1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
|
/*
* CDDL HEADER START
*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2019 by Delphix. All rights reserved.
*/
#include <sys/btree.h>
#include <sys/bitops.h>
#include <sys/zfs_context.h>
kmem_cache_t *zfs_btree_leaf_cache;
/*
* Control the extent of the verification that occurs when zfs_btree_verify is
* called. Primarily used for debugging when extending the btree logic and
* functionality. As the intensity is increased, new verification steps are
* added. These steps are cumulative; intensity = 3 includes the intensity = 1
* and intensity = 2 steps as well.
*
* Intensity 1: Verify that the tree's height is consistent throughout.
* Intensity 2: Verify that a core node's children's parent pointers point
* to the core node.
* Intensity 3: Verify that the total number of elements in the tree matches the
* sum of the number of elements in each node. Also verifies that each node's
* count obeys the invariants (less than or equal to maximum value, greater than
* or equal to half the maximum minus one).
* Intensity 4: Verify that each element compares less than the element
* immediately after it and greater than the one immediately before it using the
* comparator function. For core nodes, also checks that each element is greater
* than the last element in the first of the two nodes it separates, and less
* than the first element in the second of the two nodes.
* Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
* of each node is poisoned appropriately. Note that poisoning always occurs if
* ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
* operation.
*
* Intensity 4 and 5 are particularly expensive to perform; the previous levels
* are a few memory operations per node, while these levels require multiple
* operations per element. In addition, when creating large btrees, these
* operations are called at every step, resulting in extremely slow operation
* (while the asymptotic complexity of the other steps is the same, the
* importance of the constant factors cannot be denied).
*/
uint_t zfs_btree_verify_intensity = 0;
/*
* Convenience functions to silence warnings from memcpy/memmove's
* return values and change argument order to src, dest.
*/
static void
bcpy(const void *src, void *dest, size_t size)
{
(void) memcpy(dest, src, size);
}
static void
bmov(const void *src, void *dest, size_t size)
{
(void) memmove(dest, src, size);
}
static boolean_t
zfs_btree_is_core(struct zfs_btree_hdr *hdr)
{
return (hdr->bth_first == -1);
}
#ifdef _ILP32
#define BTREE_POISON 0xabadb10c
#else
#define BTREE_POISON 0xabadb10cdeadbeef
#endif
static void
zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (zfs_btree_is_core(hdr)) {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
i++) {
node->btc_children[i] =
(zfs_btree_hdr_t *)BTREE_POISON;
}
(void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
(BTREE_CORE_ELEMS - hdr->bth_count) * size);
} else {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
(void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
(void) memset(leaf->btl_elems +
(hdr->bth_first + hdr->bth_count) * size, 0x0f,
tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) -
(hdr->bth_first + hdr->bth_count) * size);
}
#endif
}
static inline void
zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
uint32_t idx, uint32_t count)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (zfs_btree_is_core(hdr)) {
ASSERT3U(idx, >=, hdr->bth_count);
ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = 1; i <= count; i++) {
node->btc_children[idx + i] =
(zfs_btree_hdr_t *)BTREE_POISON;
}
(void) memset(node->btc_elems + idx * size, 0x0f, count * size);
} else {
ASSERT3U(idx, <=, tree->bt_leaf_cap);
ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
(void) memset(leaf->btl_elems +
(hdr->bth_first + idx) * size, 0x0f, count * size);
}
#endif
}
static inline void
zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
uint32_t idx)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (zfs_btree_is_core(hdr)) {
ASSERT3U(idx, <, BTREE_CORE_ELEMS);
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
VERIFY3P(node->btc_children[idx + 1], ==, cval);
for (size_t i = 0; i < size; i++)
VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
} else {
ASSERT3U(idx, <, tree->bt_leaf_cap);
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
if (idx >= tree->bt_leaf_cap - hdr->bth_first)
return;
for (size_t i = 0; i < size; i++) {
VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
* size + i], ==, 0x0f);
}
}
#endif
}
void
zfs_btree_init(void)
{
zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
zfs_btree_fini(void)
{
kmem_cache_destroy(zfs_btree_leaf_cache);
}
static void *
zfs_btree_leaf_alloc(zfs_btree_t *tree)
{
if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP));
else
return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP));
}
static void
zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr)
{
if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
return (kmem_cache_free(zfs_btree_leaf_cache, ptr));
else
return (kmem_free(ptr, tree->bt_leaf_size));
}
void
zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
size_t size)
{
zfs_btree_create_custom(tree, compar, size, BTREE_LEAF_SIZE);
}
void
zfs_btree_create_custom(zfs_btree_t *tree,
int (*compar) (const void *, const void *),
size_t size, size_t lsize)
{
size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems);
ASSERT3U(size, <=, esize / 2);
memset(tree, 0, sizeof (*tree));
tree->bt_compar = compar;
tree->bt_elem_size = size;
tree->bt_leaf_size = lsize;
tree->bt_leaf_cap = P2ALIGN(esize / size, 2);
tree->bt_height = -1;
tree->bt_bulk = NULL;
}
/*
* Find value in the array of elements provided. Uses a simple binary search.
*/
static void *
zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
const void *value, zfs_btree_index_t *where)
{
uint32_t max = nelems;
uint32_t min = 0;
while (max > min) {
uint32_t idx = (min + max) / 2;
uint8_t *cur = buf + idx * tree->bt_elem_size;
int comp = tree->bt_compar(cur, value);
if (comp < 0) {
min = idx + 1;
} else if (comp > 0) {
max = idx;
} else {
where->bti_offset = idx;
where->bti_before = B_FALSE;
return (cur);
}
}
where->bti_offset = max;
where->bti_before = B_TRUE;
return (NULL);
}
/*
* Find the given value in the tree. where may be passed as null to use as a
* membership test or if the btree is being used as a map.
*/
void *
zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
if (where != NULL) {
where->bti_node = NULL;
where->bti_offset = 0;
}
ASSERT0(tree->bt_num_elems);
return (NULL);
}
/*
* If we're in bulk-insert mode, we check the last spot in the tree
* and the last leaf in the tree before doing the normal search,
* because for most workloads the vast majority of finds in
* bulk-insert mode are to insert new elements.
*/
zfs_btree_index_t idx;
size_t size = tree->bt_elem_size;
if (tree->bt_bulk != NULL) {
zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
int comp = tree->bt_compar(last_leaf->btl_elems +
(last_leaf->btl_hdr.bth_first +
last_leaf->btl_hdr.bth_count - 1) * size, value);
if (comp < 0) {
/*
* If what they're looking for is after the last
* element, it's not in the tree.
*/
if (where != NULL) {
where->bti_node = (zfs_btree_hdr_t *)last_leaf;
where->bti_offset =
last_leaf->btl_hdr.bth_count;
where->bti_before = B_TRUE;
}
return (NULL);
} else if (comp == 0) {
if (where != NULL) {
where->bti_node = (zfs_btree_hdr_t *)last_leaf;
where->bti_offset =
last_leaf->btl_hdr.bth_count - 1;
where->bti_before = B_FALSE;
}
return (last_leaf->btl_elems +
(last_leaf->btl_hdr.bth_first +
last_leaf->btl_hdr.bth_count - 1) * size);
}
if (tree->bt_compar(last_leaf->btl_elems +
last_leaf->btl_hdr.bth_first * size, value) <= 0) {
/*
* If what they're looking for is after the first
* element in the last leaf, it's in the last leaf or
* it's not in the tree.
