CACHED;
		DTRACE_SET_STATE(db, "hole read satisfied");
		return (0);
	}
	return (ENOENT);
}

/*
 * This function ensures that, when doing a decrypting read of a block,
 * we make sure we have decrypted the dnode associated with it. We must do
 * this so that we ensure we are fully authenticating the checksum-of-MACs
 * tree from the root of the objset down to this block. Indirect blocks are
 * always verified against their secure checksum-of-MACs assuming that the
 * dnode containing them is correct. Now that we are doing a decrypting read,
 * we can be sure that the key is loaded and verify that assumption. This is
 * especially important considering that we always read encrypted dnode
 * blocks as raw data (without verifying their MACs) to start, and
 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
 */
static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
{
	int err = 0;
	objset_t *os = db->db_objset;
	arc_buf_t *dnode_abuf;
	dnode_t *dn;
	zbookmark_phys_t zb;

	ASSERT(MUTEX_HELD(&db->db_mtx));

	if ((flags & DB_RF_NO_DECRYPT) != 0 ||
	    !os->os_encrypted || os->os_raw_receive)
		return (0);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;

	if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
		DB_DNODE_EXIT(db);
		return (0);
	}

	SET_BOOKMARK(&zb, dmu_objset_id(os),
	    DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
	err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);

	/*
	 * An error code of EACCES tells us that the key is still not
	 * available. This is ok if we are only reading authenticated
	 * (and therefore non-encrypted) blocks.
	 */
	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
	    (db->db_blkid == DMU_BONUS_BLKID &&
	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
		err = 0;

	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Drops db_mtx and the parent lock specified by dblt and tag before
 * returning.
 */
static int
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
    db_lock_type_t dblt, const void *tag)
{
	dnode_t *dn;
	zbookmark_phys_t zb;
	uint32_t aflags = ARC_FLAG_NOWAIT;
	int err, zio_flags;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT(db->db_state == DB_UNCACHED);
	ASSERT(db->db_buf == NULL);
	ASSERT(db->db_parent == NULL ||
	    RW_LOCK_HELD(&db->db_parent->db_rwlock));

	if (db->db_blkid == DMU_BONUS_BLKID) {
		err = dbuf_read_bonus(db, dn, flags);
		goto early_unlock;
	}

	err = dbuf_read_hole(db, dn);
	if (err == 0)
		goto early_unlock;

	/*
	 * Any attempt to read a redacted block should result in an error. This
	 * will never happen under normal conditions, but can be useful for
	 * debugging purposes.
	 */
	if (BP_IS_REDACTED(db->db_blkptr)) {
		ASSERT(dsl_dataset_feature_is_active(
		    db->db_objset->os_dsl_dataset,
		    SPA_FEATURE_REDACTED_DATASETS));
		err = SET_ERROR(EIO);
		goto early_unlock;
	}

	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
	    db->db.db_object, db->db_level, db->db_blkid);

	/*
	 * All bps of an encrypted os should have the encryption bit set.
	 * If this is not true it indicates tampering and we report an error.
	 */
	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
		spa_log_error(db->db_objset->os_spa, &zb);
		zfs_panic_recover("unencrypted block in encrypted "
		    "object set %llu", dmu_objset_id(db->db_objset));
		err = SET_ERROR(EIO);
		goto early_unlock;
	}

	err = dbuf_read_verify_dnode_crypt(db, flags);
	if (err != 0)
		goto early_unlock;

	DB_DNODE_EXIT(db);

	db->db_state = DB_READ;
	DTRACE_SET_STATE(db, "read issued");
	mutex_exit(&db->db_mtx);

	if (!DBUF_IS_CACHEABLE(db))
		aflags |= ARC_FLAG_UNCACHED;
	else if (dbuf_is_l2cacheable(db))
		aflags |= ARC_FLAG_L2CACHE;

	dbuf_add_ref(db, NULL);

	zio_flags = (flags & DB_RF_CANFAIL) ?
	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;

	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
		zio_flags |= ZIO_FLAG_RAW;
	/*
	 * The zio layer will copy the provided blkptr later, but we need to
	 * do this now so that we can release the parent's rwlock. We have to
	 * do that now so that if dbuf_read_done is called synchronously (on
	 * an l1 cache hit) we don't acquire the db_mtx while holding the
	 * parent's rwlock, which would be a lock ordering violation.
	 */
	blkptr_t bp = *db->db_blkptr;
	dmu_buf_unlock_parent(db, dblt, tag);
	(void) arc_read(zio, db->db_objset->os_spa, &bp,
	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
	    &aflags, &zb);
	return (err);
early_unlock:
	DB_DNODE_EXIT(db);
	mutex_exit(&db->db_mtx);
	dmu_buf_unlock_parent(db, dblt, tag);
	return (err);
}

/*
 * This is our just-in-time copy function.  It makes a copy of buffers that
 * have been modified in a previous transaction group before we access them in
 * the current active group.
 *
 * This function is used in three places: when we are dirtying a buffer for the
 * first time in a txg, when we are freeing a range in a dnode that includes
 * this buffer, and when we are accessing a buffer which was received compressed
 * and later referenced in a WRITE_BYREF record.
 *
 * Note that when we are called from dbuf_free_range() we do not put a hold on
 * the buffer, we just traverse the active dbuf list for the dnode.
 */
static void
dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
{
	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);

	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT(db->db.db_data != NULL);
	ASSERT(db->db_level == 0);
	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);

	if (dr == NULL ||
	    (dr->dt.dl.dr_data !=
	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
		return;

	/*
	 * If the last dirty record for this dbuf has not yet synced
	 * and its referencing the dbuf data, either:
	 *	reset the reference to point to a new copy,
	 * or (if there a no active holders)
	 *	just null out the current db_data pointer.
	 */
	ASSERT3U(dr->dr_txg, >=, txg - 2);
	if (db->db_blkid == DMU_BONUS_BLKID) {
		dnode_t *dn = DB_DNODE(db);
		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
		dnode_t *dn = DB_DNODE(db);
		int size = arc_buf_size(db->db_buf);
		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
		spa_t *spa = db->db_objset->os_spa;
		enum zio_compress compress_type =
		    arc_get_compression(db->db_buf);
		uint8_t complevel = arc_get_complevel(db->db_buf);

		if (arc_is_encrypted(db->db_buf)) {
			boolean_t byteorder;
			uint8_t salt[ZIO_DATA_SALT_LEN];
			uint8_t iv[ZIO_DATA_IV_LEN];
			uint8_t mac[ZIO_DATA_MAC_LEN];

			arc_get_raw_params(db->db_buf, &byteorder, salt,
			    iv, mac);
			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
			    compress_type, complevel);
		} else if (compress_type != ZIO_COMPRESS_OFF) {
			ASSERT3U(type, ==, ARC_BUFC_DATA);
			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
			    size, arc_buf_lsize(db->db_buf), compress_type,
			    complevel);
		} else {
			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
		}
		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
	} else {
		db->db_buf = NULL;
		dbuf_clear_data(db);
	}
}

int
dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
{
	int err = 0;
	boolean_t prefetch;
	dnode_t *dn;

	/*
	 * We don't have to hold the mutex to check db_state because it
	 * can't be freed while we have a hold on the buffer.
	 */
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));

	if (db->db_state == DB_NOFILL)
		return (SET_ERROR(EIO));

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;

	mutex_enter(&db->db_mtx);
	if (flags & DB_RF_PARTIAL_FIRST)
		db->db_partial_read = B_TRUE;
	else if (!(flags & DB_RF_PARTIAL_MORE))
		db->db_partial_read = B_FALSE;
	if (db->db_state == DB_CACHED) {
		/*
		 * Ensure that this block's dnode has been decrypted if
		 * the caller has requested decrypted data.
		 */
		err = dbuf_read_verify_dnode_crypt(db, flags);

		/*
		 * If the arc buf is compressed or encrypted and the caller
		 * requested uncompressed data, we need to untransform it
		 * before returning. We also call arc_untransform() on any
		 * unauthenticated blocks, which will verify their MAC if
		 * the key is now available.
		 */
		if (err == 0 && db->db_buf != NULL &&
		    (flags & DB_RF_NO_DECRYPT) == 0 &&
		    (arc_is_encrypted(db->db_buf) ||
		    arc_is_unauthenticated(db->db_buf) ||
		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
			spa_t *spa = dn->dn_objset->os_spa;
			zbookmark_phys_t zb;

			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
			    db->db.db_object, db->db_level, db->db_blkid);
			dbuf_fix_old_data(db, spa_syncing_txg(spa));
			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
			dbuf_set_data(db, db->db_buf);
		}
		mutex_exit(&db->db_mtx);
		if (err == 0 && prefetch) {
			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
			    B_FALSE, flags & DB_RF_HAVESTRUCT);
		}
		DB_DNODE_EXIT(db);
		DBUF_STAT_BUMP(hash_hits);
	} else if (db->db_state == DB_UNCACHED) {
		boolean_t need_wait = B_FALSE;

		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);

		if (zio == NULL &&
		    db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
			spa_t *spa = dn->dn_objset->os_spa;
			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
			need_wait = B_TRUE;
		}
		err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
		/*
		 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
		 * for us
		 */
		if (!err && prefetch) {
			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
			    db->db_state != DB_CACHED,
			    flags & DB_RF_HAVESTRUCT);
		}

		DB_DNODE_EXIT(db);
		DBUF_STAT_BUMP(hash_misses);

		/*
		 * If we created a zio_root we must execute it to avoid
		 * leaking it, even if it isn't attached to any work due
		 * to an error in dbuf_read_impl().
		 */
		if (need_wait) {
			if (err == 0)
				err = zio_wait(zio);
			else
				VERIFY0(zio_wait(zio));
		}
	} else {
		/*
		 * Another reader came in while the dbuf was in flight
		 * between UNCACHED and CACHED.  Either a writer will finish
		 * writing the buffer (sending the dbuf to CACHED) or the
		 * first reader's request will reach the read_done callback
		 * and send the dbuf to CACHED.  Otherwise, a failure
		 * occurred and the dbuf went to UNCACHED.
		 */
		mutex_exit(&db->db_mtx);
		if (prefetch) {
			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
			    B_TRUE, flags & DB_RF_HAVESTRUCT);
		}
		DB_DNODE_EXIT(db);
		DBUF_STAT_BUMP(hash_misses);

		/* Skip the wait per the caller's request. */
		if ((flags & DB_RF_NEVERWAIT) == 0) {
			mutex_enter(&db->db_mtx);
			while (db->db_state == DB_READ ||
			    db->db_state == DB_FILL) {
				ASSERT(db->db_state == DB_READ ||
				    (flags & DB_RF_HAVESTRUCT) == 0);
				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
				    db, zio_t *, zio);
				cv_wait(&db->db_changed, &db->db_mtx);
			}
			if (db->db_state == DB_UNCACHED)
				err = SET_ERROR(EIO);
			mutex_exit(&db->db_mtx);
		}
	}

	return (err);
}

static void
dbuf_noread(dmu_buf_impl_t *db)
{
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
	mutex_enter(&db->db_mtx);
	while (db->db_state == DB_READ || db->db_state == DB_FILL)
		cv_wait(&db->db_changed, &db->db_mtx);
	if (db->db_state == DB_UNCACHED) {
		ASSERT(db->db_buf == NULL);
		ASSERT(db->db.db_data == NULL);
		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
		db->db_state = DB_FILL;
		DTRACE_SET_STATE(db, "assigning filled buffer");
	} else if (db->db_state == DB_NOFILL) {
		dbuf_clear_data(db);
	} else {
		ASSERT3U(db->db_state, ==, DB_CACHED);
	}
	mutex_exit(&db->db_mtx);
}

void
dbuf_unoverride(dbuf_dirty_record_t *dr)
{
	dmu_buf_impl_t *db = dr->dr_dbuf;
	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
	uint64_t txg = dr->dr_txg;

	ASSERT(MUTEX_HELD(&db->db_mtx));
	/*
	 * This assert is valid because dmu_sync() expects to be called by
	 * a zilog's get_data while holding a range lock.  This call only
	 * comes from dbuf_dirty() callers who must also hold a range lock.
	 */
	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
	ASSERT(db->db_level == 0);

	if (db->db_blkid == DMU_BONUS_BLKID ||
	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
		return;

	ASSERT(db->db_data_pending != dr);

	/* free this block */
	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
		zio_free(db->db_objset->os_spa, txg, bp);

	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
	dr->dt.dl.dr_nopwrite = B_FALSE;
	dr->dt.dl.dr_has_raw_params = B_FALSE;

	/*
	 * Release the already-written buffer, so we leave it in
	 * a consistent dirty state.  Note that all callers are
	 * modifying the buffer, so they will immediately do
	 * another (redundant) arc_release().  Therefore, leave
	 * the buf thawed to save the effort of freezing &
	 * immediately re-thawing it.
	 */
	arc_release(dr->dt.dl.dr_data, db);
}

