aboutsummaryrefslogtreecommitdiffstats
path: root/module/os/linux/zfs/zvol_os.c
blob: 2396690b40fd34a3ca1d15d43e3b24be62a256fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
 * Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
 * Copyright (c) 2024, Klara, Inc.
 */

#include <sys/dataset_kstats.h>
#include <sys/dbuf.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/zap.h>
#include <sys/zfeature.h>
#include <sys/zil_impl.h>
#include <sys/dmu_tx.h>
#include <sys/zio.h>
#include <sys/zfs_rlock.h>
#include <sys/spa_impl.h>
#include <sys/zvol.h>
#include <sys/zvol_impl.h>
#include <cityhash.h>

#include <linux/blkdev_compat.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/workqueue.h>
#include <linux/blk-mq.h>

static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
    struct request *rq, boolean_t force_sync);

static unsigned int zvol_major = ZVOL_MAJOR;
static unsigned int zvol_request_sync = 0;
static unsigned int zvol_prefetch_bytes = (128 * 1024);
static unsigned long zvol_max_discard_blocks = 16384;

/*
 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
 * to utilize more threads for small files but may affect prefetch hits.
 */
#define	ZVOL_TASKQ_OFFSET_SHIFT 29

#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
static unsigned int zvol_open_timeout_ms = 1000;
#endif

static unsigned int zvol_threads = 0;
static unsigned int zvol_blk_mq_threads = 0;
static unsigned int zvol_blk_mq_actual_threads;
static boolean_t zvol_use_blk_mq = B_FALSE;

/*
 * The maximum number of volblocksize blocks to process per thread.  Typically,
 * write heavy workloads preform better with higher values here, and read
 * heavy workloads preform better with lower values, but that's not a hard
 * and fast rule.  It's basically a knob to tune between "less overhead with
 * less parallelism" and "more overhead, but more parallelism".
 *
 * '8' was chosen as a reasonable, balanced, default based off of sequential
 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
 */
static unsigned int zvol_blk_mq_blocks_per_thread = 8;

static unsigned int zvol_num_taskqs = 0;

#ifndef	BLKDEV_DEFAULT_RQ
/* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
#define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
#endif

/*
 * Finalize our BIO or request.
 */
static inline void
zvol_end_io(struct bio *bio, struct request *rq, int error)
{
	if (bio) {
		bio->bi_status = errno_to_bi_status(-error);
		bio_endio(bio);
	} else {
		blk_mq_end_request(rq, errno_to_bi_status(error));
	}
}

static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
static unsigned int zvol_actual_blk_mq_queue_depth;

struct zvol_state_os {
	struct gendisk		*zvo_disk;	/* generic disk */
	struct request_queue	*zvo_queue;	/* request queue */
	dev_t			zvo_dev;	/* device id */

	struct blk_mq_tag_set tag_set;

	/* Set from the global 'zvol_use_blk_mq' at zvol load */
	boolean_t use_blk_mq;
};

typedef struct zv_taskq {
	uint_t tqs_cnt;
	taskq_t **tqs_taskq;
} zv_taskq_t;
static zv_taskq_t zvol_taskqs;
static struct ida zvol_ida;

typedef struct zv_request_stack {
	zvol_state_t	*zv;
	struct bio	*bio;
	struct request *rq;
} zv_request_t;

typedef struct zv_work {
	struct request  *rq;
	struct work_struct work;
} zv_work_t;

typedef struct zv_request_task {
	zv_request_t zvr;
	taskq_ent_t	ent;
} zv_request_task_t;

static zv_request_task_t *
zv_request_task_create(zv_request_t zvr)
{
	zv_request_task_t *task;
	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
	taskq_init_ent(&task->ent);
	task->zvr = zvr;
	return (task);
}

static void
zv_request_task_free(zv_request_task_t *task)
{
	kmem_free(task, sizeof (*task));
}

/*
 * This is called when a new block multiqueue request comes in.  A request
 * contains one or more BIOs.
 */
static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
    const struct blk_mq_queue_data *bd)
{
	struct request *rq = bd->rq;
	zvol_state_t *zv = rq->q->queuedata;

	/* Tell the kernel that we are starting to process this request */
	blk_mq_start_request(rq);

	if (blk_rq_is_passthrough(rq)) {
		/* Skip non filesystem request */
		blk_mq_end_request(rq, BLK_STS_IOERR);
		return (BLK_STS_IOERR);
	}

	zvol_request_impl(zv, NULL, rq, 0);

	/* Acknowledge to the kernel that we got this request */
	return (BLK_STS_OK);
}

static struct blk_mq_ops zvol_blk_mq_queue_ops = {
	.queue_rq = zvol_mq_queue_rq,
};