*/
void *d = zfs_btree_find_in_buf(tree,
last_leaf->btl_elems +
last_leaf->btl_hdr.bth_first * size,
last_leaf->btl_hdr.bth_count, value, &idx);
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
*where = idx;
}
return (d);
}
}
zfs_btree_core_t *node = NULL;
uint32_t child = 0;
uint32_t depth = 0;
/*
* Iterate down the tree, finding which child the value should be in
* by comparing with the separators.
*/
for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
ASSERT3P(node, !=, NULL);
void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
node->btc_hdr.bth_count, value, &idx);
EQUIV(d != NULL, !idx.bti_before);
if (d != NULL) {
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)node;
*where = idx;
}
return (d);
}
ASSERT(idx.bti_before);
child = idx.bti_offset;
}
/*
* The value is in this leaf, or it would be if it were in the
* tree. Find its proper location and return it.
*/
zfs_btree_leaf_t *leaf = (depth == 0 ?
(zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems +
leaf->btl_hdr.bth_first * size,
leaf->btl_hdr.bth_count, value, &idx);
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)leaf;
*where = idx;
}
return (d);
}
/*
* To explain the following functions, it is useful to understand the four
* kinds of shifts used in btree operation. First, a shift is a movement of
* elements within a node. It is used to create gaps for inserting new
* elements and children, or cover gaps created when things are removed. A
* shift has two fundamental properties, each of which can be one of two
* values, making four types of shifts. There is the direction of the shift
* (left or right) and the shape of the shift (parallelogram or isoceles
* trapezoid (shortened to trapezoid hereafter)). The shape distinction only
* applies to shifts of core nodes.
*
* The names derive from the following imagining of the layout of a node:
*
* Elements: * * * * * * * ... * * *
* Children: * * * * * * * * ... * * *
*
* This layout follows from the fact that the elements act as separators
* between pairs of children, and that children root subtrees "below" the
* current node. A left and right shift are fairly self-explanatory; a left
* shift moves things to the left, while a right shift moves things to the
* right. A parallelogram shift is a shift with the same number of elements
* and children being moved, while a trapezoid shift is a shift that moves one
* more children than elements. An example follows:
*
* A parallelogram shift could contain the following:
* _______________
* \* * * * \ * * * ... * * *
* * \ * * * *\ * * * ... * * *
* ---------------
* A trapezoid shift could contain the following:
* ___________
* * / * * * \ * * * ... * * *
* * / * * * *\ * * * ... * * *
* ---------------
*
* Note that a parallelogram shift is always shaped like a "left-leaning"
* parallelogram, where the starting index of the children being moved is
* always one higher than the starting index of the elements being moved. No
* "right-leaning" parallelogram shifts are needed (shifts where the starting
* element index and starting child index being moved are the same) to achieve
* any btree operations, so we ignore them.
*/
enum bt_shift_shape {
BSS_TRAPEZOID,
BSS_PARALLELOGRAM
};
enum bt_shift_direction {
BSD_LEFT,
BSD_RIGHT
};
/*
* Shift elements and children in the provided core node by off spots. The
* first element moved is idx, and count elements are moved. The shape of the
* shift is determined by shape. The direction is determined by dir.
*/
static inline void
bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
uint32_t count, uint32_t off, enum bt_shift_shape shape,
enum bt_shift_direction dir)
{
size_t size = tree->bt_elem_size;
ASSERT(zfs_btree_is_core(&node->btc_hdr));
uint8_t *e_start = node->btc_elems + idx * size;
uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
e_start + off * size);
bmov(e_start, e_out, count * size);
zfs_btree_hdr_t **c_start = node->btc_children + idx +
(shape == BSS_TRAPEZOID ? 0 : 1);
zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
c_start + off);
uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
bmov(c_start, c_out, c_count * sizeof (*c_start));
}
/*
* Shift elements and children in the provided core node left by one spot.
* The first element moved is idx, and count elements are moved. The
* shape of the shift is determined by trap; true if the shift is a trapezoid,
* false if it is a parallelogram.
*/
static inline void
bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
uint32_t count, enum bt_shift_shape shape)
{
bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
}
/*
* Shift elements and children in the provided core node right by one spot.
* Starts with elements[idx] and children[idx] and one more child than element.
*/
static inline void
bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
uint32_t count, enum bt_shift_shape shape)
{
bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
}
/*
* Shift elements and children in the provided leaf node by off spots.
* The first element moved is idx, and count elements are moved. The direction
* is determined by left.
*/
static inline void
bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
uint32_t count, uint32_t off, enum bt_shift_direction dir)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = &node->btl_hdr;
ASSERT(!zfs_btree_is_core(hdr));
if (count == 0)
return;
uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
uint8_t *out = (dir == BSD_LEFT ? start - off * size :
start + off * size);
bmov(start, out, count * size);
}
/*
* Grow leaf for n new elements before idx.
*/
static void
bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
uint32_t n)
{
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
ASSERT(!zfs_btree_is_core(hdr));
ASSERT3U(idx, <=, hdr->bth_count);
uint32_t capacity = tree->bt_leaf_cap;
ASSERT3U(hdr->bth_count + n, <=, capacity);
boolean_t cl = (hdr->bth_first >= n);
boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
if (cl && (!cr || idx <= hdr->bth_count / 2)) {
/* Grow left. */
hdr->bth_first -= n;
bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
} else if (cr) {
/* Grow right. */
bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
BSD_RIGHT);
} else {
/* Grow both ways. */
uint32_t fn = hdr->bth_first -
(capacity - (hdr->bth_count + n)) / 2;
hdr->bth_first -= fn;
bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
n - fn, BSD_RIGHT);
}
hdr->bth_count += n;
}
/*
* Shrink leaf for count elements starting from idx.
*/
static void
bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
uint32_t n)
{
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
ASSERT(!zfs_btree_is_core(hdr));
ASSERT3U(idx, <=, hdr->bth_count);
ASSERT3U(idx + n, <=, hdr->bth_count);
if (idx <= (hdr->bth_count - n) / 2) {
bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
zfs_btree_poison_node_at(tree, hdr, 0, n);
hdr->bth_first += n;
} else {
bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
BSD_LEFT);
zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
}
hdr->bth_count -= n;
}
/*
* Move children and elements from one core node to another. The shape
* parameter behaves the same as it does in the shift logic.
*/
static inline void
bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
enum bt_shift_shape shape)
{
size_t size = tree->bt_elem_size;
ASSERT(zfs_btree_is_core(&source->btc_hdr));
ASSERT(zfs_btree_is_core(&dest->btc_hdr));
bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
count * size);
uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
c_count * sizeof (*source->btc_children));
}
static inline void
bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
{
size_t size = tree->bt_elem_size;
ASSERT(!zfs_btree_is_core(&source->btl_hdr));
ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
count * size);
}
/*
* Find the first element in the subtree rooted at hdr, return its value and
* put its location in where if non-null.