/*
 * Evict (if its unreferenced) or clear (if its referenced) any level-0
 * data blocks in the free range, so that any future readers will find
 * empty blocks.
 */
void
dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
    dmu_tx_t *tx)
{
	dmu_buf_impl_t *db_search;
	dmu_buf_impl_t *db, *db_next;
	uint64_t txg = tx->tx_txg;
	avl_index_t where;
	dbuf_dirty_record_t *dr;

	if (end_blkid > dn->dn_maxblkid &&
	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
		end_blkid = dn->dn_maxblkid;
	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
	    (u_longlong_t)end_blkid);

	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
	db_search->db_level = 0;
	db_search->db_blkid = start_blkid;
	db_search->db_state = DB_SEARCH;

	mutex_enter(&dn->dn_dbufs_mtx);
	db = avl_find(&dn->dn_dbufs, db_search, &where);
	ASSERT3P(db, ==, NULL);

	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);

	for (; db != NULL; db = db_next) {
		db_next = AVL_NEXT(&dn->dn_dbufs, db);
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);

		if (db->db_level != 0 || db->db_blkid > end_blkid) {
			break;
		}
		ASSERT3U(db->db_blkid, >=, start_blkid);

		/* found a level 0 buffer in the range */
		mutex_enter(&db->db_mtx);
		if (dbuf_undirty(db, tx)) {
			/* mutex has been dropped and dbuf destroyed */
			continue;
		}

		if (db->db_state == DB_UNCACHED ||
		    db->db_state == DB_NOFILL ||
		    db->db_state == DB_EVICTING) {
			ASSERT(db->db.db_data == NULL);
			mutex_exit(&db->db_mtx);
			continue;
		}
		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
			/* will be handled in dbuf_read_done or dbuf_rele */
			db->db_freed_in_flight = TRUE;
			mutex_exit(&db->db_mtx);
			continue;
		}
		if (zfs_refcount_count(&db->db_holds) == 0) {
			ASSERT(db->db_buf);
			dbuf_destroy(db);
			continue;
		}
		/* The dbuf is referenced */

		dr = list_head(&db->db_dirty_records);
		if (dr != NULL) {
			if (dr->dr_txg == txg) {
				/*
				 * This buffer is "in-use", re-adjust the file
				 * size to reflect that this buffer may
				 * contain new data when we sync.
				 */
				if (db->db_blkid != DMU_SPILL_BLKID &&
				    db->db_blkid > dn->dn_maxblkid)
					dn->dn_maxblkid = db->db_blkid;
				dbuf_unoverride(dr);
			} else {
				/*
				 * This dbuf is not dirty in the open context.
				 * Either uncache it (if its not referenced in
				 * the open context) or reset its contents to
				 * empty.
				 */
				dbuf_fix_old_data(db, txg);
			}
		}
		/* clear the contents if its cached */
		if (db->db_state == DB_CACHED) {
			ASSERT(db->db.db_data != NULL);
			arc_release(db->db_buf, db);
			rw_enter(&db->db_rwlock, RW_WRITER);
			memset(db->db.db_data, 0, db->db.db_size);
			rw_exit(&db->db_rwlock);
			arc_buf_freeze(db->db_buf);
		}

		mutex_exit(&db->db_mtx);
	}

	mutex_exit(&dn->dn_dbufs_mtx);
	kmem_free(db_search, sizeof (dmu_buf_impl_t));
}

void
dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
{
	arc_buf_t *buf, *old_buf;
	dbuf_dirty_record_t *dr;
	int osize = db->db.db_size;
	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
	dnode_t *dn;

	ASSERT(db->db_blkid != DMU_BONUS_BLKID);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	/*
	 * XXX we should be doing a dbuf_read, checking the return
	 * value and returning that up to our callers
	 */
	dmu_buf_will_dirty(&db->db, tx);

	/* create the data buffer for the new block */
	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);

	/* copy old block data to the new block */
	old_buf = db->db_buf;
	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
	/* zero the remainder */
	if (size > osize)
		memset((uint8_t *)buf->b_data + osize, 0, size - osize);

	mutex_enter(&db->db_mtx);
	dbuf_set_data(db, buf);
	arc_buf_destroy(old_buf, db);
	db->db.db_size = size;

	dr = list_head(&db->db_dirty_records);
	/* dirty record added by dmu_buf_will_dirty() */
	VERIFY(dr != NULL);
	if (db->db_level == 0)
		dr->dt.dl.dr_data = buf;
	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
	ASSERT3U(dr->dr_accounted, ==, osize);
	dr->dr_accounted = size;
	mutex_exit(&db->db_mtx);

	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
	DB_DNODE_EXIT(db);
}

void
dbuf_release_bp(dmu_buf_impl_t *db)
{
	objset_t *os __maybe_unused = db->db_objset;

	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
	ASSERT(arc_released(os->os_phys_buf) ||
	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));

	(void) arc_release(db->db_buf, db);
}

/*
 * We already have a dirty record for this TXG, and we are being
 * dirtied again.
 */
static void
dbuf_redirty(dbuf_dirty_record_t *dr)
{
	dmu_buf_impl_t *db = dr->dr_dbuf;

	ASSERT(MUTEX_HELD(&db->db_mtx));

	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
		/*
		 * If this buffer has already been written out,
		 * we now need to reset its state.
		 */
		dbuf_unoverride(dr);
		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
		    db->db_state != DB_NOFILL) {
			/* Already released on initial dirty, so just thaw. */
			ASSERT(arc_released(db->db_buf));
			arc_buf_thaw(db->db_buf);
		}
	}
}

dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
{
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
	ASSERT(dn->dn_maxblkid >= blkid);

	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
	list_link_init(&dr->dr_dirty_node);
	list_link_init(&dr->dr_dbuf_node);
	dr->dr_dnode = dn;
	dr->dr_txg = tx->tx_txg;
	dr->dt.dll.dr_blkid = blkid;
	dr->dr_accounted = dn->dn_datablksz;

	/*
	 * There should not be any dbuf for the block that we're dirtying.
	 * Otherwise the buffer contents could be inconsistent between the
	 * dbuf and the lightweight dirty record.
	 */
	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
	    NULL));

	mutex_enter(&dn->dn_mtx);
	int txgoff = tx->tx_txg & TXG_MASK;
	if (dn->dn_free_ranges[txgoff] != NULL) {
		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
	}

	if (dn->dn_nlevels == 1) {
		ASSERT3U(blkid, <, dn->dn_nblkptr);
		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
		mutex_exit(&dn->dn_mtx);
		rw_exit(&dn->dn_struct_rwlock);
		dnode_setdirty(dn, tx);
	} else {
		mutex_exit(&dn->dn_mtx);

		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
		    1, blkid >> epbs, FTAG);
		rw_exit(&dn->dn_struct_rwlock);
		if (parent_db == NULL) {
			kmem_free(dr, sizeof (*dr));
			return (NULL);
		}
		int err = dbuf_read(parent_db, NULL,
		    (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
		if (err != 0) {
			dbuf_rele(parent_db, FTAG);
			kmem_free(dr, sizeof (*dr));
			return (NULL);
		}

		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
		dbuf_rele(parent_db, FTAG);
		mutex_enter(&parent_dr->dt.di.dr_mtx);
		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
		mutex_exit(&parent_dr->dt.di.dr_mtx);
		dr->dr_parent = parent_dr;
	}

	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);

	return (dr);
}

dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
	dnode_t *dn;
	objset_t *os;
	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
	int txgoff = tx->tx_txg & TXG_MASK;
	boolean_t drop_struct_rwlock = B_FALSE;

	ASSERT(tx->tx_txg != 0);
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
	DMU_TX_DIRTY_BUF(tx, db);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	/*
	 * Shouldn't dirty a regular buffer in syncing context.  Private
	 * objects may be dirtied in syncing context, but only if they
	 * were already pre-dirtied in open context.
	 */
#ifdef ZFS_DEBUG
	if (dn->dn_objset->os_dsl_dataset != NULL) {
		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
		    RW_READER, FTAG);
	}
	ASSERT(!dmu_tx_is_syncing(tx) ||
	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
	    dn->dn_objset->os_dsl_dataset == NULL);
	if (dn->dn_objset->os_dsl_dataset != NULL)
		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
#endif
	/*
	 * We make this assert for private objects as well, but after we
	 * check if we're already dirty.  They are allowed to re-dirty
	 * in syncing context.
	 */
	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));

	mutex_enter(&db->db_mtx);
	/*
	 * XXX make this true for indirects too?  The problem is that
	 * transactions created with dmu_tx_create_assigned() from
	 * syncing context don't bother holding ahead.
	 */
	ASSERT(db->db_level != 0 ||
	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
	    db->db_state == DB_NOFILL);

	mutex_enter(&dn->dn_mtx);
	dnode_set_dirtyctx(dn, tx, db);
	if (tx->tx_txg > dn->dn_dirty_txg)
		dn->dn_dirty_txg = tx->tx_txg;
	mutex_exit(&dn->dn_mtx);

	if (db->db_blkid == DMU_SPILL_BLKID)
		dn->dn_have_spill = B_TRUE;

	/*
	 * If this buffer is already dirty, we're done.
	 */
	dr_head = list_head(&db->db_dirty_records);
	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
	    db->db.db_object == DMU_META_DNODE_OBJECT);
	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
		DB_DNODE_EXIT(db);

		dbuf_redirty(dr_next);
		mutex_exit(&db->db_mtx);
		return (dr_next);
	}

	/*
	 * Only valid if not already dirty.
	 */
	ASSERT(dn->dn_object == 0 ||
	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));

	ASSERT3U(dn->dn_nlevels, >, db->db_level);

	/*
	 * We should only be dirtying in syncing context if it's the
	 * mos or we're initializing the os or it's a special object.
	 * However, we are allowed to dirty in syncing context provided
	 * we already dirtied it in open context.  Hence we must make
	 * this assertion only if we're not already dirty.
	 */
	os = dn->dn_objset;
	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
#ifdef ZFS_DEBUG
	if (dn->dn_objset->os_dsl_dataset != NULL)
		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
	if (dn->dn_objset->os_dsl_dataset != NULL)
		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
#endif
	ASSERT(db->db.db_size != 0);

	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);

	if (db->db_blkid != DMU_BONUS_BLKID) {
		dmu_objset_willuse_space(os, db->db.db_size, tx);
	}

	/*
	 * If this buffer is dirty in an old transaction group we need
	 * to make a copy of it so that the changes we make in this
	 * transaction group won't leak out when we sync the older txg.
	 */
	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
	list_link_init(&dr->dr_dirty_node);
	list_link_init(&dr->dr_dbuf_node);
	dr->dr_dnode = dn;
	if (db->db_level == 0) {
		void *data_old = db->db_buf;

		if (db->db_state != DB_NOFILL) {
			if (db->db_blkid == DMU_BONUS_BLKID) {
				dbuf_fix_old_data(db, tx->tx_txg);
				data_old = db->db.db_data;
			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
				/*
				 * Release the data buffer from the cache so
				 * that we can modify it without impacting
				 * possible other users of this cached data
				 * block.  Note that indirect blocks and
				 * private objects are not released until the
				 * syncing state (since they are only modified
				 * then).
				 */
				arc_release(db->db_buf, db);
				dbuf_fix_old_data(db, tx->tx_txg);
				data_old = db->db_buf;
			}
			ASSERT(data_old != NULL);
		}
		dr->dt.dl.dr_data = data_old;
	} else {
		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
		list_create(&dr->dt.di.dr_children,
		    sizeof (dbuf_dirty_record_t),
		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
	}
	if (db->db_blkid != DMU_BONUS_BLKID)
		dr->dr_accounted = db->db.db_size;
	dr->dr_dbuf = db;
	dr->dr_txg = tx->tx_txg;
	list_insert_before(&db->db_dirty_records, dr_next, dr);

	/*
	 * We could have been freed_in_flight between the dbuf_noread
	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
	 * happened after the free.
	 */
	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
	    db->db_blkid != DMU_SPILL_BLKID) {
		mutex_enter(&dn->dn_mtx);
		if (dn->dn_free_ranges[txgoff] != NULL) {
			range_tree_clear(dn->dn_free_ranges[txgoff],
			    db->db_blkid, 1);
		}
		mutex_exit(&dn->dn_mtx);
		db->db_freed_in_flight = FALSE;
	}