/* Initialize our blk-mq struct */
static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
{
	struct zvol_state_os *zso = zv->zv_zso;

	memset(&zso->tag_set, 0, sizeof (zso->tag_set));

	/* Initialize tag set. */
	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
	zso->tag_set.numa_node = NUMA_NO_NODE;
	zso->tag_set.cmd_size = 0;

	/*
	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
	 * zvol_request_impl()
	 */
	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
	zso->tag_set.driver_data = zv;

	return (blk_mq_alloc_tag_set(&zso->tag_set));
}

/*
 * Given a path, return TRUE if path is a ZVOL.
 */
boolean_t
zvol_os_is_zvol(const char *path)
{
	dev_t dev = 0;

	if (vdev_lookup_bdev(path, &dev) != 0)
		return (B_FALSE);

	if (MAJOR(dev) == zvol_major)
		return (B_TRUE);

	return (B_FALSE);
}

static void
zvol_write(zv_request_t *zvr)
{
	struct bio *bio = zvr->bio;
	struct request *rq = zvr->rq;
	int error = 0;
	zfs_uio_t uio;
	zvol_state_t *zv = zvr->zv;
	struct request_queue *q;
	struct gendisk *disk;
	unsigned long start_time = 0;
	boolean_t acct = B_FALSE;

	ASSERT3P(zv, !=, NULL);
	ASSERT3U(zv->zv_open_count, >, 0);
	ASSERT3P(zv->zv_zilog, !=, NULL);

	q = zv->zv_zso->zvo_queue;
	disk = zv->zv_zso->zvo_disk;

	/* bio marked as FLUSH need to flush before write */
	if (io_is_flush(bio, rq))
		zil_commit(zv->zv_zilog, ZVOL_OBJ);

	/* Some requests are just for flush and nothing else. */
	if (io_size(bio, rq) == 0) {
		rw_exit(&zv->zv_suspend_lock);
		zvol_end_io(bio, rq, 0);
		return;
	}

	zfs_uio_bvec_init(&uio, bio, rq);

	ssize_t start_resid = uio.uio_resid;

	/*
	 * With use_blk_mq, accounting is done by blk_mq_start_request()
	 * and blk_mq_end_request(), so we can skip it here.
	 */
	if (bio) {
		acct = blk_queue_io_stat(q);
		if (acct) {
			start_time = blk_generic_start_io_acct(q, disk, WRITE,
			    bio);
		}
	}

	boolean_t sync =
	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;

	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
	    uio.uio_loffset, uio.uio_resid, RL_WRITER);

	uint64_t volsize = zv->zv_volsize;
	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
		uint64_t off = uio.uio_loffset;
		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);

		if (bytes > volsize - off)	/* don't write past the end */
			bytes = volsize - off;

		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);

		/* This will only fail for ENOSPC */
		error = dmu_tx_assign(tx, TXG_WAIT);
		if (error) {
			dmu_tx_abort(tx);
			break;
		}
		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
		if (error == 0) {
			zvol_log_write(zv, tx, off, bytes, sync);
		}
		dmu_tx_commit(tx);

		if (error)
			break;
	}
	zfs_rangelock_exit(lr);

	int64_t nwritten = start_resid - uio.uio_resid;
	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
	task_io_account_write(nwritten);

	if (sync)
		zil_commit(zv->zv_zilog, ZVOL_OBJ);

	rw_exit(&zv->zv_suspend_lock);

	if (bio && acct) {
		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
	}

	zvol_end_io(bio, rq, -error);
}

static void
zvol_write_task(void *arg)
{
	zv_request_task_t *task = arg;
	zvol_write(&task->zvr);
	zv_request_task_free(task);
}

static void
zvol_discard(zv_request_t *zvr)
{
	struct bio *bio = zvr->bio;
	struct request *rq = zvr->rq;
	zvol_state_t *zv = zvr->zv;
	uint64_t start = io_offset(bio, rq);
	uint64_t size = io_size(bio, rq);
	uint64_t end = start + size;
	boolean_t sync;
	int error = 0;
	dmu_tx_t *tx;
	struct request_queue *q = zv->zv_zso->zvo_queue;
	struct gendisk *disk = zv->zv_zso->zvo_disk;
	unsigned long start_time = 0;
	boolean_t acct = B_FALSE;

	ASSERT3P(zv, !=, NULL);
	ASSERT3U(zv->zv_open_count, >, 0);
	ASSERT3P(zv->zv_zilog, !=, NULL);

	if (bio) {
		acct = blk_queue_io_stat(q);
		if (acct) {
			start_time = blk_generic_start_io_acct(q, disk, WRITE,
			    bio);
		}
	}