*/
static void *
zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
zfs_btree_index_t *where)
{
zfs_btree_hdr_t *node;
for (node = hdr; zfs_btree_is_core(node);
node = ((zfs_btree_core_t *)node)->btc_children[0])
;
ASSERT(!zfs_btree_is_core(node));
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
if (where != NULL) {
where->bti_node = node;
where->bti_offset = 0;
where->bti_before = B_FALSE;
}
return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
}
/* Insert an element and a child into a core node at the given offset. */
static void
zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
ASSERT3P(par_hdr, ==, new_node->bth_parent);
ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
if (zfs_btree_verify_intensity >= 5) {
zfs_btree_verify_poison_at(tree, par_hdr,
par_hdr->bth_count);
}
/* Shift existing elements and children */
uint32_t count = par_hdr->bth_count - offset;
bt_shift_core_right(tree, parent, offset, count,
BSS_PARALLELOGRAM);
/* Insert new values */
parent->btc_children[offset + 1] = new_node;
bcpy(buf, parent->btc_elems + offset * size, size);
par_hdr->bth_count++;
}
/*
* Insert new_node into the parent of old_node directly after old_node, with
* buf as the dividing element between the two.
*/
static void
zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
zfs_btree_hdr_t *new_node, void *buf)
{
ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
size_t size = tree->bt_elem_size;
zfs_btree_core_t *parent = old_node->bth_parent;
/*
* If this is the root node we were splitting, we create a new root
* and increase the height of the tree.
*/
if (parent == NULL) {
ASSERT3P(old_node, ==, tree->bt_root);
tree->bt_num_nodes++;
zfs_btree_core_t *new_root =
kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
size, KM_SLEEP);
zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
new_root_hdr->bth_parent = NULL;
new_root_hdr->bth_first = -1;
new_root_hdr->bth_count = 1;
old_node->bth_parent = new_node->bth_parent = new_root;
new_root->btc_children[0] = old_node;
new_root->btc_children[1] = new_node;
bcpy(buf, new_root->btc_elems, size);
tree->bt_height++;
tree->bt_root = new_root_hdr;
zfs_btree_poison_node(tree, new_root_hdr);
return;
}
/*
* Since we have the new separator, binary search for where to put
* new_node.
*/
zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
zfs_btree_index_t idx;
ASSERT(zfs_btree_is_core(par_hdr));
VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
par_hdr->bth_count, buf, &idx), ==, NULL);
ASSERT(idx.bti_before);
uint32_t offset = idx.bti_offset;
ASSERT3U(offset, <=, par_hdr->bth_count);
ASSERT3P(parent->btc_children[offset], ==, old_node);
/*
* If the parent isn't full, shift things to accommodate our insertions
* and return.
*/
if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
return;
}
/*
* We need to split this core node into two. Currently there are
* BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
* BTREE_CORE_ELEMS + 2. Some of the children will be part of the
* current node, and the others will be moved to the new core node.
* There are BTREE_CORE_ELEMS + 1 elements including the new one. One
* will be used as the new separator in our parent, and the others
* will be split among the two core nodes.
*
* Usually we will split the node in half evenly, with
* BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
* instead move only about a quarter of the elements (and children) to
* the new node. Since the average state after a long time is a 3/4
* full node, shortcutting directly to that state improves efficiency.
*
* We do this in two stages: first we split into two nodes, and then we
* reuse our existing logic to insert the new element and child.
*/
uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
2 : 4)) - 1, 2);
uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
tree->bt_num_nodes++;
zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
BTREE_CORE_ELEMS * size, KM_SLEEP);
zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
new_par_hdr->bth_parent = par_hdr->bth_parent;
new_par_hdr->bth_first = -1;
new_par_hdr->bth_count = move_count;
zfs_btree_poison_node(tree, new_par_hdr);
par_hdr->bth_count = keep_count;
bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
0, BSS_TRAPEZOID);
/* Store the new separator in a buffer. */
uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
bcpy(parent->btc_elems + keep_count * size, tmp_buf,
size);
zfs_btree_poison_node(tree, par_hdr);
if (offset < keep_count) {
/* Insert the new node into the left half */
zfs_btree_insert_core_impl(tree, parent, offset, new_node,
buf);
/*
* Move the new separator to the existing buffer.
*/
bcpy(tmp_buf, buf, size);
} else if (offset > keep_count) {
/* Insert the new node into the right half */
new_node->bth_parent = new_parent;
zfs_btree_insert_core_impl(tree, new_parent,
offset - keep_count - 1, new_node, buf);
/*
* Move the new separator to the existing buffer.
*/
bcpy(tmp_buf, buf, size);
} else {
/*
* Move the new separator into the right half, and replace it
* with buf. We also need to shift back the elements in the
* right half to accommodate new_node.
*/
bt_shift_core_right(tree, new_parent, 0, move_count,
BSS_TRAPEZOID);
new_parent->btc_children[0] = new_node;
bcpy(tmp_buf, new_parent->btc_elems, size);
new_par_hdr->bth_count++;
}
kmem_free(tmp_buf, size);
zfs_btree_poison_node(tree, par_hdr);
for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
new_parent->btc_children[i]->bth_parent = new_parent;
for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
/*
* Now that the node is split, we need to insert the new node into its
* parent. This may cause further splitting.
*/
zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
&new_parent->btc_hdr, buf);
}
/* Insert an element into a leaf node at the given offset. */
static void
zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
uint32_t idx, const void *value)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
if (zfs_btree_verify_intensity >= 5) {
zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
leaf->btl_hdr.bth_count);
}
bt_grow_leaf(tree, leaf, idx, 1);
uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
bcpy(value, start, size);
}
static void
zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
/* Helper function for inserting a new value into leaf at the given index. */
static void
zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
const void *value, uint32_t idx)
{
size_t size = tree->bt_elem_size;
uint32_t capacity = tree->bt_leaf_cap;
/*
* If the leaf isn't full, shift the elements after idx and insert
* value.
*/
if (leaf->btl_hdr.bth_count != capacity) {
zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
return;
}
/*
* Otherwise, we split the leaf node into two nodes. If we're not bulk
* inserting, each is of size (capacity / 2). If we are bulk
* inserting, we move a quarter of the elements to the new node so
* inserts into the old node don't cause immediate splitting but the
* tree stays relatively dense. Since the average state after a long
* time is a 3/4 full node, shortcutting directly to that state
* improves efficiency. At the end of the bulk insertion process
* we'll need to go through and fix up any nodes (the last leaf and
* its ancestors, potentially) that are below the minimum.
*
* In either case, we're left with one extra element. The leftover
* element will become the new dividing element between the two nodes.