	/*
	 * This buffer is now part of this txg
	 */
	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
	db->db_dirtycnt += 1;
	ASSERT3U(db->db_dirtycnt, <=, 3);

	mutex_exit(&db->db_mtx);

	if (db->db_blkid == DMU_BONUS_BLKID ||
	    db->db_blkid == DMU_SPILL_BLKID) {
		mutex_enter(&dn->dn_mtx);
		ASSERT(!list_link_active(&dr->dr_dirty_node));
		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
		mutex_exit(&dn->dn_mtx);
		dnode_setdirty(dn, tx);
		DB_DNODE_EXIT(db);
		return (dr);
	}

	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
		rw_enter(&dn->dn_struct_rwlock, RW_READER);
		drop_struct_rwlock = B_TRUE;
	}

	/*
	 * If we are overwriting a dedup BP, then unless it is snapshotted,
	 * when we get to syncing context we will need to decrement its
	 * refcount in the DDT.  Prefetch the relevant DDT block so that
	 * syncing context won't have to wait for the i/o.
	 */
	if (db->db_blkptr != NULL) {
		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
		ddt_prefetch(os->os_spa, db->db_blkptr);
		dmu_buf_unlock_parent(db, dblt, FTAG);
	}

	/*
	 * We need to hold the dn_struct_rwlock to make this assertion,
	 * because it protects dn_phys / dn_next_nlevels from changing.
	 */
	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
	    dn->dn_phys->dn_nlevels > db->db_level ||
	    dn->dn_next_nlevels[txgoff] > db->db_level ||
	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);


	if (db->db_level == 0) {
		ASSERT(!db->db_objset->os_raw_receive ||
		    dn->dn_maxblkid >= db->db_blkid);
		dnode_new_blkid(dn, db->db_blkid, tx,
		    drop_struct_rwlock, B_FALSE);
		ASSERT(dn->dn_maxblkid >= db->db_blkid);
	}

	if (db->db_level+1 < dn->dn_nlevels) {
		dmu_buf_impl_t *parent = db->db_parent;
		dbuf_dirty_record_t *di;
		int parent_held = FALSE;

		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
			parent = dbuf_hold_level(dn, db->db_level + 1,
			    db->db_blkid >> epbs, FTAG);
			ASSERT(parent != NULL);
			parent_held = TRUE;
		}
		if (drop_struct_rwlock)
			rw_exit(&dn->dn_struct_rwlock);
		ASSERT3U(db->db_level + 1, ==, parent->db_level);
		di = dbuf_dirty(parent, tx);
		if (parent_held)
			dbuf_rele(parent, FTAG);

		mutex_enter(&db->db_mtx);
		/*
		 * Since we've dropped the mutex, it's possible that
		 * dbuf_undirty() might have changed this out from under us.
		 */
		if (list_head(&db->db_dirty_records) == dr ||
		    dn->dn_object == DMU_META_DNODE_OBJECT) {
			mutex_enter(&di->dt.di.dr_mtx);
			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
			ASSERT(!list_link_active(&dr->dr_dirty_node));
			list_insert_tail(&di->dt.di.dr_children, dr);
			mutex_exit(&di->dt.di.dr_mtx);
			dr->dr_parent = di;
		}
		mutex_exit(&db->db_mtx);
	} else {
		ASSERT(db->db_level + 1 == dn->dn_nlevels);
		ASSERT(db->db_blkid < dn->dn_nblkptr);
		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
		mutex_enter(&dn->dn_mtx);
		ASSERT(!list_link_active(&dr->dr_dirty_node));
		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
		mutex_exit(&dn->dn_mtx);
		if (drop_struct_rwlock)
			rw_exit(&dn->dn_struct_rwlock);
	}

	dnode_setdirty(dn, tx);
	DB_DNODE_EXIT(db);
	return (dr);
}

static void
dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
{
	dmu_buf_impl_t *db = dr->dr_dbuf;

	if (dr->dt.dl.dr_data != db->db.db_data) {
		struct dnode *dn = dr->dr_dnode;
		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);

		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
	}
	db->db_data_pending = NULL;
	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
	list_remove(&db->db_dirty_records, dr);
	if (dr->dr_dbuf->db_level != 0) {
		mutex_destroy(&dr->dt.di.dr_mtx);
		list_destroy(&dr->dt.di.dr_children);
	}
	kmem_free(dr, sizeof (dbuf_dirty_record_t));
	ASSERT3U(db->db_dirtycnt, >, 0);
	db->db_dirtycnt -= 1;
}

/*
 * Undirty a buffer in the transaction group referenced by the given
 * transaction.  Return whether this evicted the dbuf.
 */
static boolean_t
dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
	uint64_t txg = tx->tx_txg;

	ASSERT(txg != 0);

	/*
	 * Due to our use of dn_nlevels below, this can only be called
	 * in open context, unless we are operating on the MOS.
	 * From syncing context, dn_nlevels may be different from the
	 * dn_nlevels used when dbuf was dirtied.
	 */
	ASSERT(db->db_objset ==
	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
	ASSERT0(db->db_level);
	ASSERT(MUTEX_HELD(&db->db_mtx));

	/*
	 * If this buffer is not dirty, we're done.
	 */
	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
	if (dr == NULL)
		return (B_FALSE);
	ASSERT(dr->dr_dbuf == db);

	dnode_t *dn = dr->dr_dnode;

	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);

	ASSERT(db->db.db_size != 0);

	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
	    dr->dr_accounted, txg);

	list_remove(&db->db_dirty_records, dr);

	/*
	 * Note that there are three places in dbuf_dirty()
	 * where this dirty record may be put on a list.
	 * Make sure to do a list_remove corresponding to
	 * every one of those list_insert calls.
	 */
	if (dr->dr_parent) {
		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
	} else if (db->db_blkid == DMU_SPILL_BLKID ||
	    db->db_level + 1 == dn->dn_nlevels) {
		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
		mutex_enter(&dn->dn_mtx);
		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
		mutex_exit(&dn->dn_mtx);
	}

	if (db->db_state != DB_NOFILL) {
		dbuf_unoverride(dr);

		ASSERT(db->db_buf != NULL);
		ASSERT(dr->dt.dl.dr_data != NULL);
		if (dr->dt.dl.dr_data != db->db_buf)
			arc_buf_destroy(dr->dt.dl.dr_data, db);
	}

	kmem_free(dr, sizeof (dbuf_dirty_record_t));

	ASSERT(db->db_dirtycnt > 0);
	db->db_dirtycnt -= 1;

	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
		dbuf_destroy(db);
		return (B_TRUE);
	}

	return (B_FALSE);
}

static void
dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	ASSERT(tx->tx_txg != 0);
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));

	/*
	 * Quick check for dirtiness.  For already dirty blocks, this
	 * reduces runtime of this function by >90%, and overall performance
	 * by 50% for some workloads (e.g. file deletion with indirect blocks
	 * cached).
	 */
	mutex_enter(&db->db_mtx);

	if (db->db_state == DB_CACHED) {
		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
		/*
		 * It's possible that it is already dirty but not cached,
		 * because there are some calls to dbuf_dirty() that don't
		 * go through dmu_buf_will_dirty().
		 */
		if (dr != NULL) {
			/* This dbuf is already dirty and cached. */
			dbuf_redirty(dr);
			mutex_exit(&db->db_mtx);
			return;
		}
	}
	mutex_exit(&db->db_mtx);

	DB_DNODE_ENTER(db);
	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
		flags |= DB_RF_HAVESTRUCT;
	DB_DNODE_EXIT(db);
	(void) dbuf_read(db, NULL, flags);
	(void) dbuf_dirty(db, tx);
}

void
dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
	dmu_buf_will_dirty_impl(db_fake,
	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
}

boolean_t
dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dbuf_dirty_record_t *dr;

	mutex_enter(&db->db_mtx);
	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
	mutex_exit(&db->db_mtx);
	return (dr != NULL);
}

void
dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	db->db_state = DB_NOFILL;
	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
	dmu_buf_will_fill(db_fake, tx);
}

void
dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
	ASSERT(tx->tx_txg != 0);
	ASSERT(db->db_level == 0);
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));

	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
	    dmu_tx_private_ok(tx));

	dbuf_noread(db);
	(void) dbuf_dirty(db, tx);
}

/*
 * This function is effectively the same as dmu_buf_will_dirty(), but
 * indicates the caller expects raw encrypted data in the db, and provides
 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
 * blkptr_t when this dbuf is written.  This is only used for blocks of
 * dnodes, during raw receive.
 */
void
dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
    const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dbuf_dirty_record_t *dr;

	/*
	 * dr_has_raw_params is only processed for blocks of dnodes
	 * (see dbuf_sync_dnode_leaf_crypt()).
	 */
	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
	ASSERT3U(db->db_level, ==, 0);
	ASSERT(db->db_objset->os_raw_receive);

	dmu_buf_will_dirty_impl(db_fake,
	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);

	dr = dbuf_find_dirty_eq(db, tx->tx_txg);

	ASSERT3P(dr, !=, NULL);

	dr->dt.dl.dr_has_raw_params = B_TRUE;
	dr->dt.dl.dr_byteorder = byteorder;
	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
}

static void
dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
{
	struct dirty_leaf *dl;
	dbuf_dirty_record_t *dr;

	dr = list_head(&db->db_dirty_records);
	ASSERT3P(dr, !=, NULL);
	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
	dl = &dr->dt.dl;
	dl->dr_overridden_by = *bp;
	dl->dr_override_state = DR_OVERRIDDEN;
	dl->dr_overridden_by.blk_birth = dr->dr_txg;
}

void
dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
{
	(void) tx;
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
	dbuf_states_t old_state;
	mutex_enter(&db->db_mtx);
	DBUF_VERIFY(db);

	old_state = db->db_state;
	db->db_state = DB_CACHED;
	if (old_state == DB_FILL) {
		if (db->db_level == 0 && db->db_freed_in_flight) {
			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
			/* we were freed while filling */
			/* XXX dbuf_undirty? */
			memset(db->db.db_data, 0, db->db.db_size);
			db->db_freed_in_flight = FALSE;
			DTRACE_SET_STATE(db,
			    "fill done handling freed in flight");
		} else {
			DTRACE_SET_STATE(db, "fill done");
		}
		cv_broadcast(&db->db_changed);
	}
	mutex_exit(&db->db_mtx);
}

void
dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
    bp_embedded_type_t etype, enum zio_compress comp,
    int uncompressed_size, int compressed_size, int byteorder,
    dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
	struct dirty_leaf *dl;
	dmu_object_type_t type;
	dbuf_dirty_record_t *dr;

	if (etype == BP_EMBEDDED_TYPE_DATA) {
		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
		    SPA_FEATURE_EMBEDDED_DATA));
	}

	DB_DNODE_ENTER(db);
	type = DB_DNODE(db)->dn_type;
	DB_DNODE_EXIT(db);

	ASSERT0(db->db_level);
	ASSERT(db->db_blkid != DMU_BONUS_BLKID);

	dmu_buf_will_not_fill(dbuf, tx);

	dr = list_head(&db->db_dirty_records);
	ASSERT3P(dr, !=, NULL);
	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
	dl = &dr->dt.dl;
	encode_embedded_bp_compressed(&dl->dr_overridden_by,
	    data, comp, uncompressed_size, compressed_size);
	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
	BP_SET_TYPE(&dl->dr_overridden_by, type);
	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);

	dl->dr_override_state = DR_OVERRIDDEN;
	dl->dr_overridden_by.blk_birth = dr->dr_txg;
}

void
dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
	dmu_object_type_t type;
	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
	    SPA_FEATURE_REDACTED_DATASETS));

	DB_DNODE_ENTER(db);
	type = DB_DNODE(db)->dn_type;
	DB_DNODE_EXIT(db);

	ASSERT0(db->db_level);
	dmu_buf_will_not_fill(dbuf, tx);

	blkptr_t bp = { { { {0} } } };
	BP_SET_TYPE(&bp, type);
	BP_SET_LEVEL(&bp, 0);
	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
	BP_SET_REDACTED(&bp);
	BPE_SET_LSIZE(&bp, dbuf->db_size);

	dbuf_override_impl(db, &bp, tx);
}

/*
 * Directly assign a provided arc buf to a given dbuf if it's not referenced
 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
 */
void
dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
{
	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
	ASSERT(db->db_level == 0);
	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
	ASSERT(buf != NULL);
	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
	ASSERT(tx->tx_txg != 0);

	arc_return_buf(buf, db);
	ASSERT(arc_released(buf));

	mutex_enter(&db->db_mtx);

	while (db->db_state == DB_READ || db->db_state == DB_FILL)
		cv_wait(&db->db_changed, &db->db_mtx);

	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);

	if (db->db_state == DB_CACHED &&
	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
		/*
		 * In practice, we will never have a case where we have an
		 * encrypted arc buffer while additional holds exist on the
		 * dbuf. We don't handle this here so we simply assert that
		 * fact instead.
		 */
		ASSERT(!arc_is_encrypted(buf));
		mutex_exit(&db->db_mtx);
		(void) dbuf_dirty(db, tx);
		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
		arc_buf_destroy(buf, db);
		return;
	}

	if (db->db_state == DB_CACHED) {
		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);