	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;

	if (end > zv->zv_volsize) {
		error = SET_ERROR(EIO);
		goto unlock;
	}

	/*
	 * Align the request to volume block boundaries when a secure erase is
	 * not required.  This will prevent dnode_free_range() from zeroing out
	 * the unaligned parts which is slow (read-modify-write) and useless
	 * since we are not freeing any space by doing so.
	 */
	if (!io_is_secure_erase(bio, rq)) {
		start = P2ROUNDUP(start, zv->zv_volblocksize);
		end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t);
		size = end - start;
	}

	if (start >= end)
		goto unlock;

	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
	    start, size, RL_WRITER);

	tx = dmu_tx_create(zv->zv_objset);
	dmu_tx_mark_netfree(tx);
	error = dmu_tx_assign(tx, TXG_WAIT);
	if (error != 0) {
		dmu_tx_abort(tx);
	} else {
		zvol_log_truncate(zv, tx, start, size);
		dmu_tx_commit(tx);
		error = dmu_free_long_range(zv->zv_objset,
		    ZVOL_OBJ, start, size);
	}
	zfs_rangelock_exit(lr);

	if (error == 0 && sync)
		zil_commit(zv->zv_zilog, ZVOL_OBJ);

unlock:
	rw_exit(&zv->zv_suspend_lock);

	if (bio && acct) {
		blk_generic_end_io_acct(q, disk, WRITE, bio,
		    start_time);
	}

	zvol_end_io(bio, rq, -error);
}

static void
zvol_discard_task(void *arg)
{
	zv_request_task_t *task = arg;
	zvol_discard(&task->zvr);
	zv_request_task_free(task);
}

static void
zvol_read(zv_request_t *zvr)
{
	struct bio *bio = zvr->bio;
	struct request *rq = zvr->rq;
	int error = 0;
	zfs_uio_t uio;
	boolean_t acct = B_FALSE;
	zvol_state_t *zv = zvr->zv;
	struct request_queue *q;
	struct gendisk *disk;
	unsigned long start_time = 0;

	ASSERT3P(zv, !=, NULL);
	ASSERT3U(zv->zv_open_count, >, 0);

	zfs_uio_bvec_init(&uio, bio, rq);

	q = zv->zv_zso->zvo_queue;
	disk = zv->zv_zso->zvo_disk;

	ssize_t start_resid = uio.uio_resid;

	/*
	 * When blk-mq is being used, accounting is done by
	 * blk_mq_start_request() and blk_mq_end_request().
	 */
	if (bio) {
		acct = blk_queue_io_stat(q);
		if (acct)
			start_time = blk_generic_start_io_acct(q, disk, READ,
			    bio);
	}

	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
	    uio.uio_loffset, uio.uio_resid, RL_READER);

	uint64_t volsize = zv->zv_volsize;

	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);

		/* don't read past the end */
		if (bytes > volsize - uio.uio_loffset)
			bytes = volsize - uio.uio_loffset;

		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
		if (error) {
			/* convert checksum errors into IO errors */
			if (error == ECKSUM)
				error = SET_ERROR(EIO);
			break;
		}
	}
	zfs_rangelock_exit(lr);

	int64_t nread = start_resid - uio.uio_resid;
	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
	task_io_account_read(nread);

	rw_exit(&zv->zv_suspend_lock);

	if (bio && acct) {
		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
	}

	zvol_end_io(bio, rq, -error);
}

static void
zvol_read_task(void *arg)
{
	zv_request_task_t *task = arg;
	zvol_read(&task->zvr);
	zv_request_task_free(task);
}


/*
 * Process a BIO or request
 *
 * Either 'bio' or 'rq' should be set depending on if we are processing a
 * bio or a request (both should not be set).
 *
 * force_sync:	Set to 0 to defer processing to a background taskq
 *			Set to 1 to process data synchronously
 */
static void
zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
    boolean_t force_sync)
{
	fstrans_cookie_t cookie = spl_fstrans_mark();
	uint64_t offset = io_offset(bio, rq);
	uint64_t size = io_size(bio, rq);
	int rw = io_data_dir(bio, rq);

	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
		zvol_end_io(bio, rq, -SET_ERROR(ENXIO));
		goto out;
	}

	if (zvol_request_sync || zv->zv_threading == B_FALSE)
		force_sync = 1;

	zv_request_t zvr = {
		.zv = zv,
		.bio = bio,
		.rq = rq,
	};