*/
uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
uint32_t keep_count = capacity - move_count - 1;
ASSERT3U(keep_count, >=, 1);
/* If we insert on left. move one more to keep leaves balanced. */
if (idx < keep_count) {
keep_count--;
move_count++;
}
tree->bt_num_nodes++;
zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree);
zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
(idx >= keep_count && idx <= keep_count + move_count / 2);
new_hdr->bth_count = move_count;
zfs_btree_poison_node(tree, new_hdr);
if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
tree->bt_bulk = new_leaf;
/* Copy the back part to the new leaf. */
bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
/* We store the new separator in a buffer we control for simplicity. */
uint8_t *buf = kmem_alloc(size, KM_SLEEP);
bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
buf, size);
bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
if (idx < keep_count) {
/* Insert into the existing leaf. */
zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
} else if (idx > keep_count) {
/* Insert into the new leaf. */
zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
1, value);
} else {
/*
* Insert planned separator into the new leaf, and use
* the new value as the new separator.
*/
zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
bcpy(value, buf, size);
}
/*
* Now that the node is split, we need to insert the new node into its
* parent. This may cause further splitting, bur only of core nodes.
*/
zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
buf);
kmem_free(buf, size);
}
static uint32_t
zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
void *buf;
if (zfs_btree_is_core(hdr)) {
buf = ((zfs_btree_core_t *)hdr)->btc_elems;
} else {
buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
hdr->bth_first * tree->bt_elem_size;
}
zfs_btree_index_t idx;
zfs_btree_core_t *parent = hdr->bth_parent;
VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
ASSERT(idx.bti_before);
ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
return (idx.bti_offset);
}
/*
* Take the b-tree out of bulk insert mode. During bulk-insert mode, some
* nodes may violate the invariant that non-root nodes must be at least half
* full. All nodes violating this invariant should be the last node in their
* particular level. To correct the invariant, we take values from their left
* neighbor until they are half full. They must have a left neighbor at their
* level because the last node at a level is not the first node unless it's
* the root.
*/
static void
zfs_btree_bulk_finish(zfs_btree_t *tree)
{
ASSERT3P(tree->bt_bulk, !=, NULL);
ASSERT3P(tree->bt_root, !=, NULL);
zfs_btree_leaf_t *leaf = tree->bt_bulk;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
zfs_btree_core_t *parent = hdr->bth_parent;
size_t size = tree->bt_elem_size;
uint32_t capacity = tree->bt_leaf_cap;
/*
* The invariant doesn't apply to the root node, if that's the only
* node in the tree we're done.
*/
if (parent == NULL) {
tree->bt_bulk = NULL;
return;
}
/* First, take elements to rebalance the leaf node. */
if (hdr->bth_count < capacity / 2) {
/*
* First, find the left neighbor. The simplest way to do this
* is to call zfs_btree_prev twice; the first time finds some
* ancestor of this node, and the second time finds the left
* neighbor. The ancestor found is the lowest common ancestor
* of leaf and the neighbor.
*/
zfs_btree_index_t idx = {
.bti_node = hdr,
.bti_offset = 0
};
VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
ASSERT(zfs_btree_is_core(idx.bti_node));
zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
uint32_t common_idx = idx.bti_offset;
VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
ASSERT(!zfs_btree_is_core(idx.bti_node));
zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
zfs_btree_hdr_t *l_hdr = idx.bti_node;
uint32_t move_count = (capacity / 2) - hdr->bth_count;
ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
capacity / 2);
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < move_count; i++) {
zfs_btree_verify_poison_at(tree, hdr,
leaf->btl_hdr.bth_count + i);
}
}
/* First, shift elements in leaf back. */
bt_grow_leaf(tree, leaf, 0, move_count);
/* Next, move the separator from the common ancestor to leaf. */
uint8_t *separator = common->btc_elems + common_idx * size;
uint8_t *out = leaf->btl_elems +
(hdr->bth_first + move_count - 1) * size;
bcpy(separator, out, size);
/*
* Now we move elements from the tail of the left neighbor to
* fill the remaining spots in leaf.
*/
bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
(move_count - 1), move_count - 1, leaf, 0);
/*
* Finally, move the new last element in the left neighbor to
* the separator.
*/
bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
l_hdr->bth_count - move_count) * size, separator, size);
/* Adjust the node's counts, and we're done. */
bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
move_count);
ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
ASSERT3U(hdr->bth_count, >=, capacity / 2);
}
/*
* Now we have to rebalance any ancestors of leaf that may also
* violate the invariant.
*/
capacity = BTREE_CORE_ELEMS;
while (parent->btc_hdr.bth_parent != NULL) {
zfs_btree_core_t *cur = parent;
zfs_btree_hdr_t *hdr = &cur->btc_hdr;
parent = hdr->bth_parent;
/*
* If the invariant isn't violated, move on to the next
* ancestor.
*/
if (hdr->bth_count >= capacity / 2)
continue;
/*
* Because the smallest number of nodes we can move when
* splitting is 2, we never need to worry about not having a
* left sibling (a sibling is a neighbor with the same parent).
*/
uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
ASSERT3U(parent_idx, >, 0);
zfs_btree_core_t *l_neighbor =
(zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
uint32_t move_count = (capacity / 2) - hdr->bth_count;
ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
capacity / 2);
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < move_count; i++) {
zfs_btree_verify_poison_at(tree, hdr,
hdr->bth_count + i);
}
}
/* First, shift things in the right node back. */
bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
BSS_TRAPEZOID, BSD_RIGHT);
/* Next, move the separator to the right node. */
uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
size);
uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
bcpy(separator, e_out, size);
/*
* Now, move elements and children from the left node to the
* right. We move one more child than elements.
*/
move_count--;
uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
BSS_TRAPEZOID);
/*
* Finally, move the last element in the left node to the
* separator's position.
*/
move_idx--;
bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
l_neighbor->btc_hdr.bth_count -= move_count + 1;
hdr->bth_count += move_count + 1;
ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
ASSERT3U(hdr->bth_count, >=, capacity / 2);
zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
for (uint32_t i = 0; i <= hdr->bth_count; i++)
cur->btc_children[i]->bth_parent = cur;
}
tree->bt_bulk = NULL;
zfs_btree_verify(tree);
}
/*
* Insert value into tree at the location specified by where.
*/
void
zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
const zfs_btree_index_t *where)
{
zfs_btree_index_t idx = {0};
/* If we're not inserting in the last leaf, end bulk insert mode. */
if (tree->bt_bulk != NULL) {
if (where->bti_node != &tree->bt_bulk->btl_hdr) {
zfs_btree_bulk_finish(tree);
VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
where = &idx;
}
}
tree->bt_num_elems++;
/*
* If this is the first element in the tree, create a leaf root node
* and add the value to it.
*/
if (where->bti_node == NULL) {
ASSERT3U(tree->bt_num_elems, ==, 1);
ASSERT3S(tree->bt_height, ==, -1);
ASSERT3P(tree->bt_root, ==, NULL);
ASSERT0(where->bti_offset);
tree->bt_num_nodes++;
zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree);
tree->bt_root = &leaf->btl_hdr;
tree->bt_height++;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
hdr->bth_parent = NULL;
hdr->bth_first = 0;
hdr->bth_count = 0;
zfs_btree_poison_node(tree, hdr);
zfs_btree_insert_into_leaf(tree, leaf, value, 0);
tree->bt_bulk = leaf;
} else if (!zfs_btree_is_core(where->bti_node)) {
/*
* If we're inserting into a leaf, go directly to the helper
* function.