		ASSERT(db->db_buf != NULL);
		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
			ASSERT(dr->dt.dl.dr_data == db->db_buf);

			if (!arc_released(db->db_buf)) {
				ASSERT(dr->dt.dl.dr_override_state ==
				    DR_OVERRIDDEN);
				arc_release(db->db_buf, db);
			}
			dr->dt.dl.dr_data = buf;
			arc_buf_destroy(db->db_buf, db);
		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
			arc_release(db->db_buf, db);
			arc_buf_destroy(db->db_buf, db);
		}
		db->db_buf = NULL;
	}
	ASSERT(db->db_buf == NULL);
	dbuf_set_data(db, buf);
	db->db_state = DB_FILL;
	DTRACE_SET_STATE(db, "filling assigned arcbuf");
	mutex_exit(&db->db_mtx);
	(void) dbuf_dirty(db, tx);
	dmu_buf_fill_done(&db->db, tx);
}

void
dbuf_destroy(dmu_buf_impl_t *db)
{
	dnode_t *dn;
	dmu_buf_impl_t *parent = db->db_parent;
	dmu_buf_impl_t *dndb;

	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT(zfs_refcount_is_zero(&db->db_holds));

	if (db->db_buf != NULL) {
		arc_buf_destroy(db->db_buf, db);
		db->db_buf = NULL;
	}

	if (db->db_blkid == DMU_BONUS_BLKID) {
		int slots = DB_DNODE(db)->dn_num_slots;
		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
		if (db->db.db_data != NULL) {
			kmem_free(db->db.db_data, bonuslen);
			arc_space_return(bonuslen, ARC_SPACE_BONUS);
			db->db_state = DB_UNCACHED;
			DTRACE_SET_STATE(db, "buffer cleared");
		}
	}

	dbuf_clear_data(db);

	if (multilist_link_active(&db->db_cache_link)) {
		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
		    db->db_caching_status == DB_DBUF_METADATA_CACHE);

		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
		(void) zfs_refcount_remove_many(
		    &dbuf_caches[db->db_caching_status].size,
		    db->db.db_size, db);

		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
			DBUF_STAT_BUMPDOWN(metadata_cache_count);
		} else {
			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
			DBUF_STAT_BUMPDOWN(cache_count);
			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
			    db->db.db_size);
		}
		db->db_caching_status = DB_NO_CACHE;
	}

	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
	ASSERT(db->db_data_pending == NULL);
	ASSERT(list_is_empty(&db->db_dirty_records));

	db->db_state = DB_EVICTING;
	DTRACE_SET_STATE(db, "buffer eviction started");
	db->db_blkptr = NULL;

	/*
	 * Now that db_state is DB_EVICTING, nobody else can find this via
	 * the hash table.  We can now drop db_mtx, which allows us to
	 * acquire the dn_dbufs_mtx.
	 */
	mutex_exit(&db->db_mtx);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	dndb = dn->dn_dbuf;
	if (db->db_blkid != DMU_BONUS_BLKID) {
		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
		if (needlock)
			mutex_enter_nested(&dn->dn_dbufs_mtx,
			    NESTED_SINGLE);
		avl_remove(&dn->dn_dbufs, db);
		membar_producer();
		DB_DNODE_EXIT(db);
		if (needlock)
			mutex_exit(&dn->dn_dbufs_mtx);
		/*
		 * Decrementing the dbuf count means that the hold corresponding
		 * to the removed dbuf is no longer discounted in dnode_move(),
		 * so the dnode cannot be moved until after we release the hold.
		 * The membar_producer() ensures visibility of the decremented
		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
		 * release any lock.
		 */
		mutex_enter(&dn->dn_mtx);
		dnode_rele_and_unlock(dn, db, B_TRUE);
		db->db_dnode_handle = NULL;

		dbuf_hash_remove(db);
	} else {
		DB_DNODE_EXIT(db);
	}

	ASSERT(zfs_refcount_is_zero(&db->db_holds));

	db->db_parent = NULL;

	ASSERT(db->db_buf == NULL);
	ASSERT(db->db.db_data == NULL);
	ASSERT(db->db_hash_next == NULL);
	ASSERT(db->db_blkptr == NULL);
	ASSERT(db->db_data_pending == NULL);
	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
	ASSERT(!multilist_link_active(&db->db_cache_link));

	/*
	 * If this dbuf is referenced from an indirect dbuf,
	 * decrement the ref count on the indirect dbuf.
	 */
	if (parent && parent != dndb) {
		mutex_enter(&parent->db_mtx);
		dbuf_rele_and_unlock(parent, db, B_TRUE);
	}

	kmem_cache_free(dbuf_kmem_cache, db);
	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
}

/*
 * Note: While bpp will always be updated if the function returns success,
 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
 * this happens when the dnode is the meta-dnode, or {user|group|project}used
 * object.
 */
__attribute__((always_inline))
static inline int
dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
    dmu_buf_impl_t **parentp, blkptr_t **bpp)
{
	*parentp = NULL;
	*bpp = NULL;

	ASSERT(blkid != DMU_BONUS_BLKID);

	if (blkid == DMU_SPILL_BLKID) {
		mutex_enter(&dn->dn_mtx);
		if (dn->dn_have_spill &&
		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
		else
			*bpp = NULL;
		dbuf_add_ref(dn->dn_dbuf, NULL);
		*parentp = dn->dn_dbuf;
		mutex_exit(&dn->dn_mtx);
		return (0);
	}

	int nlevels =
	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;

	ASSERT3U(level * epbs, <, 64);
	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
	/*
	 * This assertion shouldn't trip as long as the max indirect block size
	 * is less than 1M.  The reason for this is that up to that point,
	 * the number of levels required to address an entire object with blocks
	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
	 * (i.e. we can address the entire object), objects will all use at most
	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
	 * enough to address an entire object, so objects will have 5 levels,
	 * but then this assertion will overflow.
	 *
	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
	 * need to redo this logic to handle overflows.
	 */
	ASSERT(level >= nlevels ||
	    ((nlevels - level - 1) * epbs) +
	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
	if (level >= nlevels ||
	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
	    ((nlevels - level - 1) * epbs)) ||
	    (fail_sparse &&
	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
		/* the buffer has no parent yet */
		return (SET_ERROR(ENOENT));
	} else if (level < nlevels-1) {
		/* this block is referenced from an indirect block */
		int err;

		err = dbuf_hold_impl(dn, level + 1,
		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);

		if (err)
			return (err);
		err = dbuf_read(*parentp, NULL,
		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
		if (err) {
			dbuf_rele(*parentp, NULL);
			*parentp = NULL;
			return (err);
		}
		rw_enter(&(*parentp)->db_rwlock, RW_READER);
		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
		    (blkid & ((1ULL << epbs) - 1));
		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
			ASSERT(BP_IS_HOLE(*bpp));
		rw_exit(&(*parentp)->db_rwlock);
		return (0);
	} else {
		/* the block is referenced from the dnode */
		ASSERT3U(level, ==, nlevels-1);
		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
		    blkid < dn->dn_phys->dn_nblkptr);
		if (dn->dn_dbuf) {
			dbuf_add_ref(dn->dn_dbuf, NULL);
			*parentp = dn->dn_dbuf;
		}
		*bpp = &dn->dn_phys->dn_blkptr[blkid];
		return (0);
	}
}

static dmu_buf_impl_t *
dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
    dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
{
	objset_t *os = dn->dn_objset;
	dmu_buf_impl_t *db, *odb;

	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
	ASSERT(dn->dn_type != DMU_OT_NONE);

	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);

	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));

	db->db_objset = os;
	db->db.db_object = dn->dn_object;
	db->db_level = level;
	db->db_blkid = blkid;
	db->db_dirtycnt = 0;
	db->db_dnode_handle = dn->dn_handle;
	db->db_parent = parent;
	db->db_blkptr = blkptr;
	db->db_hash = hash;

	db->db_user = NULL;
	db->db_user_immediate_evict = FALSE;
	db->db_freed_in_flight = FALSE;
	db->db_pending_evict = FALSE;

	if (blkid == DMU_BONUS_BLKID) {
		ASSERT3P(parent, ==, dn->dn_dbuf);
		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
		db->db.db_offset = DMU_BONUS_BLKID;
		db->db_state = DB_UNCACHED;
		DTRACE_SET_STATE(db, "bonus buffer created");
		db->db_caching_status = DB_NO_CACHE;
		/* the bonus dbuf is not placed in the hash table */
		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
		return (db);
	} else if (blkid == DMU_SPILL_BLKID) {
		db->db.db_size = (blkptr != NULL) ?
		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
		db->db.db_offset = 0;
	} else {
		int blocksize =
		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
		db->db.db_size = blocksize;
		db->db.db_offset = db->db_blkid * blocksize;
	}

	/*
	 * Hold the dn_dbufs_mtx while we get the new dbuf
	 * in the hash table *and* added to the dbufs list.
	 * This prevents a possible deadlock with someone
	 * trying to look up this dbuf before it's added to the
	 * dn_dbufs list.
	 */
	mutex_enter(&dn->dn_dbufs_mtx);
	db->db_state = DB_EVICTING; /* not worth logging this state change */
	if ((odb = dbuf_hash_insert(db)) != NULL) {
		/* someone else inserted it first */
		mutex_exit(&dn->dn_dbufs_mtx);
		kmem_cache_free(dbuf_kmem_cache, db);
		DBUF_STAT_BUMP(hash_insert_race);
		return (odb);
	}
	avl_add(&dn->dn_dbufs, db);

	db->db_state = DB_UNCACHED;
	DTRACE_SET_STATE(db, "regular buffer created");
	db->db_caching_status = DB_NO_CACHE;
	mutex_exit(&dn->dn_dbufs_mtx);
	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);

	if (parent && parent != dn->dn_dbuf)
		dbuf_add_ref(parent, db);

	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
	    zfs_refcount_count(&dn->dn_holds) > 0);
	(void) zfs_refcount_add(&dn->dn_holds, db);

	dprintf_dbuf(db, "db=%p\n", db);

	return (db);
}

/*
 * This function returns a block pointer and information about the object,
 * given a dnode and a block.  This is a publicly accessible version of
 * dbuf_findbp that only returns some information, rather than the
 * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
 * should be locked as (at least) a reader.
 */
int
dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
    blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
{
	dmu_buf_impl_t *dbp = NULL;
	blkptr_t *bp2;
	int err = 0;
	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));

	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
	if (err == 0) {
		ASSERT3P(bp2, !=, NULL);
		*bp = *bp2;
		if (dbp != NULL)
			dbuf_rele(dbp, NULL);
		if (datablkszsec != NULL)
			*datablkszsec = dn->dn_phys->dn_datablkszsec;
		if (indblkshift != NULL)
			*indblkshift = dn->dn_phys->dn_indblkshift;
	}

	return (err);
}

typedef struct dbuf_prefetch_arg {
	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
	int dpa_curlevel; /* The current level that we're reading */
	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
	void *dpa_arg; /* prefetch completion arg */
} dbuf_prefetch_arg_t;

static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
{
	if (dpa->dpa_cb != NULL) {
		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
		    dpa->dpa_zb.zb_blkid, io_done);
	}
	kmem_free(dpa, sizeof (*dpa));
}

static void
dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
    const blkptr_t *iobp, arc_buf_t *abuf, void *private)
{
	(void) zio, (void) zb, (void) iobp;
	dbuf_prefetch_arg_t *dpa = private;

	if (abuf != NULL)
		arc_buf_destroy(abuf, private);

	dbuf_prefetch_fini(dpa, B_TRUE);
}

/*
 * Actually issue the prefetch read for the block given.
 */
static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
{
	ASSERT(!BP_IS_REDACTED(bp) ||
	    dsl_dataset_feature_is_active(
	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
	    SPA_FEATURE_REDACTED_DATASETS));

	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
		return (dbuf_prefetch_fini(dpa, B_FALSE));

	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
	arc_flags_t aflags =
	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
	    ARC_FLAG_NO_BUF;

	/* dnodes are always read as raw and then converted later */
	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
	    dpa->dpa_curlevel == 0)
		zio_flags |= ZIO_FLAG_RAW;

	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
	ASSERT(dpa->dpa_zio != NULL);
	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
	    dbuf_issue_final_prefetch_done, dpa,
	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
}

/*
 * Called when an indirect block above our prefetch target is read in.  This
 * will either read in the next indirect block down the tree or issue the actual
 * prefetch if the next block down is our target.
 */
static void
dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
    const blkptr_t *iobp, arc_buf_t *abuf, void *private)
{
	(void) zb, (void) iobp;
	dbuf_prefetch_arg_t *dpa = private;