	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
		    zv->zv_zso->zvo_disk->disk_name,
		    (long long unsigned)offset,
		    (long unsigned)size);

		zvol_end_io(bio, rq, -SET_ERROR(EIO));
		goto out;
	}

	zv_request_task_t *task;
	zv_taskq_t *ztqs = &zvol_taskqs;
	uint_t blk_mq_hw_queue = 0;
	uint_t tq_idx;
	uint_t taskq_hash;
	if (rq)
#ifdef HAVE_BLK_MQ_RQ_HCTX
		blk_mq_hw_queue = rq->mq_hctx->queue_num;
#else
		blk_mq_hw_queue =
		    rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num;
#endif
	taskq_hash = cityhash3((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
	    blk_mq_hw_queue);
	tq_idx = taskq_hash % ztqs->tqs_cnt;

	if (rw == WRITE) {
		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
			zvol_end_io(bio, rq, -SET_ERROR(EROFS));
			goto out;
		}

		/*
		 * Prevents the zvol from being suspended, or the ZIL being
		 * concurrently opened.  Will be released after the i/o
		 * completes.
		 */
		rw_enter(&zv->zv_suspend_lock, RW_READER);

		/*
		 * Open a ZIL if this is the first time we have written to this
		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
		 * than zv_state_lock so that we don't need to acquire an
		 * additional lock in this path.
		 */
		if (zv->zv_zilog == NULL) {
			rw_exit(&zv->zv_suspend_lock);
			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
			if (zv->zv_zilog == NULL) {
				zv->zv_zilog = zil_open(zv->zv_objset,
				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
				zv->zv_flags |= ZVOL_WRITTEN_TO;
				/* replay / destroy done in zvol_create_minor */
				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
				    ZIL_REPLAY_NEEDED));
			}
			rw_downgrade(&zv->zv_suspend_lock);
		}

		/*
		 * We don't want this thread to be blocked waiting for i/o to
		 * complete, so we instead wait from a taskq callback. The
		 * i/o may be a ZIL write (via zil_commit()), or a read of an
		 * indirect block, or a read of a data block (if this is a
		 * partial-block write).  We will indicate that the i/o is
		 * complete by calling END_IO() from the taskq callback.
		 *
		 * This design allows the calling thread to continue and
		 * initiate more concurrent operations by calling
		 * zvol_request() again. There are typically only a small
		 * number of threads available to call zvol_request() (e.g.
		 * one per iSCSI target), so keeping the latency of
		 * zvol_request() low is important for performance.
		 *
		 * The zvol_request_sync module parameter allows this
		 * behavior to be altered, for performance evaluation
		 * purposes.  If the callback blocks, setting
		 * zvol_request_sync=1 will result in much worse performance.
		 *
		 * We can have up to zvol_threads concurrent i/o's being
		 * processed for all zvols on the system.  This is typically
		 * a vast improvement over the zvol_request_sync=1 behavior
		 * of one i/o at a time per zvol.  However, an even better
		 * design would be for zvol_request() to initiate the zio
		 * directly, and then be notified by the zio_done callback,
		 * which would call END_IO().  Unfortunately, the DMU/ZIL
		 * interfaces lack this functionality (they block waiting for
		 * the i/o to complete).
		 */
		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
			if (force_sync) {
				zvol_discard(&zvr);
			} else {
				task = zv_request_task_create(zvr);
				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
				    zvol_discard_task, task, 0, &task->ent);
			}
		} else {
			if (force_sync) {
				zvol_write(&zvr);
			} else {
				task = zv_request_task_create(zvr);
				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
				    zvol_write_task, task, 0, &task->ent);
			}
		}
	} else {
		/*
		 * The SCST driver, and possibly others, may issue READ I/Os
		 * with a length of zero bytes.  These empty I/Os contain no
		 * data and require no additional handling.
		 */
		if (size == 0) {
			zvol_end_io(bio, rq, 0);
			goto out;
		}

		rw_enter(&zv->zv_suspend_lock, RW_READER);