*/
zfs_btree_insert_into_leaf(tree,
(zfs_btree_leaf_t *)where->bti_node, value,
where->bti_offset);
} else {
/*
* If we're inserting into a core node, we can't just shift
* the existing element in that slot in the same node without
* breaking our ordering invariants. Instead we place the new
* value in the node at that spot and then insert the old
* separator into the first slot in the subtree to the right.
*/
zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
/*
* We can ignore bti_before, because either way the value
* should end up in bti_offset.
*/
uint32_t off = where->bti_offset;
zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
size_t size = tree->bt_elem_size;
uint8_t *buf = kmem_alloc(size, KM_SLEEP);
bcpy(node->btc_elems + off * size, buf, size);
bcpy(value, node->btc_elems + off * size, size);
/*
* Find the first slot in the subtree to the right, insert
* there.
*/
zfs_btree_index_t new_idx;
VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
NULL);
ASSERT0(new_idx.bti_offset);
ASSERT(!zfs_btree_is_core(new_idx.bti_node));
zfs_btree_insert_into_leaf(tree,
(zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
kmem_free(buf, size);
}
zfs_btree_verify(tree);
}
/*
* Return the first element in the tree, and put its location in where if
* non-null.
*/
void *
zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
ASSERT0(tree->bt_num_elems);
return (NULL);
}
return (zfs_btree_first_helper(tree, tree->bt_root, where));
}
/*
* Find the last element in the subtree rooted at hdr, return its value and
* put its location in where if non-null.
*/
static void *
zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
zfs_btree_index_t *where)
{
zfs_btree_hdr_t *node;
for (node = hdr; zfs_btree_is_core(node); node =
((zfs_btree_core_t *)node)->btc_children[node->bth_count])
;
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
if (where != NULL) {
where->bti_node = node;
where->bti_offset = node->bth_count - 1;
where->bti_before = B_FALSE;
}
return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
btree->bt_elem_size);
}
/*
* Return the last element in the tree, and put its location in where if
* non-null.
*/
void *
zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
ASSERT0(tree->bt_num_elems);
return (NULL);
}
return (zfs_btree_last_helper(tree, tree->bt_root, where));
}
/*
* This function contains the logic to find the next node in the tree. A
* helper function is used because there are multiple internal consumemrs of
* this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
* node after we've finished with it.
*/
static void *
zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx,
void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
{
if (idx->bti_node == NULL) {
ASSERT3S(tree->bt_height, ==, -1);
return (NULL);
}
uint32_t offset = idx->bti_offset;
if (!zfs_btree_is_core(idx->bti_node)) {
/*
* When finding the next element of an element in a leaf,
* there are two cases. If the element isn't the last one in
* the leaf, in which case we just return the next element in
* the leaf. Otherwise, we need to traverse up our parents
* until we find one where our ancestor isn't the last child
* of its parent. Once we do, the next element is the
* separator after our ancestor in its parent.
*/
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
if (leaf->btl_hdr.bth_count > new_off) {
out_idx->bti_node = &leaf->btl_hdr;
out_idx->bti_offset = new_off;
out_idx->bti_before = B_FALSE;
return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
new_off) * tree->bt_elem_size);
}
zfs_btree_hdr_t *prev = &leaf->btl_hdr;
for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
node != NULL; node = node->btc_hdr.bth_parent) {
zfs_btree_hdr_t *hdr = &node->btc_hdr;
ASSERT(zfs_btree_is_core(hdr));
uint32_t i = zfs_btree_find_parent_idx(tree, prev);
if (done_func != NULL)
done_func(tree, prev);
if (i == hdr->bth_count) {
prev = hdr;
continue;
}
out_idx->bti_node = hdr;
out_idx->bti_offset = i;
out_idx->bti_before = B_FALSE;
return (node->btc_elems + i * tree->bt_elem_size);
}
if (done_func != NULL)
done_func(tree, prev);
/*
* We've traversed all the way up and been at the end of the
* node every time, so this was the last element in the tree.
*/
return (NULL);
}
/* If we were before an element in a core node, return that element. */
ASSERT(zfs_btree_is_core(idx->bti_node));
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
if (idx->bti_before) {
out_idx->bti_before = B_FALSE;
return (node->btc_elems + offset * tree->bt_elem_size);
}
/*
* The next element from one in a core node is the first element in
* the subtree just to the right of the separator.
*/
zfs_btree_hdr_t *child = node->btc_children[offset + 1];
return (zfs_btree_first_helper(tree, child, out_idx));
}
/*
* Return the next valued node in the tree. The same address can be safely
* passed for idx and out_idx.
*/
void *
zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx)
{
return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
}
/*
* Return the previous valued node in the tree. The same value can be safely
* passed for idx and out_idx.
*/
void *
zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx)
{
if (idx->bti_node == NULL) {
ASSERT3S(tree->bt_height, ==, -1);
return (NULL);
}
uint32_t offset = idx->bti_offset;
if (!zfs_btree_is_core(idx->bti_node)) {
/*
* When finding the previous element of an element in a leaf,
* there are two cases. If the element isn't the first one in
* the leaf, in which case we just return the previous element
* in the leaf. Otherwise, we need to traverse up our parents
* until we find one where our previous ancestor isn't the
* first child. Once we do, the previous element is the
* separator after our previous ancestor.
*/
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
if (offset != 0) {
out_idx->bti_node = &leaf->btl_hdr;
out_idx->bti_offset = offset - 1;
out_idx->bti_before = B_FALSE;
return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
offset - 1) * tree->bt_elem_size);
}
zfs_btree_hdr_t *prev = &leaf->btl_hdr;
for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
node != NULL; node = node->btc_hdr.bth_parent) {
zfs_btree_hdr_t *hdr = &node->btc_hdr;
ASSERT(zfs_btree_is_core(hdr));
uint32_t i = zfs_btree_find_parent_idx(tree, prev);
if (i == 0) {
prev = hdr;
continue;
}
out_idx->bti_node = hdr;
out_idx->bti_offset = i - 1;
out_idx->bti_before = B_FALSE;
return (node->btc_elems + (i - 1) * tree->bt_elem_size);
}
/*
* We've traversed all the way up and been at the start of the
* node every time, so this was the first node in the tree.
*/
return (NULL);
}
/*
* The previous element from one in a core node is the last element in
* the subtree just to the left of the separator.
*/
ASSERT(zfs_btree_is_core(idx->bti_node));
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
zfs_btree_hdr_t *child = node->btc_children[offset];
return (zfs_btree_last_helper(tree, child, out_idx));
}
/*
* Get the value at the provided index in the tree.
*
* Note that the value returned from this function can be mutated, but only
* if it will not change the ordering of the element with respect to any other
* elements that could be in the tree.