	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
	ASSERT3S(dpa->dpa_curlevel, >, 0);

	if (abuf == NULL) {
		ASSERT(zio == NULL || zio->io_error != 0);
		dbuf_prefetch_fini(dpa, B_TRUE);
		return;
	}
	ASSERT(zio == NULL || zio->io_error == 0);

	/*
	 * The dpa_dnode is only valid if we are called with a NULL
	 * zio. This indicates that the arc_read() returned without
	 * first calling zio_read() to issue a physical read. Once
	 * a physical read is made the dpa_dnode must be invalidated
	 * as the locks guarding it may have been dropped. If the
	 * dpa_dnode is still valid, then we want to add it to the dbuf
	 * cache. To do so, we must hold the dbuf associated with the block
	 * we just prefetched, read its contents so that we associate it
	 * with an arc_buf_t, and then release it.
	 */
	if (zio != NULL) {
		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
		} else {
			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
		}
		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);

		dpa->dpa_dnode = NULL;
	} else if (dpa->dpa_dnode != NULL) {
		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
		    dpa->dpa_zb.zb_level));
		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
		    dpa->dpa_curlevel, curblkid, FTAG);
		if (db == NULL) {
			arc_buf_destroy(abuf, private);
			dbuf_prefetch_fini(dpa, B_TRUE);
			return;
		}
		(void) dbuf_read(db, NULL,
		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
		dbuf_rele(db, FTAG);
	}

	dpa->dpa_curlevel--;
	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);

	ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
	    dsl_dataset_feature_is_active(
	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
	    SPA_FEATURE_REDACTED_DATASETS)));
	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
		arc_buf_destroy(abuf, private);
		dbuf_prefetch_fini(dpa, B_TRUE);
		return;
	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
		dbuf_issue_final_prefetch(dpa, bp);
	} else {
		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
		zbookmark_phys_t zb;

		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
			iter_aflags |= ARC_FLAG_L2CACHE;

		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));

		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);

		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
		    bp, dbuf_prefetch_indirect_done, dpa,
		    ZIO_PRIORITY_SYNC_READ,
		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
		    &iter_aflags, &zb);
	}

	arc_buf_destroy(abuf, private);
}

/*
 * Issue prefetch reads for the given block on the given level.  If the indirect
 * blocks above that block are not in memory, we will read them in
 * asynchronously.  As a result, this call never blocks waiting for a read to
 * complete. Note that the prefetch might fail if the dataset is encrypted and
 * the encryption key is unmapped before the IO completes.
 */
int
dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
    zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
    void *arg)
{
	blkptr_t bp;
	int epbs, nlevels, curlevel;
	uint64_t curblkid;

	ASSERT(blkid != DMU_BONUS_BLKID);
	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));

	if (blkid > dn->dn_maxblkid)
		goto no_issue;

	if (level == 0 && dnode_block_freed(dn, blkid))
		goto no_issue;

	/*
	 * This dnode hasn't been written to disk yet, so there's nothing to
	 * prefetch.
	 */
	nlevels = dn->dn_phys->dn_nlevels;
	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
		goto no_issue;

	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
		goto no_issue;

	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
	    level, blkid, NULL);
	if (db != NULL) {
		mutex_exit(&db->db_mtx);
		/*
		 * This dbuf already exists.  It is either CACHED, or
		 * (we assume) about to be read or filled.
		 */
		goto no_issue;
	}

	/*
	 * Find the closest ancestor (indirect block) of the target block
	 * that is present in the cache.  In this indirect block, we will
	 * find the bp that is at curlevel, curblkid.
	 */
	curlevel = level;
	curblkid = blkid;
	while (curlevel < nlevels - 1) {
		int parent_level = curlevel + 1;
		uint64_t parent_blkid = curblkid >> epbs;
		dmu_buf_impl_t *db;

		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
		    FALSE, TRUE, FTAG, &db) == 0) {
			blkptr_t *bpp = db->db_buf->b_data;
			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
			dbuf_rele(db, FTAG);
			break;
		}

		curlevel = parent_level;
		curblkid = parent_blkid;
	}

	if (curlevel == nlevels - 1) {
		/* No cached indirect blocks found. */
		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
		bp = dn->dn_phys->dn_blkptr[curblkid];
	}
	ASSERT(!BP_IS_REDACTED(&bp) ||
	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
	    SPA_FEATURE_REDACTED_DATASETS));
	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
		goto no_issue;

	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));

	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
	    ZIO_FLAG_CANFAIL);

	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
	    dn->dn_object, level, blkid);
	dpa->dpa_curlevel = curlevel;
	dpa->dpa_prio = prio;
	dpa->dpa_aflags = aflags;
	dpa->dpa_spa = dn->dn_objset->os_spa;
	dpa->dpa_dnode = dn;
	dpa->dpa_epbs = epbs;
	dpa->dpa_zio = pio;
	dpa->dpa_cb = cb;
	dpa->dpa_arg = arg;

	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
	else if (dnode_level_is_l2cacheable(&bp, dn, level))
		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;

	/*
	 * If we have the indirect just above us, no need to do the asynchronous
	 * prefetch chain; we'll just run the last step ourselves.  If we're at
	 * a higher level, though, we want to issue the prefetches for all the
	 * indirect blocks asynchronously, so we can go on with whatever we were
	 * doing.
	 */
	if (curlevel == level) {
		ASSERT3U(curblkid, ==, blkid);
		dbuf_issue_final_prefetch(dpa, &bp);
	} else {
		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
		zbookmark_phys_t zb;

		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
		if (dnode_level_is_l2cacheable(&bp, dn, level))
			iter_aflags |= ARC_FLAG_L2CACHE;

		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
		    dn->dn_object, curlevel, curblkid);
		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
		    &bp, dbuf_prefetch_indirect_done, dpa,
		    ZIO_PRIORITY_SYNC_READ,
		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
		    &iter_aflags, &zb);
	}
	/*
	 * We use pio here instead of dpa_zio since it's possible that
	 * dpa may have already been freed.
	 */
	zio_nowait(pio);
	return (1);
no_issue:
	if (cb != NULL)
		cb(arg, level, blkid, B_FALSE);
	return (0);
}

int
dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
    arc_flags_t aflags)
{

	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
}

/*
 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
 * the case of encrypted, compressed and uncompressed buffers by
 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
 * arc_alloc_compressed_buf() or arc_alloc_buf().*
 *
 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
 */
noinline static void
dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
{
	dbuf_dirty_record_t *dr = db->db_data_pending;
	arc_buf_t *data = dr->dt.dl.dr_data;
	enum zio_compress compress_type = arc_get_compression(data);
	uint8_t complevel = arc_get_complevel(data);

	if (arc_is_encrypted(data)) {
		boolean_t byteorder;
		uint8_t salt[ZIO_DATA_SALT_LEN];
		uint8_t iv[ZIO_DATA_IV_LEN];
		uint8_t mac[ZIO_DATA_MAC_LEN];

		arc_get_raw_params(data, &byteorder, salt, iv, mac);
		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
		    compress_type, complevel));
	} else if (compress_type != ZIO_COMPRESS_OFF) {
		dbuf_set_data(db, arc_alloc_compressed_buf(
		    dn->dn_objset->os_spa, db, arc_buf_size(data),
		    arc_buf_lsize(data), compress_type, complevel));
	} else {
		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
	}

	rw_enter(&db->db_rwlock, RW_WRITER);
	memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
	rw_exit(&db->db_rwlock);
}

/*
 * Returns with db_holds incremented, and db_mtx not held.
 * Note: dn_struct_rwlock must be held.
 */
int
dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
    boolean_t fail_sparse, boolean_t fail_uncached,
    const void *tag, dmu_buf_impl_t **dbp)
{
	dmu_buf_impl_t *db, *parent = NULL;
	uint64_t hv;

	/* If the pool has been created, verify the tx_sync_lock is not held */
	spa_t *spa = dn->dn_objset->os_spa;
	dsl_pool_t *dp = spa->spa_dsl_pool;
	if (dp != NULL) {
		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
	}

	ASSERT(blkid != DMU_BONUS_BLKID);
	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
	ASSERT3U(dn->dn_nlevels, >, level);

	*dbp = NULL;

	/* dbuf_find() returns with db_mtx held */
	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);

	if (db == NULL) {
		blkptr_t *bp = NULL;
		int err;

		if (fail_uncached)
			return (SET_ERROR(ENOENT));

		ASSERT3P(parent, ==, NULL);
		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
		if (fail_sparse) {
			if (err == 0 && bp && BP_IS_HOLE(bp))
				err = SET_ERROR(ENOENT);
			if (err) {
				if (parent)
					dbuf_rele(parent, NULL);
				return (err);
			}
		}
		if (err && err != ENOENT)
			return (err);
		db = dbuf_create(dn, level, blkid, parent, bp, hv);
	}

	if (fail_uncached && db->db_state != DB_CACHED) {
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(ENOENT));
	}

	if (db->db_buf != NULL) {
		arc_buf_access(db->db_buf);
		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
	}

	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));

	/*
	 * If this buffer is currently syncing out, and we are
	 * still referencing it from db_data, we need to make a copy
	 * of it in case we decide we want to dirty it again in this txg.
	 */
	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
	    dn->dn_object != DMU_META_DNODE_OBJECT &&
	    db->db_state == DB_CACHED && db->db_data_pending) {
		dbuf_dirty_record_t *dr = db->db_data_pending;
		if (dr->dt.dl.dr_data == db->db_buf) {
			ASSERT3P(db->db_buf, !=, NULL);
			dbuf_hold_copy(dn, db);
		}
	}

	if (multilist_link_active(&db->db_cache_link)) {
		ASSERT(zfs_refcount_is_zero(&db->db_holds));
		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
		    db->db_caching_status == DB_DBUF_METADATA_CACHE);

		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
		(void) zfs_refcount_remove_many(
		    &dbuf_caches[db->db_caching_status].size,
		    db->db.db_size, db);

		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
			DBUF_STAT_BUMPDOWN(metadata_cache_count);
		} else {
			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
			DBUF_STAT_BUMPDOWN(cache_count);
			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
			    db->db.db_size);
		}
		db->db_caching_status = DB_NO_CACHE;
	}
	(void) zfs_refcount_add(&db->db_holds, tag);
	DBUF_VERIFY(db);
	mutex_exit(&db->db_mtx);

	/* NOTE: we can't rele the parent until after we drop the db_mtx */
	if (parent)
		dbuf_rele(parent, NULL);

	ASSERT3P(DB_DNODE(db), ==, dn);
	ASSERT3U(db->db_blkid, ==, blkid);
	ASSERT3U(db->db_level, ==, level);
	*dbp = db;

	return (0);
}

dmu_buf_impl_t *
dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
{
	return (dbuf_hold_level(dn, 0, blkid, tag));
}

dmu_buf_impl_t *
dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
{
	dmu_buf_impl_t *db;
	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
	return (err ? NULL : db);
}

void
dbuf_create_bonus(dnode_t *dn)
{
	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));

	ASSERT(dn->dn_bonus == NULL);
	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
}

int
dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	if (db->db_blkid != DMU_SPILL_BLKID)
		return (SET_ERROR(ENOTSUP));
	if (blksz == 0)
		blksz = SPA_MINBLOCKSIZE;
	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);

	dbuf_new_size(db, blksz, tx);

	return (0);
}

void
dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
{
	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
}

#pragma weak dmu_buf_add_ref = dbuf_add_ref
void
dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
{
	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
	VERIFY3S(holds, >, 1);
}

#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
boolean_t
dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
    const void *tag)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dmu_buf_impl_t *found_db;
	boolean_t result = B_FALSE;

	if (blkid == DMU_BONUS_BLKID)
		found_db = dbuf_find_bonus(os, obj);
	else
		found_db = dbuf_find(os, obj, 0, blkid, NULL);

	if (found_db != NULL) {
		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
			(void) zfs_refcount_add(&db->db_holds, tag);
			result = B_TRUE;
		}
		mutex_exit(&found_db->db_mtx);
	}
	return (result);
}

/*
 * If you call dbuf_rele() you had better not be referencing the dnode handle
 * unless you have some other direct or indirect hold on the dnode. (An indirect
 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
 * dnode's parent dbuf evicting its dnode handles.
 */
void
dbuf_rele(dmu_buf_impl_t *db, const void *tag)
{
	mutex_enter(&db->db_mtx);
	dbuf_rele_and_unlock(db, tag, B_FALSE);
}

void
dmu_buf_rele(dmu_buf_t *db, const void *tag)
{
	dbuf_rele((dmu_buf_impl_t *)db, tag);
}