		/* See comment in WRITE case above. */
		if (force_sync) {
			zvol_read(&zvr);
		} else {
			task = zv_request_task_create(zvr);
			taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
			    zvol_read_task, task, 0, &task->ent);
		}
	}

out:
	spl_fstrans_unmark(cookie);
}

#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
#ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
static void
zvol_submit_bio(struct bio *bio)
#else
static blk_qc_t
zvol_submit_bio(struct bio *bio)
#endif
#else
static MAKE_REQUEST_FN_RET
zvol_request(struct request_queue *q, struct bio *bio)
#endif
{
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
#if defined(HAVE_BIO_BDEV_DISK)
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
#else
	struct request_queue *q = bio->bi_disk->queue;
#endif
#endif
	zvol_state_t *zv = q->queuedata;

	zvol_request_impl(zv, bio, NULL, 0);
#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
	return (BLK_QC_T_NONE);
#endif
}

static int
#ifdef HAVE_BLK_MODE_T
zvol_open(struct gendisk *disk, blk_mode_t flag)
#else
zvol_open(struct block_device *bdev, fmode_t flag)
#endif
{
	zvol_state_t *zv;
	int error = 0;
	boolean_t drop_suspend = B_FALSE;
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
	hrtime_t start = gethrtime();

retry:
#endif
	rw_enter(&zvol_state_lock, RW_READER);
	/*
	 * Obtain a copy of private_data under the zvol_state_lock to make
	 * sure that either the result of zvol free code path setting
	 * disk->private_data to NULL is observed, or zvol_os_free()
	 * is not called on this zv because of the positive zv_open_count.
	 */
#ifdef HAVE_BLK_MODE_T
	zv = disk->private_data;
#else
	zv = bdev->bd_disk->private_data;
#endif
	if (zv == NULL) {
		rw_exit(&zvol_state_lock);
		return (-SET_ERROR(ENXIO));
	}

	mutex_enter(&zv->zv_state_lock);

	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
		mutex_exit(&zv->zv_state_lock);
		rw_exit(&zvol_state_lock);
		return (-SET_ERROR(ENXIO));
	}

	/*
	 * Make sure zvol is not suspended during first open
	 * (hold zv_suspend_lock) and respect proper lock acquisition
	 * ordering - zv_suspend_lock before zv_state_lock
	 */
	if (zv->zv_open_count == 0) {
		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
			mutex_exit(&zv->zv_state_lock);
			rw_enter(&zv->zv_suspend_lock, RW_READER);
			mutex_enter(&zv->zv_state_lock);
			/* check to see if zv_suspend_lock is needed */
			if (zv->zv_open_count != 0) {
				rw_exit(&zv->zv_suspend_lock);
			} else {
				drop_suspend = B_TRUE;
			}
		} else {
			drop_suspend = B_TRUE;
		}
	}
	rw_exit(&zvol_state_lock);

	ASSERT(MUTEX_HELD(&zv->zv_state_lock));

	if (zv->zv_open_count == 0) {
		boolean_t drop_namespace = B_FALSE;

		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));

		/*
		 * In all other call paths the spa_namespace_lock is taken
		 * before the bdev->bd_mutex lock.  However, on open(2)
		 * the __blkdev_get() function calls fops->open() with the
		 * bdev->bd_mutex lock held.  This can result in a deadlock
		 * when zvols from one pool are used as vdevs in another.
		 *
		 * To prevent a lock inversion deadlock we preemptively
		 * take the spa_namespace_lock.  Normally the lock will not
		 * be contended and this is safe because spa_open_common()
		 * handles the case where the caller already holds the
		 * spa_namespace_lock.
		 *
		 * When the lock cannot be aquired after multiple retries
		 * this must be the vdev on zvol deadlock case and we have
		 * no choice but to return an error.  For 5.12 and older
		 * kernels returning -ERESTARTSYS will result in the
		 * bdev->bd_mutex being dropped, then reacquired, and
		 * fops->open() being called again.  This process can be
		 * repeated safely until both locks are acquired.  For 5.13
		 * and newer the -ERESTARTSYS retry logic was removed from
		 * the kernel so the only option is to return the error for
		 * the caller to handle it.
		 */
		if (!mutex_owned(&spa_namespace_lock)) {
			if (!mutex_tryenter(&spa_namespace_lock)) {
				mutex_exit(&zv->zv_state_lock);
				rw_exit(&zv->zv_suspend_lock);
				drop_suspend = B_FALSE;

#ifdef HAVE_BLKDEV_GET_ERESTARTSYS
				schedule();
				return (-SET_ERROR(ERESTARTSYS));
#else
				if ((gethrtime() - start) > timeout)
					return (-SET_ERROR(ERESTARTSYS));

				schedule_timeout_interruptible(
					MSEC_TO_TICK(10));
				goto retry;
#endif
			} else {
				drop_namespace = B_TRUE;
			}
		}

		error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));

		if (drop_namespace)
			mutex_exit(&spa_namespace_lock);
	}

	if (error == 0) {
		if ((blk_mode_is_open_write(flag)) &&
		    (zv->zv_flags & ZVOL_RDONLY)) {
			if (zv->zv_open_count == 0)
				zvol_last_close(zv);