*/
void *
zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
{
ASSERT(!idx->bti_before);
size_t size = tree->bt_elem_size;
if (!zfs_btree_is_core(idx->bti_node)) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
idx->bti_offset) * size);
}
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
return (node->btc_elems + idx->bti_offset * size);
}
/* Add the given value to the tree. Must not already be in the tree. */
void
zfs_btree_add(zfs_btree_t *tree, const void *node)
{
zfs_btree_index_t where = {0};
VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
zfs_btree_add_idx(tree, node, &where);
}
/* Helper function to free a tree node. */
static void
zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
{
tree->bt_num_nodes--;
if (!zfs_btree_is_core(node)) {
zfs_btree_leaf_free(tree, node);
} else {
kmem_free(node, sizeof (zfs_btree_core_t) +
BTREE_CORE_ELEMS * tree->bt_elem_size);
}
}
/*
* Remove the rm_hdr and the separator to its left from the parent node. The
* buffer that rm_hdr was stored in may already be freed, so its contents
* cannot be accessed.
*/
static void
zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
zfs_btree_hdr_t *rm_hdr)
{
size_t size = tree->bt_elem_size;
uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
zfs_btree_hdr_t *hdr = &node->btc_hdr;
/*
* If the node is the root node and rm_hdr is one of two children,
* promote the other child to the root.
*/
if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
ASSERT3U(hdr->bth_count, ==, 1);
ASSERT3P(tree->bt_root, ==, node);
ASSERT3P(node->btc_children[1], ==, rm_hdr);
tree->bt_root = node->btc_children[0];
node->btc_children[0]->bth_parent = NULL;
zfs_btree_node_destroy(tree, hdr);
tree->bt_height--;
return;
}
uint32_t idx;
for (idx = 0; idx <= hdr->bth_count; idx++) {
if (node->btc_children[idx] == rm_hdr)
break;
}
ASSERT3U(idx, <=, hdr->bth_count);
/*
* If the node is the root or it has more than the minimum number of
* children, just remove the child and separator, and return.
*/
if (hdr->bth_parent == NULL ||
hdr->bth_count > min_count) {
/*
* Shift the element and children to the right of rm_hdr to
* the left by one spot.
*/
bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
BSS_PARALLELOGRAM);
hdr->bth_count--;
zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
return;
}
ASSERT3U(hdr->bth_count, ==, min_count);
/*
* Now we try to take a node from a neighbor. We check left, then
* right. If the neighbor exists and has more than the minimum number
* of elements, we move the separator between us and them to our
* node, move their closest element (last for left, first for right)
* to the separator, and move their closest child to our node. Along
* the way we need to collapse the gap made by idx, and (for our right
* neighbor) the gap made by removing their first element and child.
*
* Note: this logic currently doesn't support taking from a neighbor
* that isn't a sibling (i.e. a neighbor with a different
* parent). This isn't critical functionality, but may be worth
* implementing in the future for completeness' sake.
*/
zfs_btree_core_t *parent = hdr->bth_parent;
uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
parent->btc_children[parent_idx - 1]);
if (l_hdr != NULL && l_hdr->bth_count > min_count) {
/* We can take a node from the left neighbor. */
ASSERT(zfs_btree_is_core(l_hdr));
zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
/*
* Start by shifting the elements and children in the current
* node to the right by one spot.
*/
bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
/*
* Move the separator between node and neighbor to the first
* element slot in the current node.
*/
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bcpy(separator, node->btc_elems, size);
/* Move the last child of neighbor to our first child slot. */
node->btc_children[0] =
neighbor->btc_children[l_hdr->bth_count];
node->btc_children[0]->bth_parent = node;
/* Move the last element of neighbor to the separator spot. */
uint8_t *take_elem = neighbor->btc_elems +
(l_hdr->bth_count - 1) * size;
bcpy(take_elem, separator, size);
l_hdr->bth_count--;
zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
return;
}
zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
NULL : parent->btc_children[parent_idx + 1]);
if (r_hdr != NULL && r_hdr->bth_count > min_count) {
/* We can take a node from the right neighbor. */
ASSERT(zfs_btree_is_core(r_hdr));
zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
/*
* Shift elements in node left by one spot to overwrite rm_hdr
* and the separator before it.
*/
bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
BSS_PARALLELOGRAM);
/*
* Move the separator between node and neighbor to the last
* element spot in node.
*/
uint8_t *separator = parent->btc_elems + parent_idx * size;
bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
size);
/*
* Move the first child of neighbor to the last child spot in
* node.
*/
node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
node->btc_children[hdr->bth_count]->bth_parent = node;
/* Move the first element of neighbor to the separator spot. */
uint8_t *take_elem = neighbor->btc_elems;
bcpy(take_elem, separator, size);
r_hdr->bth_count--;
/*
* Shift the elements and children of neighbor to cover the
* stolen elements.
*/
bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
BSS_TRAPEZOID);
zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
return;
}
/*
* In this case, neither of our neighbors can spare an element, so we
* need to merge with one of them. We prefer the left one,
* arbitrarily. Move the separator into the leftmost merging node
* (which may be us or the left neighbor), and then move the right
* merging node's elements. Once that's done, we go back and delete
* the element we're removing. Finally, go into the parent and delete
* the right merging node and the separator. This may cause further
* merging.
*/
zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
uint32_t new_idx = idx;
if (l_hdr != NULL) {
keep_hdr = l_hdr;
new_rm_hdr = hdr;
new_idx += keep_hdr->bth_count + 1;
} else {
ASSERT3P(r_hdr, !=, NULL);
keep_hdr = hdr;
new_rm_hdr = r_hdr;
parent_idx++;
}
ASSERT(zfs_btree_is_core(keep_hdr));
ASSERT(zfs_btree_is_core(new_rm_hdr));
zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
zfs_btree_verify_poison_at(tree, keep_hdr,
keep_hdr->bth_count + i);
}
}
/* Move the separator into the left node. */
uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bcpy(separator, e_out, size);
keep_hdr->bth_count++;
/* Move all our elements and children into the left node. */
bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
keep_hdr->bth_count, BSS_TRAPEZOID);
uint32_t old_count = keep_hdr->bth_count;
/* Update bookkeeping */
keep_hdr->bth_count += new_rm_hdr->bth_count;
ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
/*
* Shift the element and children to the right of rm_hdr to
* the left by one spot.
*/
ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
BSS_PARALLELOGRAM);
keep_hdr->bth_count--;
/* Reparent all our children to point to the left node. */
zfs_btree_hdr_t **new_start = keep->btc_children +
old_count - 1;
for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
new_start[i]->bth_parent = keep;
for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
ASSERT3P(keep->btc_children[i], !=, rm_hdr);
}
zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
new_rm_hdr->bth_count = 0;
zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
zfs_btree_node_destroy(tree, new_rm_hdr);
}
/* Remove the element at the specific location. */
void
zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = where->bti_node;
uint32_t idx = where->bti_offset;
ASSERT(!where->bti_before);
if (tree->bt_bulk != NULL) {
/*
* Leave bulk insert mode. Note that our index would be
* invalid after we correct the tree, so we copy the value
* we're planning to remove and find it again after
* bulk_finish.