/*
 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
 * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
 * argument should be set if we are already in the dbuf-evicting code
 * path, in which case we don't want to recursively evict.  This allows us to
 * avoid deeply nested stacks that would have a call flow similar to this:
 *
 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
 *	^						|
 *	|						|
 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
 *
 */
void
dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
{
	int64_t holds;
	uint64_t size;

	ASSERT(MUTEX_HELD(&db->db_mtx));
	DBUF_VERIFY(db);

	/*
	 * Remove the reference to the dbuf before removing its hold on the
	 * dnode so we can guarantee in dnode_move() that a referenced bonus
	 * buffer has a corresponding dnode hold.
	 */
	holds = zfs_refcount_remove(&db->db_holds, tag);
	ASSERT(holds >= 0);

	/*
	 * We can't freeze indirects if there is a possibility that they
	 * may be modified in the current syncing context.
	 */
	if (db->db_buf != NULL &&
	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
		arc_buf_freeze(db->db_buf);
	}

	if (holds == db->db_dirtycnt &&
	    db->db_level == 0 && db->db_user_immediate_evict)
		dbuf_evict_user(db);

	if (holds == 0) {
		if (db->db_blkid == DMU_BONUS_BLKID) {
			dnode_t *dn;
			boolean_t evict_dbuf = db->db_pending_evict;

			/*
			 * If the dnode moves here, we cannot cross this
			 * barrier until the move completes.
			 */
			DB_DNODE_ENTER(db);

			dn = DB_DNODE(db);
			atomic_dec_32(&dn->dn_dbufs_count);

			/*
			 * Decrementing the dbuf count means that the bonus
			 * buffer's dnode hold is no longer discounted in
			 * dnode_move(). The dnode cannot move until after
			 * the dnode_rele() below.
			 */
			DB_DNODE_EXIT(db);

			/*
			 * Do not reference db after its lock is dropped.
			 * Another thread may evict it.
			 */
			mutex_exit(&db->db_mtx);

			if (evict_dbuf)
				dnode_evict_bonus(dn);

			dnode_rele(dn, db);
		} else if (db->db_buf == NULL) {
			/*
			 * This is a special case: we never associated this
			 * dbuf with any data allocated from the ARC.
			 */
			ASSERT(db->db_state == DB_UNCACHED ||
			    db->db_state == DB_NOFILL);
			dbuf_destroy(db);
		} else if (arc_released(db->db_buf)) {
			/*
			 * This dbuf has anonymous data associated with it.
			 */
			dbuf_destroy(db);
		} else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
		    db->db_pending_evict) {
			dbuf_destroy(db);
		} else if (!multilist_link_active(&db->db_cache_link)) {
			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);

			dbuf_cached_state_t dcs =
			    dbuf_include_in_metadata_cache(db) ?
			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
			db->db_caching_status = dcs;

			multilist_insert(&dbuf_caches[dcs].cache, db);
			uint64_t db_size = db->db.db_size;
			size = zfs_refcount_add_many(
			    &dbuf_caches[dcs].size, db_size, db);
			uint8_t db_level = db->db_level;
			mutex_exit(&db->db_mtx);

			if (dcs == DB_DBUF_METADATA_CACHE) {
				DBUF_STAT_BUMP(metadata_cache_count);
				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
				    size);
			} else {
				DBUF_STAT_BUMP(cache_count);
				DBUF_STAT_MAX(cache_size_bytes_max, size);
				DBUF_STAT_BUMP(cache_levels[db_level]);
				DBUF_STAT_INCR(cache_levels_bytes[db_level],
				    db_size);
			}

			if (dcs == DB_DBUF_CACHE && !evicting)
				dbuf_evict_notify(size);
		}
	} else {
		mutex_exit(&db->db_mtx);
	}

}

#pragma weak dmu_buf_refcount = dbuf_refcount
uint64_t
dbuf_refcount(dmu_buf_impl_t *db)
{
	return (zfs_refcount_count(&db->db_holds));
}

uint64_t
dmu_buf_user_refcount(dmu_buf_t *db_fake)
{
	uint64_t holds;
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	mutex_enter(&db->db_mtx);
	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
	mutex_exit(&db->db_mtx);

	return (holds);
}

void *
dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
    dmu_buf_user_t *new_user)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	mutex_enter(&db->db_mtx);
	dbuf_verify_user(db, DBVU_NOT_EVICTING);
	if (db->db_user == old_user)
		db->db_user = new_user;
	else
		old_user = db->db_user;
	dbuf_verify_user(db, DBVU_NOT_EVICTING);
	mutex_exit(&db->db_mtx);

	return (old_user);
}

void *
dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
{
	return (dmu_buf_replace_user(db_fake, NULL, user));
}

void *
dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	db->db_user_immediate_evict = TRUE;
	return (dmu_buf_set_user(db_fake, user));
}

void *
dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
{
	return (dmu_buf_replace_user(db_fake, user, NULL));
}

void *
dmu_buf_get_user(dmu_buf_t *db_fake)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	dbuf_verify_user(db, DBVU_NOT_EVICTING);
	return (db->db_user);
}

void
dmu_buf_user_evict_wait(void)
{
	taskq_wait(dbu_evict_taskq);
}

blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t *db)
{
	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
	return (dbi->db_blkptr);
}

objset_t *
dmu_buf_get_objset(dmu_buf_t *db)
{
	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
	return (dbi->db_objset);
}

dnode_t *
dmu_buf_dnode_enter(dmu_buf_t *db)
{
	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
	DB_DNODE_ENTER(dbi);
	return (DB_DNODE(dbi));
}

void
dmu_buf_dnode_exit(dmu_buf_t *db)
{
	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
	DB_DNODE_EXIT(dbi);
}

static void
dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
{
	/* ASSERT(dmu_tx_is_syncing(tx) */
	ASSERT(MUTEX_HELD(&db->db_mtx));

	if (db->db_blkptr != NULL)
		return;

	if (db->db_blkid == DMU_SPILL_BLKID) {
		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
		BP_ZERO(db->db_blkptr);
		return;
	}
	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
		/*
		 * This buffer was allocated at a time when there was
		 * no available blkptrs from the dnode, or it was
		 * inappropriate to hook it in (i.e., nlevels mismatch).
		 */
		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
		ASSERT(db->db_parent == NULL);
		db->db_parent = dn->dn_dbuf;
		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
		DBUF_VERIFY(db);
	} else {
		dmu_buf_impl_t *parent = db->db_parent;
		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;

		ASSERT(dn->dn_phys->dn_nlevels > 1);
		if (parent == NULL) {
			mutex_exit(&db->db_mtx);
			rw_enter(&dn->dn_struct_rwlock, RW_READER);
			parent = dbuf_hold_level(dn, db->db_level + 1,
			    db->db_blkid >> epbs, db);
			rw_exit(&dn->dn_struct_rwlock);
			mutex_enter(&db->db_mtx);
			db->db_parent = parent;
		}
		db->db_blkptr = (blkptr_t *)parent->db.db_data +
		    (db->db_blkid & ((1ULL << epbs) - 1));
		DBUF_VERIFY(db);
	}
}

static void
dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = dr->dr_dbuf;
	void *data = dr->dt.dl.dr_data;

	ASSERT0(db->db_level);
	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
	ASSERT(data != NULL);

	dnode_t *dn = dr->dr_dnode;
	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));

	dbuf_sync_leaf_verify_bonus_dnode(dr);

	dbuf_undirty_bonus(dr);
	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
}

/*
 * When syncing out a blocks of dnodes, adjust the block to deal with
 * encryption.  Normally, we make sure the block is decrypted before writing
 * it.  If we have crypt params, then we are writing a raw (encrypted) block,
 * from a raw receive.  In this case, set the ARC buf's crypt params so
 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
 */
static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
{
	int err;
	dmu_buf_impl_t *db = dr->dr_dbuf;

	ASSERT(MUTEX_HELD(&db->db_mtx));
	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
	ASSERT3U(db->db_level, ==, 0);

	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
		zbookmark_phys_t zb;

		/*
		 * Unfortunately, there is currently no mechanism for
		 * syncing context to handle decryption errors. An error
		 * here is only possible if an attacker maliciously
		 * changed a dnode block and updated the associated
		 * checksums going up the block tree.
		 */
		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
		    db->db.db_object, db->db_level, db->db_blkid);
		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
		    &zb, B_TRUE);
		if (err)
			panic("Invalid dnode block MAC");
	} else if (dr->dt.dl.dr_has_raw_params) {
		(void) arc_release(dr->dt.dl.dr_data, db);
		arc_convert_to_raw(dr->dt.dl.dr_data,
		    dmu_objset_id(db->db_objset),
		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
	}
}

/*
 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
 * is critical the we not allow the compiler to inline this function in to
 * dbuf_sync_list() thereby drastically bloating the stack usage.
 */
noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = dr->dr_dbuf;
	dnode_t *dn = dr->dr_dnode;

	ASSERT(dmu_tx_is_syncing(tx));

	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);

	mutex_enter(&db->db_mtx);

	ASSERT(db->db_level > 0);
	DBUF_VERIFY(db);

	/* Read the block if it hasn't been read yet. */
	if (db->db_buf == NULL) {
		mutex_exit(&db->db_mtx);
		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
		mutex_enter(&db->db_mtx);
	}
	ASSERT3U(db->db_state, ==, DB_CACHED);
	ASSERT(db->db_buf != NULL);

	/* Indirect block size must match what the dnode thinks it is. */
	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
	dbuf_check_blkptr(dn, db);

	/* Provide the pending dirty record to child dbufs */
	db->db_data_pending = dr;

	mutex_exit(&db->db_mtx);

	dbuf_write(dr, db->db_buf, tx);

	zio_t *zio = dr->dr_zio;
	mutex_enter(&dr->dt.di.dr_mtx);
	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
	mutex_exit(&dr->dt.di.dr_mtx);
	zio_nowait(zio);
}

/*
 * Verify that the size of the data in our bonus buffer does not exceed
 * its recorded size.
 *
 * The purpose of this verification is to catch any cases in development
 * where the size of a phys structure (i.e space_map_phys_t) grows and,
 * due to incorrect feature management, older pools expect to read more
 * data even though they didn't actually write it to begin with.
 *
 * For a example, this would catch an error in the feature logic where we
 * open an older pool and we expect to write the space map histogram of
 * a space map with size SPACE_MAP_SIZE_V0.
 */
static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
{
#ifdef ZFS_DEBUG
	dnode_t *dn = dr->dr_dnode;

	/*
	 * Encrypted bonus buffers can have data past their bonuslen.
	 * Skip the verification of these blocks.
	 */
	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
		return;

	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
	ASSERT3U(bonuslen, <=, maxbonuslen);

	arc_buf_t *datap = dr->dt.dl.dr_data;
	char *datap_end = ((char *)datap) + bonuslen;
	char *datap_max = ((char *)datap) + maxbonuslen;

	/* ensure that everything is zero after our data */
	for (; datap_end < datap_max; datap_end++)
		ASSERT(*datap_end == 0);
#endif
}

static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
{
	/* This must be a lightweight dirty record. */
	ASSERT3P(dr->dr_dbuf, ==, NULL);
	dnode_t *dn = dr->dr_dnode;

	if (dn->dn_phys->dn_nlevels == 1) {
		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
	} else {
		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
		VERIFY3U(parent_db->db_level, ==, 1);
		VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
		blkptr_t *bp = parent_db->db.db_data;
		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
	}
}

static void
dbuf_lightweight_ready(zio_t *zio)
{
	dbuf_dirty_record_t *dr = zio->io_private;
	blkptr_t *bp = zio->io_bp;

	if (zio->io_error != 0)
		return;

	dnode_t *dn = dr->dr_dnode;

	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
	spa_t *spa = dmu_objset_spa(dn->dn_objset);
	int64_t delta = bp_get_dsize_sync(spa, bp) -
	    bp_get_dsize_sync(spa, bp_orig);
	dnode_diduse_space(dn, delta);

	uint64_t blkid = dr->dt.dll.dr_blkid;
	mutex_enter(&dn->dn_mtx);
	if (blkid > dn->dn_phys->dn_maxblkid) {
		ASSERT0(dn->dn_objset->os_raw_receive);
		dn->dn_phys->dn_maxblkid = blkid;
	}
	mutex_exit(&dn->dn_mtx);

	if (!BP_IS_EMBEDDED(bp)) {
		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
		BP_SET_FILL(bp, fill);
	}

	dmu_buf_impl_t *parent_db;
	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
	if (dr->dr_parent == NULL) {
		parent_db = dn->dn_dbuf;
	} else {
		parent_db = dr->dr_parent->dr_dbuf;
	}
	rw_enter(&parent_db->db_rwlock, RW_WRITER);
	*bp_orig = *bp;
	rw_exit(&parent_db->db_rwlock);
}

static void
dbuf_lightweight_physdone(zio_t *zio)
{
	dbuf_dirty_record_t *dr = zio->io_private;
	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
	ASSERT3U(dr->dr_txg, ==, zio->io_txg);