			error = -SET_ERROR(EROFS);
		} else {
			zv->zv_open_count++;
		}
	}

	mutex_exit(&zv->zv_state_lock);
	if (drop_suspend)
		rw_exit(&zv->zv_suspend_lock);

	if (error == 0)
#ifdef HAVE_BLK_MODE_T
		disk_check_media_change(disk);
#else
		zfs_check_media_change(bdev);
#endif

	return (error);
}

static void
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
zvol_release(struct gendisk *disk)
#else
zvol_release(struct gendisk *disk, fmode_t unused)
#endif
{
#if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
	(void) unused;
#endif
	zvol_state_t *zv;
	boolean_t drop_suspend = B_TRUE;

	rw_enter(&zvol_state_lock, RW_READER);
	zv = disk->private_data;

	mutex_enter(&zv->zv_state_lock);
	ASSERT3U(zv->zv_open_count, >, 0);
	/*
	 * make sure zvol is not suspended during last close
	 * (hold zv_suspend_lock) and respect proper lock acquisition
	 * ordering - zv_suspend_lock before zv_state_lock
	 */
	if (zv->zv_open_count == 1) {
		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
			mutex_exit(&zv->zv_state_lock);
			rw_enter(&zv->zv_suspend_lock, RW_READER);
			mutex_enter(&zv->zv_state_lock);
			/* check to see if zv_suspend_lock is needed */
			if (zv->zv_open_count != 1) {
				rw_exit(&zv->zv_suspend_lock);
				drop_suspend = B_FALSE;
			}
		}
	} else {
		drop_suspend = B_FALSE;
	}
	rw_exit(&zvol_state_lock);

	ASSERT(MUTEX_HELD(&zv->zv_state_lock));

	zv->zv_open_count--;
	if (zv->zv_open_count == 0) {
		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
		zvol_last_close(zv);
	}

	mutex_exit(&zv->zv_state_lock);

	if (drop_suspend)
		rw_exit(&zv->zv_suspend_lock);
}

static int
zvol_ioctl(struct block_device *bdev, fmode_t mode,
    unsigned int cmd, unsigned long arg)
{
	zvol_state_t *zv = bdev->bd_disk->private_data;
	int error = 0;

	ASSERT3U(zv->zv_open_count, >, 0);

	switch (cmd) {
	case BLKFLSBUF:
#ifdef HAVE_FSYNC_BDEV
		fsync_bdev(bdev);
#elif defined(HAVE_SYNC_BLOCKDEV)
		sync_blockdev(bdev);
#else
#error "Neither fsync_bdev() nor sync_blockdev() found"
#endif
		invalidate_bdev(bdev);
		rw_enter(&zv->zv_suspend_lock, RW_READER);

		if (!(zv->zv_flags & ZVOL_RDONLY))
			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);

		rw_exit(&zv->zv_suspend_lock);
		break;

	case BLKZNAME:
		mutex_enter(&zv->zv_state_lock);
		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
		mutex_exit(&zv->zv_state_lock);
		break;

	default:
		error = -ENOTTY;
		break;
	}

	return (SET_ERROR(error));
}

#ifdef CONFIG_COMPAT
static int
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
    unsigned cmd, unsigned long arg)
{
	return (zvol_ioctl(bdev, mode, cmd, arg));
}
#else
#define	zvol_compat_ioctl	NULL
#endif

static unsigned int
zvol_check_events(struct gendisk *disk, unsigned int clearing)
{
	unsigned int mask = 0;

	rw_enter(&zvol_state_lock, RW_READER);

	zvol_state_t *zv = disk->private_data;
	if (zv != NULL) {
		mutex_enter(&zv->zv_state_lock);
		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
		zv->zv_changed = 0;
		mutex_exit(&zv->zv_state_lock);
	}

	rw_exit(&zvol_state_lock);

	return (mask);
}

static int
zvol_revalidate_disk(struct gendisk *disk)
{
	rw_enter(&zvol_state_lock, RW_READER);

	zvol_state_t *zv = disk->private_data;
	if (zv != NULL) {
		mutex_enter(&zv->zv_state_lock);
		set_capacity(zv->zv_zso->zvo_disk,
		    zv->zv_volsize >> SECTOR_BITS);
		mutex_exit(&zv->zv_state_lock);
	}

	rw_exit(&zvol_state_lock);

	return (0);
}

int
zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
{
	struct gendisk *disk = zv->zv_zso->zvo_disk;