*/
uint8_t *value = zfs_btree_get(tree, where);
uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
bcpy(value, tmp, size);
zfs_btree_bulk_finish(tree);
VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
kmem_free(tmp, size);
hdr = where->bti_node;
idx = where->bti_offset;
}
tree->bt_num_elems--;
/*
* If the element happens to be in a core node, we move a leaf node's
* element into its place and then remove the leaf node element. This
* makes the rebalance logic not need to be recursive both upwards and
* downwards.
*/
if (zfs_btree_is_core(hdr)) {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
void *new_value = zfs_btree_last_helper(tree, left_subtree,
where);
ASSERT3P(new_value, !=, NULL);
bcpy(new_value, node->btc_elems + idx * size, size);
hdr = where->bti_node;
idx = where->bti_offset;
ASSERT(!where->bti_before);
}
/*
* First, we'll update the leaf's metadata. Then, we shift any
* elements after the idx to the left. After that, we rebalance if
* needed.
*/
ASSERT(!zfs_btree_is_core(hdr));
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
ASSERT3U(hdr->bth_count, >, 0);
uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
/*
* If we're over the minimum size or this is the root, just overwrite
* the value and return.
*/
if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
bt_shrink_leaf(tree, leaf, idx, 1);
if (hdr->bth_parent == NULL) {
ASSERT0(tree->bt_height);
if (hdr->bth_count == 0) {
tree->bt_root = NULL;
tree->bt_height--;
zfs_btree_node_destroy(tree, &leaf->btl_hdr);
}
}
zfs_btree_verify(tree);
return;
}
ASSERT3U(hdr->bth_count, ==, min_count);
/*
* Now we try to take a node from a sibling. We check left, then
* right. If they exist and have more than the minimum number of
* elements, we move the separator between us and them to our node
* and move their closest element (last for left, first for right) to
* the separator. Along the way we need to collapse the gap made by
* idx, and (for our right neighbor) the gap made by removing their
* first element.
*
* Note: this logic currently doesn't support taking from a neighbor
* that isn't a sibling. This isn't critical functionality, but may be
* worth implementing in the future for completeness' sake.
*/
zfs_btree_core_t *parent = hdr->bth_parent;
uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
parent->btc_children[parent_idx - 1]);
if (l_hdr != NULL && l_hdr->bth_count > min_count) {
/* We can take a node from the left neighbor. */
ASSERT(!zfs_btree_is_core(l_hdr));
zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
/*
* Move our elements back by one spot to make room for the
* stolen element and overwrite the element being removed.
*/
bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
/* Move the separator to our first spot. */
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
/* Move our neighbor's last element to the separator. */
uint8_t *take_elem = neighbor->btl_elems +
(l_hdr->bth_first + l_hdr->bth_count - 1) * size;
bcpy(take_elem, separator, size);
/* Delete our neighbor's last element. */
bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
zfs_btree_verify(tree);
return;
}
zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
NULL : parent->btc_children[parent_idx + 1]);
if (r_hdr != NULL && r_hdr->bth_count > min_count) {
/* We can take a node from the right neighbor. */
ASSERT(!zfs_btree_is_core(r_hdr));
zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
/*
* Move our elements after the element being removed forwards
* by one spot to make room for the stolen element and
* overwrite the element being removed.
*/
bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
1, BSD_LEFT);
/* Move the separator between us to our last spot. */
uint8_t *separator = parent->btc_elems + parent_idx * size;
bcpy(separator, leaf->btl_elems + (hdr->bth_first +
hdr->bth_count - 1) * size, size);
/* Move our neighbor's first element to the separator. */
uint8_t *take_elem = neighbor->btl_elems +
r_hdr->bth_first * size;
bcpy(take_elem, separator, size);
/* Delete our neighbor's first element. */
bt_shrink_leaf(tree, neighbor, 0, 1);
zfs_btree_verify(tree);
return;
}
/*
* In this case, neither of our neighbors can spare an element, so we
* need to merge with one of them. We prefer the left one, arbitrarily.
* After remove we move the separator into the leftmost merging node
* (which may be us or the left neighbor), and then move the right
* merging node's elements. Once that's done, we go back and delete
* the element we're removing. Finally, go into the parent and delete
* the right merging node and the separator. This may cause further
* merging.
*/
zfs_btree_hdr_t *rm_hdr, *k_hdr;
if (l_hdr != NULL) {
k_hdr = l_hdr;
rm_hdr = hdr;
} else {
ASSERT3P(r_hdr, !=, NULL);
k_hdr = hdr;
rm_hdr = r_hdr;
parent_idx++;
}
ASSERT(!zfs_btree_is_core(k_hdr));
ASSERT(!zfs_btree_is_core(rm_hdr));
ASSERT3U(k_hdr->bth_count, ==, min_count);
ASSERT3U(rm_hdr->bth_count, ==, min_count);
zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
zfs_btree_verify_poison_at(tree, k_hdr,
k_hdr->bth_count + i);
}
}
/*
* Remove the value from the node. It will go below the minimum,
* but we'll fix it in no time.
*/
bt_shrink_leaf(tree, leaf, idx, 1);
/* Prepare space for elements to be moved from the right. */
uint32_t k_count = k_hdr->bth_count;
bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
/* Move the separator into the first open spot. */
uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
bcpy(separator, out, size);
/* Move our elements to the left neighbor. */
bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
/* Remove the emptied node from the parent. */
zfs_btree_remove_from_node(tree, parent, rm_hdr);
zfs_btree_node_destroy(tree, rm_hdr);
zfs_btree_verify(tree);
}
/* Remove the given value from the tree. */
void
zfs_btree_remove(zfs_btree_t *tree, const void *value)
{
zfs_btree_index_t where = {0};
VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
zfs_btree_remove_idx(tree, &where);
}
/* Return the number of elements in the tree. */
ulong_t
zfs_btree_numnodes(zfs_btree_t *tree)
{
return (tree->bt_num_elems);
}
/*
* This function is used to visit all the elements in the tree before
* destroying the tree. This allows the calling code to perform any cleanup it
* needs to do. This is more efficient than just removing the first element
* over and over, because it removes all rebalancing. Once the destroy_nodes()
* function has been called, no other btree operations are valid until it
* returns NULL, which point the only valid operation is zfs_btree_destroy().