	/*
	 * The callback will be called io_phys_children times.  Retire one
	 * portion of our dirty space each time we are called.  Any rounding
	 * error will be cleaned up by dbuf_lightweight_done().
	 */
	int delta = dr->dr_accounted / zio->io_phys_children;
	dsl_pool_undirty_space(dp, delta, zio->io_txg);
}

static void
dbuf_lightweight_done(zio_t *zio)
{
	dbuf_dirty_record_t *dr = zio->io_private;

	VERIFY0(zio->io_error);

	objset_t *os = dr->dr_dnode->dn_objset;
	dmu_tx_t *tx = os->os_synctx;

	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
	} else {
		dsl_dataset_t *ds = os->os_dsl_dataset;
		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
		dsl_dataset_block_born(ds, zio->io_bp, tx);
	}

	/*
	 * See comment in dbuf_write_done().
	 */
	if (zio->io_phys_children == 0) {
		dsl_pool_undirty_space(dmu_objset_pool(os),
		    dr->dr_accounted, zio->io_txg);
	} else {
		dsl_pool_undirty_space(dmu_objset_pool(os),
		    dr->dr_accounted % zio->io_phys_children, zio->io_txg);
	}

	abd_free(dr->dt.dll.dr_abd);
	kmem_free(dr, sizeof (*dr));
}

noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
{
	dnode_t *dn = dr->dr_dnode;
	zio_t *pio;
	if (dn->dn_phys->dn_nlevels == 1) {
		pio = dn->dn_zio;
	} else {
		pio = dr->dr_parent->dr_zio;
	}

	zbookmark_phys_t zb = {
		.zb_objset = dmu_objset_id(dn->dn_objset),
		.zb_object = dn->dn_object,
		.zb_level = 0,
		.zb_blkid = dr->dt.dll.dr_blkid,
	};

	/*
	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
	 * will have the old BP in dbuf_lightweight_done().
	 */
	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);

	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
	    dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
	    ZIO_PRIORITY_ASYNC_WRITE,
	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);

	zio_nowait(dr->dr_zio);
}

/*
 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
 * critical the we not allow the compiler to inline this function in to
 * dbuf_sync_list() thereby drastically bloating the stack usage.
 */
noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
{
	arc_buf_t **datap = &dr->dt.dl.dr_data;
	dmu_buf_impl_t *db = dr->dr_dbuf;
	dnode_t *dn = dr->dr_dnode;
	objset_t *os;
	uint64_t txg = tx->tx_txg;

	ASSERT(dmu_tx_is_syncing(tx));

	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);

	mutex_enter(&db->db_mtx);
	/*
	 * To be synced, we must be dirtied.  But we
	 * might have been freed after the dirty.
	 */
	if (db->db_state == DB_UNCACHED) {
		/* This buffer has been freed since it was dirtied */
		ASSERT(db->db.db_data == NULL);
	} else if (db->db_state == DB_FILL) {
		/* This buffer was freed and is now being re-filled */
		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
	} else {
		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
	}
	DBUF_VERIFY(db);

	if (db->db_blkid == DMU_SPILL_BLKID) {
		mutex_enter(&dn->dn_mtx);
		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
			/*
			 * In the previous transaction group, the bonus buffer
			 * was entirely used to store the attributes for the
			 * dnode which overrode the dn_spill field.  However,
			 * when adding more attributes to the file a spill
			 * block was required to hold the extra attributes.
			 *
			 * Make sure to clear the garbage left in the dn_spill
			 * field from the previous attributes in the bonus
			 * buffer.  Otherwise, after writing out the spill
			 * block to the new allocated dva, it will free
			 * the old block pointed to by the invalid dn_spill.
			 */
			db->db_blkptr = NULL;
		}
		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
		mutex_exit(&dn->dn_mtx);
	}

	/*
	 * If this is a bonus buffer, simply copy the bonus data into the
	 * dnode.  It will be written out when the dnode is synced (and it
	 * will be synced, since it must have been dirty for dbuf_sync to
	 * be called).
	 */
	if (db->db_blkid == DMU_BONUS_BLKID) {
		ASSERT(dr->dr_dbuf == db);
		dbuf_sync_bonus(dr, tx);
		return;
	}

	os = dn->dn_objset;

	/*
	 * This function may have dropped the db_mtx lock allowing a dmu_sync
	 * operation to sneak in. As a result, we need to ensure that we
	 * don't check the dr_override_state until we have returned from
	 * dbuf_check_blkptr.
	 */
	dbuf_check_blkptr(dn, db);

	/*
	 * If this buffer is in the middle of an immediate write,
	 * wait for the synchronous IO to complete.
	 */
	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
		cv_wait(&db->db_changed, &db->db_mtx);
	}

	/*
	 * If this is a dnode block, ensure it is appropriately encrypted
	 * or decrypted, depending on what we are writing to it this txg.
	 */
	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
		dbuf_prepare_encrypted_dnode_leaf(dr);

	if (db->db_state != DB_NOFILL &&
	    dn->dn_object != DMU_META_DNODE_OBJECT &&
	    zfs_refcount_count(&db->db_holds) > 1 &&
	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
	    *datap == db->db_buf) {
		/*
		 * If this buffer is currently "in use" (i.e., there
		 * are active holds and db_data still references it),
		 * then make a copy before we start the write so that
		 * any modifications from the open txg will not leak
		 * into this write.
		 *
		 * NOTE: this copy does not need to be made for
		 * objects only modified in the syncing context (e.g.
		 * DNONE_DNODE blocks).
		 */
		int psize = arc_buf_size(*datap);
		int lsize = arc_buf_lsize(*datap);
		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
		enum zio_compress compress_type = arc_get_compression(*datap);
		uint8_t complevel = arc_get_complevel(*datap);

		if (arc_is_encrypted(*datap)) {
			boolean_t byteorder;
			uint8_t salt[ZIO_DATA_SALT_LEN];
			uint8_t iv[ZIO_DATA_IV_LEN];
			uint8_t mac[ZIO_DATA_MAC_LEN];

			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
			*datap = arc_alloc_raw_buf(os->os_spa, db,
			    dmu_objset_id(os), byteorder, salt, iv, mac,
			    dn->dn_type, psize, lsize, compress_type,
			    complevel);
		} else if (compress_type != ZIO_COMPRESS_OFF) {
			ASSERT3U(type, ==, ARC_BUFC_DATA);
			*datap = arc_alloc_compressed_buf(os->os_spa, db,
			    psize, lsize, compress_type, complevel);
		} else {
			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
		}
		memcpy((*datap)->b_data, db->db.db_data, psize);
	}
	db->db_data_pending = dr;

	mutex_exit(&db->db_mtx);

	dbuf_write(dr, *datap, tx);

	ASSERT(!list_link_active(&dr->dr_dirty_node));
	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
	} else {
		zio_nowait(dr->dr_zio);
	}
}

void
dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
{
	dbuf_dirty_record_t *dr;

	while ((dr = list_head(list))) {
		if (dr->dr_zio != NULL) {
			/*
			 * If we find an already initialized zio then we
			 * are processing the meta-dnode, and we have finished.
			 * The dbufs for all dnodes are put back on the list
			 * during processing, so that we can zio_wait()
			 * these IOs after initiating all child IOs.
			 */
			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
			    DMU_META_DNODE_OBJECT);
			break;
		}
		list_remove(list, dr);
		if (dr->dr_dbuf == NULL) {
			dbuf_sync_lightweight(dr, tx);
		} else {
			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
			}
			if (dr->dr_dbuf->db_level > 0)
				dbuf_sync_indirect(dr, tx);
			else
				dbuf_sync_leaf(dr, tx);
		}
	}
}

static void
dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
{
	(void) buf;
	dmu_buf_impl_t *db = vdb;
	dnode_t *dn;
	blkptr_t *bp = zio->io_bp;
	blkptr_t *bp_orig = &zio->io_bp_orig;
	spa_t *spa = zio->io_spa;
	int64_t delta;
	uint64_t fill = 0;
	int i;

	ASSERT3P(db->db_blkptr, !=, NULL);
	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
	zio->io_prev_space_delta = delta;

	if (bp->blk_birth != 0) {
		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
		    BP_GET_TYPE(bp) == dn->dn_type) ||
		    (db->db_blkid == DMU_SPILL_BLKID &&
		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
		    BP_IS_EMBEDDED(bp));
		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
	}

	mutex_enter(&db->db_mtx);

#ifdef ZFS_DEBUG
	if (db->db_blkid == DMU_SPILL_BLKID) {
		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
		ASSERT(!(BP_IS_HOLE(bp)) &&
		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
	}
#endif

	if (db->db_level == 0) {
		mutex_enter(&dn->dn_mtx);
		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
		    db->db_blkid != DMU_SPILL_BLKID) {
			ASSERT0(db->db_objset->os_raw_receive);
			dn->dn_phys->dn_maxblkid = db->db_blkid;
		}
		mutex_exit(&dn->dn_mtx);

		if (dn->dn_type == DMU_OT_DNODE) {
			i = 0;
			while (i < db->db.db_size) {
				dnode_phys_t *dnp =
				    (void *)(((char *)db->db.db_data) + i);

				i += DNODE_MIN_SIZE;
				if (dnp->dn_type != DMU_OT_NONE) {
					fill++;
					i += dnp->dn_extra_slots *
					    DNODE_MIN_SIZE;
				}
			}
		} else {
			if (BP_IS_HOLE(bp)) {
				fill = 0;
			} else {
				fill = 1;
			}
		}
	} else {
		blkptr_t *ibp = db->db.db_data;
		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
			if (BP_IS_HOLE(ibp))
				continue;
			fill += BP_GET_FILL(ibp);
		}
	}
	DB_DNODE_EXIT(db);

	if (!BP_IS_EMBEDDED(bp))
		BP_SET_FILL(bp, fill);

	mutex_exit(&db->db_mtx);

	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
	*db->db_blkptr = *bp;
	dmu_buf_unlock_parent(db, dblt, FTAG);
}

/*
 * This function gets called just prior to running through the compression
 * stage of the zio pipeline. If we're an indirect block comprised of only
 * holes, then we want this indirect to be compressed away to a hole. In
 * order to do that we must zero out any information about the holes that
 * this indirect points to prior to before we try to compress it.
 */
static void
dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
{
	(void) zio, (void) buf;
	dmu_buf_impl_t *db = vdb;
	dnode_t *dn;
	blkptr_t *bp;
	unsigned int epbs, i;

	ASSERT3U(db->db_level, >, 0);
	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
	ASSERT3U(epbs, <, 31);

	/* Determine if all our children are holes */
	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
		if (!BP_IS_HOLE(bp))
			break;
	}

	/*
	 * If all the children are holes, then zero them all out so that
	 * we may get compressed away.
	 */
	if (i == 1ULL << epbs) {
		/*
		 * We only found holes. Grab the rwlock to prevent
		 * anybody from reading the blocks we're about to
		 * zero out.
		 */
		rw_enter(&db->db_rwlock, RW_WRITER);
		memset(db->db.db_data, 0, db->db.db_size);
		rw_exit(&db->db_rwlock);
	}
	DB_DNODE_EXIT(db);
}

/*
 * The SPA will call this callback several times for each zio - once
 * for every physical child i/o (zio->io_phys_children times).  This
 * allows the DMU to monitor the progress of each logical i/o.  For example,
 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
 * block.  There may be a long delay before all copies/fragments are completed,
 * so this callback allows us to retire dirty space gradually, as the physical
 * i/os complete.
 */
static void
dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
{
	(void) buf;
	dmu_buf_impl_t *db = arg;
	objset_t *os = db->db_objset;
	dsl_pool_t *dp = dmu_objset_pool(os);
	dbuf_dirty_record_t *dr;
	int delta = 0;

	dr = db->db_data_pending;
	ASSERT3U(dr->dr_txg, ==, zio->io_txg);

	/*
	 * The callback will be called io_phys_children times.  Retire one
	 * portion of our dirty space each time we are called.  Any rounding
	 * error will be cleaned up by dbuf_write_done().
	 */
	delta = dr->dr_accounted / zio->io_phys_children;
	dsl_pool_undirty_space(dp, delta, zio->io_txg);
}

static void
dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
{
	(void) buf;
	dmu_buf_impl_t *db = vdb;
	blkptr_t *bp_orig = &zio->io_bp_orig;
	blkptr_t *bp = db->db_blkptr;
	objset_t *os = db->db_objset;
	dmu_tx_t *tx = os->os_synctx;

	ASSERT0(zio->io_error);
	ASSERT(db->db_blkptr == bp);