#if defined(HAVE_REVALIDATE_DISK_SIZE)
	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
#elif defined(HAVE_REVALIDATE_DISK)
	revalidate_disk(disk);
#else
	zvol_revalidate_disk(disk);
#endif
	return (0);
}

void
zvol_os_clear_private(zvol_state_t *zv)
{
	/*
	 * Cleared while holding zvol_state_lock as a writer
	 * which will prevent zvol_open() from opening it.
	 */
	zv->zv_zso->zvo_disk->private_data = NULL;
}

/*
 * Provide a simple virtual geometry for legacy compatibility.  For devices
 * smaller than 1 MiB a small head and sector count is used to allow very
 * tiny devices.  For devices over 1 Mib a standard head and sector count
 * is used to keep the cylinders count reasonable.
 */
static int
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	zvol_state_t *zv = bdev->bd_disk->private_data;
	sector_t sectors;

	ASSERT3U(zv->zv_open_count, >, 0);

	sectors = get_capacity(zv->zv_zso->zvo_disk);

	if (sectors > 2048) {
		geo->heads = 16;
		geo->sectors = 63;
	} else {
		geo->heads = 2;
		geo->sectors = 4;
	}

	geo->start = 0;
	geo->cylinders = sectors / (geo->heads * geo->sectors);

	return (0);
}

/*
 * Why have two separate block_device_operations structs?
 *
 * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
 * can't just change submit_bio dynamically at runtime.  So just create two
 * separate structs to get around this.
 */
static const struct block_device_operations zvol_ops_blk_mq = {
	.open			= zvol_open,
	.release		= zvol_release,
	.ioctl			= zvol_ioctl,
	.compat_ioctl		= zvol_compat_ioctl,
	.check_events		= zvol_check_events,
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
	.revalidate_disk	= zvol_revalidate_disk,
#endif
	.getgeo			= zvol_getgeo,
	.owner			= THIS_MODULE,
};

static const struct block_device_operations zvol_ops = {
	.open			= zvol_open,
	.release		= zvol_release,
	.ioctl			= zvol_ioctl,
	.compat_ioctl		= zvol_compat_ioctl,
	.check_events		= zvol_check_events,
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
	.revalidate_disk	= zvol_revalidate_disk,
#endif
	.getgeo			= zvol_getgeo,
	.owner			= THIS_MODULE,
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
	.submit_bio		= zvol_submit_bio,
#endif
};

/*
 * Since 6.9, Linux has been removing queue limit setters in favour of an
 * initial queue_limits struct applied when the device is open. Since 6.11,
 * queue_limits is being extended to allow more things to be applied when the
 * device is open. Setters are also being removed for this.
 *
 * For OpenZFS, this means that depending on kernel version, some options may
 * be set up before the device is open, and some applied to an open device
 * (queue) after the fact.
 *
 * We manage this complexity by having our own limits struct,
 * zvol_queue_limits_t, in which we carry any queue config that we're
 * interested in setting. This structure is the same on all kernels.
 *
 * These limits are then applied to the queue at device open time by the most
 * appropriate method for the kernel.
 *
 * zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of
 * blk_alloc_disk() exists). This converts our limits struct to a proper Linux
 * struct queue_limits, and passes it in. Any fields added in later kernels are
 * (obviously) not set up here.
 *
 * zvol_queue_limits_apply() is called on all kernel versions after the queue
 * is created, and applies any remaining config. Before 6.9 that will be
 * everything, via setter methods. After 6.9 that will be whatever couldn't be
 * put into struct queue_limits. (This implies that zvol_queue_limits_apply()
 * will always be a no-op on the latest kernel we support).
 */
typedef struct zvol_queue_limits {
	unsigned int	zql_max_hw_sectors;
	unsigned short	zql_max_segments;
	unsigned int	zql_max_segment_size;
	unsigned int	zql_io_opt;
	unsigned int	zql_physical_block_size;
	unsigned int	zql_max_discard_sectors;
	unsigned int	zql_discard_granularity;
} zvol_queue_limits_t;

static void
zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv,
    boolean_t use_blk_mq)
{
	limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9;

	if (use_blk_mq) {
		/*
		 * IO requests can be really big (1MB).  When an IO request
		 * comes in, it is passed off to zvol_read() or zvol_write()
		 * in a new thread, where it is chunked up into 'volblocksize'
		 * sized pieces and processed.  So for example, if the request
		 * is a 1MB write and your volblocksize is 128k, one zvol_write
		 * thread will take that request and sequentially do ten 128k
		 * IOs.  This is due to the fact that the thread needs to lock
		 * each volblocksize sized block.  So you might be wondering:
		 * "instead of passing the whole 1MB request to one thread,
		 * why not pass ten individual 128k chunks to ten threads and
		 * process the whole write in parallel?"  The short answer is
		 * that there's a sweet spot number of chunks that balances
		 * the greater parallelism with the added overhead of more
		 * threads. The sweet spot can be different depending on if you
		 * have a read or write  heavy workload.  Writes typically want
		 * high chunk counts while reads typically want lower ones.  On
		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
		 * configuration, with volblocksize=8k, the sweet spot for good
		 * sequential reads and writes was at 8 chunks.
		 */