*
* example:
*
* zfs_btree_index_t *cookie = NULL;
* my_data_t *node;
*
* while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
* free(node->ptr);
* zfs_btree_destroy(tree);
*
*/
void *
zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
{
if (*cookie == NULL) {
if (tree->bt_height == -1)
return (NULL);
*cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
return (zfs_btree_first(tree, *cookie));
}
void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
zfs_btree_node_destroy);
if (rval == NULL) {
tree->bt_root = NULL;
tree->bt_height = -1;
tree->bt_num_elems = 0;
kmem_free(*cookie, sizeof (**cookie));
tree->bt_bulk = NULL;
}
return (rval);
}
static void
zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (zfs_btree_is_core(hdr)) {
zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
for (uint32_t i = 0; i <= hdr->bth_count; i++)
zfs_btree_clear_helper(tree, btc->btc_children[i]);
}
zfs_btree_node_destroy(tree, hdr);
}
void
zfs_btree_clear(zfs_btree_t *tree)
{
if (tree->bt_root == NULL) {
ASSERT0(tree->bt_num_elems);
return;
}
zfs_btree_clear_helper(tree, tree->bt_root);
tree->bt_num_elems = 0;
tree->bt_root = NULL;
tree->bt_num_nodes = 0;
tree->bt_height = -1;
tree->bt_bulk = NULL;
}
void
zfs_btree_destroy(zfs_btree_t *tree)
{
ASSERT0(tree->bt_num_elems);
ASSERT3P(tree->bt_root, ==, NULL);
}
/* Verify that every child of this node has the correct parent pointer. */
static void
zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (!zfs_btree_is_core(hdr))
return;
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
}
}
/* Verify that every node has the correct parent pointer. */
static void
zfs_btree_verify_pointers(zfs_btree_t *tree)
{
if (tree->bt_height == -1) {
VERIFY3P(tree->bt_root, ==, NULL);
return;
}
VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
zfs_btree_verify_pointers_helper(tree, tree->bt_root);
}
/*
* Verify that all the current node and its children satisfy the count
* invariants, and return the total count in the subtree rooted in this node.
*/
static uint64_t
zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (!zfs_btree_is_core(hdr)) {
if (tree->bt_root != hdr && tree->bt_bulk &&
hdr != &tree->bt_bulk->btl_hdr) {
VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
}
return (hdr->bth_count);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint64_t ret = hdr->bth_count;
if (tree->bt_root != hdr && tree->bt_bulk == NULL)
VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
ret += zfs_btree_verify_counts_helper(tree,
node->btc_children[i]);
}
return (ret);
}
}
/*
* Verify that all nodes satisfy the invariants and that the total number of
* elements is correct.
*/
static void
zfs_btree_verify_counts(zfs_btree_t *tree)
{
EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
if (tree->bt_height == -1) {
return;
}
VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
tree->bt_num_elems);
}
/*
* Check that the subtree rooted at this node has a uniform height. Returns
* the number of nodes under this node, to help verify bt_num_nodes.
*/
static uint64_t
zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
int32_t height)
{
if (!zfs_btree_is_core(hdr)) {
VERIFY0(height);
return (1);
}
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint64_t ret = 1;
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
ret += zfs_btree_verify_height_helper(tree,
node->btc_children[i], height - 1);
}
return (ret);
}
/*
* Check that the tree rooted at this node has a uniform height, and that the
* bt_height in the tree is correct.
*/
static void
zfs_btree_verify_height(zfs_btree_t *tree)
{
EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
if (tree->bt_height == -1) {
return;
}
VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
tree->bt_height), ==, tree->bt_num_nodes);
}
/*
* Check that the elements in this node are sorted, and that if this is a core
* node, the separators are properly between the subtrees they separaate and
* that the children also satisfy this requirement.
*/
static void
zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
size_t size = tree->bt_elem_size;
if (!zfs_btree_is_core(hdr)) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
for (uint32_t i = 1; i < hdr->bth_count; i++) {
VERIFY3S(tree->bt_compar(leaf->btl_elems +
(hdr->bth_first + i - 1) * size,
leaf->btl_elems +
(hdr->bth_first + i) * size), ==, -1);
}
return;
}
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = 1; i < hdr->bth_count; i++) {
VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
node->btc_elems + i * size), ==, -1);
}
for (uint32_t i = 0; i < hdr->bth_count; i++) {
uint8_t *left_child_last = NULL;
zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
if (zfs_btree_is_core(left_child_hdr)) {
zfs_btree_core_t *left_child =
(zfs_btree_core_t *)left_child_hdr;
left_child_last = left_child->btc_elems +
(left_child_hdr->bth_count - 1) * size;
} else {
zfs_btree_leaf_t *left_child =
(zfs_btree_leaf_t *)left_child_hdr;
left_child_last = left_child->btl_elems +
(left_child_hdr->bth_first +
left_child_hdr->bth_count - 1) * size;
}
int comp = tree->bt_compar(node->btc_elems + i * size,
left_child_last);
if (comp <= 0) {
panic("btree: compar returned %d (expected 1) at "
"%px %d: compar(%px, %px)", comp, node, i,
node->btc_elems + i * size, left_child_last);
}
uint8_t *right_child_first = NULL;
zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
if (zfs_btree_is_core(right_child_hdr)) {
zfs_btree_core_t *right_child =
(zfs_btree_core_t *)right_child_hdr;
right_child_first = right_child->btc_elems;
} else {
zfs_btree_leaf_t *right_child =
(zfs_btree_leaf_t *)right_child_hdr;
right_child_first = right_child->btl_elems +
right_child_hdr->bth_first * size;
}
comp = tree->bt_compar(node->btc_elems + i * size,
right_child_first);
if (comp >= 0) {
panic("btree: compar returned %d (expected -1) at "
"%px %d: compar(%px, %px)", comp, node, i,
node->btc_elems + i * size, right_child_first);
}
}
for (uint32_t i = 0; i <= hdr->bth_count; i++)
zfs_btree_verify_order_helper(tree, node->btc_children[i]);
}
/* Check that all elements in the tree are in sorted order. */
static void
zfs_btree_verify_order(zfs_btree_t *tree)
{
EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
if (tree->bt_height == -1) {
return;
}
zfs_btree_verify_order_helper(tree, tree->bt_root);
}
#ifdef ZFS_DEBUG
/* Check that all unused memory is poisoned correctly. */
static void
zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
size_t size = tree->bt_elem_size;
if (!zfs_btree_is_core(hdr)) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
for (size_t i = 0; i < hdr->bth_first * size; i++)
VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
size_t esize = tree->bt_leaf_size -
offsetof(zfs_btree_leaf_t, btl_elems);
for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
i < esize; i++)
VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (size_t i = hdr->bth_count * size;
i < BTREE_CORE_ELEMS * size; i++)
VERIFY3U(node->btc_elems[i], ==, 0x0f);
for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
i++) {
VERIFY3P(node->btc_children[i], ==,
(zfs_btree_hdr_t *)BTREE_POISON);
}
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
zfs_btree_verify_poison_helper(tree,
node->btc_children[i]);
}
}
}
#endif
/* Check that unused memory in the tree is still poisoned. */
static void
zfs_btree_verify_poison(zfs_btree_t *tree)
{
#ifdef ZFS_DEBUG
if (tree->bt_height == -1)
return;
zfs_btree_verify_poison_helper(tree, tree->bt_root);
#endif
}
void
zfs_btree_verify(zfs_btree_t *tree)
{
if (zfs_btree_verify_intensity == 0)
return;
zfs_btree_verify_height(tree);
if (zfs_btree_verify_intensity == 1)
return;
zfs_btree_verify_pointers(tree);
if (zfs_btree_verify_intensity == 2)
return;
zfs_btree_verify_counts(tree);
if (zfs_btree_verify_intensity == 3)
return;
zfs_btree_verify_order(tree);
if (zfs_btree_verify_intensity == 4)
return;
zfs_btree_verify_poison(tree);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW,
"Enable btree verification. Levels above 4 require ZFS be built "
"with debugging");
/* END CSTYLED */
|