	/*
	 * For nopwrites and rewrites we ensure that the bp matches our
	 * original and bypass all the accounting.
	 */
	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
		ASSERT(BP_EQUAL(bp, bp_orig));
	} else {
		dsl_dataset_t *ds = os->os_dsl_dataset;
		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
		dsl_dataset_block_born(ds, bp, tx);
	}

	mutex_enter(&db->db_mtx);

	DBUF_VERIFY(db);

	dbuf_dirty_record_t *dr = db->db_data_pending;
	dnode_t *dn = dr->dr_dnode;
	ASSERT(!list_link_active(&dr->dr_dirty_node));
	ASSERT(dr->dr_dbuf == db);
	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
	list_remove(&db->db_dirty_records, dr);

#ifdef ZFS_DEBUG
	if (db->db_blkid == DMU_SPILL_BLKID) {
		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
	}
#endif

	if (db->db_level == 0) {
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
		if (db->db_state != DB_NOFILL) {
			if (dr->dt.dl.dr_data != db->db_buf)
				arc_buf_destroy(dr->dt.dl.dr_data, db);
		}
	} else {
		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
		if (!BP_IS_HOLE(db->db_blkptr)) {
			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
			    SPA_BLKPTRSHIFT;
			ASSERT3U(db->db_blkid, <=,
			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
			    db->db.db_size);
		}
		mutex_destroy(&dr->dt.di.dr_mtx);
		list_destroy(&dr->dt.di.dr_children);
	}

	cv_broadcast(&db->db_changed);
	ASSERT(db->db_dirtycnt > 0);
	db->db_dirtycnt -= 1;
	db->db_data_pending = NULL;
	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);

	/*
	 * If we didn't do a physical write in this ZIO and we
	 * still ended up here, it means that the space of the
	 * dbuf that we just released (and undirtied) above hasn't
	 * been marked as undirtied in the pool's accounting.
	 *
	 * Thus, we undirty that space in the pool's view of the
	 * world here. For physical writes this type of update
	 * happens in dbuf_write_physdone().
	 *
	 * If we did a physical write, cleanup any rounding errors
	 * that came up due to writing multiple copies of a block
	 * on disk [see dbuf_write_physdone()].
	 */
	if (zio->io_phys_children == 0) {
		dsl_pool_undirty_space(dmu_objset_pool(os),
		    dr->dr_accounted, zio->io_txg);
	} else {
		dsl_pool_undirty_space(dmu_objset_pool(os),
		    dr->dr_accounted % zio->io_phys_children, zio->io_txg);
	}

	kmem_free(dr, sizeof (dbuf_dirty_record_t));
}

static void
dbuf_write_nofill_ready(zio_t *zio)
{
	dbuf_write_ready(zio, NULL, zio->io_private);
}

static void
dbuf_write_nofill_done(zio_t *zio)
{
	dbuf_write_done(zio, NULL, zio->io_private);
}

static void
dbuf_write_override_ready(zio_t *zio)
{
	dbuf_dirty_record_t *dr = zio->io_private;
	dmu_buf_impl_t *db = dr->dr_dbuf;

	dbuf_write_ready(zio, NULL, db);
}

static void
dbuf_write_override_done(zio_t *zio)
{
	dbuf_dirty_record_t *dr = zio->io_private;
	dmu_buf_impl_t *db = dr->dr_dbuf;
	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;

	mutex_enter(&db->db_mtx);
	if (!BP_EQUAL(zio->io_bp, obp)) {
		if (!BP_IS_HOLE(obp))
			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
		arc_release(dr->dt.dl.dr_data, db);
	}
	mutex_exit(&db->db_mtx);

	dbuf_write_done(zio, NULL, db);

	if (zio->io_abd != NULL)
		abd_free(zio->io_abd);
}

typedef struct dbuf_remap_impl_callback_arg {
	objset_t	*drica_os;
	uint64_t	drica_blk_birth;
	dmu_tx_t	*drica_tx;
} dbuf_remap_impl_callback_arg_t;

static void
dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
    void *arg)
{
	dbuf_remap_impl_callback_arg_t *drica = arg;
	objset_t *os = drica->drica_os;
	spa_t *spa = dmu_objset_spa(os);
	dmu_tx_t *tx = drica->drica_tx;

	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));

	if (os == spa_meta_objset(spa)) {
		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
	} else {
		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
		    size, drica->drica_blk_birth, tx);
	}
}

static void
dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
{
	blkptr_t bp_copy = *bp;
	spa_t *spa = dmu_objset_spa(dn->dn_objset);
	dbuf_remap_impl_callback_arg_t drica;

	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));

	drica.drica_os = dn->dn_objset;
	drica.drica_blk_birth = bp->blk_birth;
	drica.drica_tx = tx;
	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
	    &drica)) {
		/*
		 * If the blkptr being remapped is tracked by a livelist,
		 * then we need to make sure the livelist reflects the update.
		 * First, cancel out the old blkptr by appending a 'FREE'
		 * entry. Next, add an 'ALLOC' to track the new version. This
		 * way we avoid trying to free an inaccurate blkptr at delete.
		 * Note that embedded blkptrs are not tracked in livelists.
		 */
		if (dn->dn_objset != spa_meta_objset(spa)) {
			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
			    bp->blk_birth > ds->ds_dir->dd_origin_txg) {
				ASSERT(!BP_IS_EMBEDDED(bp));
				ASSERT(dsl_dir_is_clone(ds->ds_dir));
				ASSERT(spa_feature_is_enabled(spa,
				    SPA_FEATURE_LIVELIST));
				bplist_append(&ds->ds_dir->dd_pending_frees,
				    bp);
				bplist_append(&ds->ds_dir->dd_pending_allocs,
				    &bp_copy);
			}
		}

		/*
		 * The db_rwlock prevents dbuf_read_impl() from
		 * dereferencing the BP while we are changing it.  To
		 * avoid lock contention, only grab it when we are actually
		 * changing the BP.
		 */
		if (rw != NULL)
			rw_enter(rw, RW_WRITER);
		*bp = bp_copy;
		if (rw != NULL)
			rw_exit(rw);
	}
}

/*
 * Remap any existing BP's to concrete vdevs, if possible.
 */
static void
dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
{
	spa_t *spa = dmu_objset_spa(db->db_objset);
	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));

	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
		return;

	if (db->db_level > 0) {
		blkptr_t *bp = db->db.db_data;
		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
		}
	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
		dnode_phys_t *dnp = db->db.db_data;
		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
		    DMU_OT_DNODE);
		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
		    i += dnp[i].dn_extra_slots + 1) {
			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
				    &dn->dn_dbuf->db_rwlock);
				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
				    tx);
			}
		}
	}
}


/* Issue I/O to commit a dirty buffer to disk. */
static void
dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = dr->dr_dbuf;
	dnode_t *dn = dr->dr_dnode;
	objset_t *os;
	dmu_buf_impl_t *parent = db->db_parent;
	uint64_t txg = tx->tx_txg;
	zbookmark_phys_t zb;
	zio_prop_t zp;
	zio_t *pio; /* parent I/O */
	int wp_flag = 0;

	ASSERT(dmu_tx_is_syncing(tx));

	os = dn->dn_objset;

	if (db->db_state != DB_NOFILL) {
		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
			/*
			 * Private object buffers are released here rather
			 * than in dbuf_dirty() since they are only modified
			 * in the syncing context and we don't want the
			 * overhead of making multiple copies of the data.
			 */
			if (BP_IS_HOLE(db->db_blkptr)) {
				arc_buf_thaw(data);
			} else {
				dbuf_release_bp(db);
			}
			dbuf_remap(dn, db, tx);
		}
	}

	if (parent != dn->dn_dbuf) {
		/* Our parent is an indirect block. */
		/* We have a dirty parent that has been scheduled for write. */
		ASSERT(parent && parent->db_data_pending);
		/* Our parent's buffer is one level closer to the dnode. */
		ASSERT(db->db_level == parent->db_level-1);
		/*
		 * We're about to modify our parent's db_data by modifying
		 * our block pointer, so the parent must be released.
		 */
		ASSERT(arc_released(parent->db_buf));
		pio = parent->db_data_pending->dr_zio;
	} else {
		/* Our parent is the dnode itself. */
		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
		    db->db_blkid != DMU_SPILL_BLKID) ||
		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
		if (db->db_blkid != DMU_SPILL_BLKID)
			ASSERT3P(db->db_blkptr, ==,
			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
		pio = dn->dn_zio;
	}

	ASSERT(db->db_level == 0 || data == db->db_buf);
	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
	ASSERT(pio);

	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
	    db->db.db_object, db->db_level, db->db_blkid);

	if (db->db_blkid == DMU_SPILL_BLKID)
		wp_flag = WP_SPILL;
	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;

	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);

	/*
	 * We copy the blkptr now (rather than when we instantiate the dirty
	 * record), because its value can change between open context and
	 * syncing context. We do not need to hold dn_struct_rwlock to read
	 * db_blkptr because we are in syncing context.
	 */
	dr->dr_bp_copy = *db->db_blkptr;

	if (db->db_level == 0 &&
	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
		/*
		 * The BP for this block has been provided by open context
		 * (by dmu_sync() or dmu_buf_write_embedded()).
		 */
		abd_t *contents = (data != NULL) ?
		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;

		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
		    contents, db->db.db_size, db->db.db_size, &zp,
		    dbuf_write_override_ready, NULL, NULL,
		    dbuf_write_override_done,
		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
		mutex_enter(&db->db_mtx);
		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
		mutex_exit(&db->db_mtx);
	} else if (db->db_state == DB_NOFILL) {
		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
		dr->dr_zio = zio_write(pio, os->os_spa, txg,
		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
		    dbuf_write_nofill_ready, NULL, NULL,
		    dbuf_write_nofill_done, db,
		    ZIO_PRIORITY_ASYNC_WRITE,
		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
	} else {
		ASSERT(arc_released(data));

		/*
		 * For indirect blocks, we want to setup the children
		 * ready callback so that we can properly handle an indirect
		 * block that only contains holes.
		 */
		arc_write_done_func_t *children_ready_cb = NULL;
		if (db->db_level != 0)
			children_ready_cb = dbuf_write_children_ready;

		dr->dr_zio = arc_write(pio, os->os_spa, txg,
		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
		    dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
		    children_ready_cb, dbuf_write_physdone,
		    dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
		    ZIO_FLAG_MUSTSUCCEED, &zb);
	}
}

EXPORT_SYMBOL(dbuf_find);
EXPORT_SYMBOL(dbuf_is_metadata);
EXPORT_SYMBOL(dbuf_destroy);
EXPORT_SYMBOL(dbuf_loan_arcbuf);
EXPORT_SYMBOL(dbuf_whichblock);
EXPORT_SYMBOL(dbuf_read);
EXPORT_SYMBOL(dbuf_unoverride);
EXPORT_SYMBOL(dbuf_free_range);
EXPORT_SYMBOL(dbuf_new_size);
EXPORT_SYMBOL(dbuf_release_bp);
EXPORT_SYMBOL(dbuf_dirty);
EXPORT_SYMBOL(dmu_buf_set_crypt_params);
EXPORT_SYMBOL(dmu_buf_will_dirty);
EXPORT_SYMBOL(dmu_buf_is_dirty);
EXPORT_SYMBOL(dmu_buf_will_not_fill);
EXPORT_SYMBOL(dmu_buf_will_fill);
EXPORT_SYMBOL(dmu_buf_fill_done);
EXPORT_SYMBOL(dmu_buf_rele);
EXPORT_SYMBOL(dbuf_assign_arcbuf);
EXPORT_SYMBOL(dbuf_prefetch);
EXPORT_SYMBOL(dbuf_hold_impl);
EXPORT_SYMBOL(dbuf_hold);
EXPORT_SYMBOL(dbuf_hold_level);
EXPORT_SYMBOL(dbuf_create_bonus);
EXPORT_SYMBOL(dbuf_spill_set_blksz);
EXPORT_SYMBOL(dbuf_rm_spill);
EXPORT_SYMBOL(dbuf_add_ref);
EXPORT_SYMBOL(dbuf_rele);
EXPORT_SYMBOL(dbuf_rele_and_unlock);
EXPORT_SYMBOL(dbuf_refcount);
EXPORT_SYMBOL(dbuf_sync_list);
EXPORT_SYMBOL(dmu_buf_set_user);
EXPORT_SYMBOL(dmu_buf_set_user_ie);
EXPORT_SYMBOL(dmu_buf_get_user);
EXPORT_SYMBOL(dmu_buf_get_blkptr);

ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
	"Maximum size in bytes of the dbuf cache.");

ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");

ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");

ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
	"Maximum size in bytes of dbuf metadata cache.");

ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
	"Set size of dbuf cache to log2 fraction of arc size.");

ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
	"Set size of dbuf metadata cache to log2 fraction of arc size.");

ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
	"Set size of dbuf cache mutex array as log2 shift.");