		/*
		 * Below we tell the kernel how big we want our requests
		 * to be.  You would think that blk_queue_io_opt() would be
		 * used to do this since it is used to "set optimal request
		 * size for the queue", but that doesn't seem to do
		 * anything - the kernel still gives you huge requests
		 * with tons of little PAGE_SIZE segments contained within it.
		 *
		 * Knowing that the kernel will just give you PAGE_SIZE segments
		 * no matter what, you can say "ok, I want PAGE_SIZE byte
		 * segments, and I want 'N' of them per request", where N is
		 * the correct number of segments for the volblocksize and
		 * number of chunks you want.
		 */
		if (zvol_blk_mq_blocks_per_thread != 0) {
			unsigned int chunks;
			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);

			limits->zql_max_segment_size = PAGE_SIZE;
			limits->zql_max_segments =
			    (zv->zv_volblocksize * chunks) / PAGE_SIZE;
		} else {
			/*
			 * Special case: zvol_blk_mq_blocks_per_thread = 0
			 * Max everything out.
			 */
			limits->zql_max_segments = UINT16_MAX;
			limits->zql_max_segment_size = UINT_MAX;
		}
	} else {
		limits->zql_max_segments = UINT16_MAX;
		limits->zql_max_segment_size = UINT_MAX;
	}

	limits->zql_io_opt = zv->zv_volblocksize;

	limits->zql_physical_block_size = zv->zv_volblocksize;
	limits->zql_max_discard_sectors =
	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9;
	limits->zql_discard_granularity = zv->zv_volblocksize;
}

#ifdef HAVE_BLK_ALLOC_DISK_2ARG
static void
zvol_queue_limits_convert(zvol_queue_limits_t *limits,
    struct queue_limits *qlimits)
{
	memset(qlimits, 0, sizeof (struct queue_limits));
	qlimits->max_hw_sectors = limits->zql_max_hw_sectors;
	qlimits->max_segments = limits->zql_max_segments;
	qlimits->max_segment_size = limits->zql_max_segment_size;
	qlimits->io_opt = limits->zql_io_opt;
	qlimits->physical_block_size = limits->zql_physical_block_size;
	qlimits->max_discard_sectors = limits->zql_max_discard_sectors;
	qlimits->max_hw_discard_sectors = limits->zql_max_discard_sectors;
	qlimits->discard_granularity = limits->zql_discard_granularity;
#ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
	qlimits->features =
	    BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT;
#endif
}
#endif

static void
zvol_queue_limits_apply(zvol_queue_limits_t *limits,
    struct request_queue *queue)
{
#ifndef HAVE_BLK_ALLOC_DISK_2ARG
	blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors);
	blk_queue_max_segments(queue, limits->zql_max_segments);
	blk_queue_max_segment_size(queue, limits->zql_max_segment_size);
	blk_queue_io_opt(queue, limits->zql_io_opt);
	blk_queue_physical_block_size(queue, limits->zql_physical_block_size);
	blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors);
	blk_queue_discard_granularity(queue, limits->zql_discard_granularity);
#endif
#ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
	blk_queue_set_write_cache(queue, B_TRUE);
	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue);
#endif
}

static int
zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits)
{
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
#if defined(HAVE_BLK_ALLOC_DISK)
	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
	if (zso->zvo_disk == NULL)
		return (1);

	zso->zvo_disk->minors = ZVOL_MINORS;
	zso->zvo_queue = zso->zvo_disk->queue;
#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
	struct queue_limits qlimits;
	zvol_queue_limits_convert(limits, &qlimits);
	struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE);
	if (IS_ERR(disk)) {
		zso->zvo_disk = NULL;
		return (1);
	}

	zso->zvo_disk = disk;
	zso->zvo_disk->minors = ZVOL_MINORS;
	zso->zvo_queue = zso->zvo_disk->queue;

#else
	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
	if (zso->zvo_queue == NULL)
		return (1);

	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
	if (zso->zvo_disk == NULL) {
		blk_cleanup_queue(zso->zvo_queue);
		return (1);
	}

	zso->zvo_disk->queue = zso->zvo_queue;
#endif /* HAVE_BLK_ALLOC_DISK */
#else
	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
	if (zso->zvo_queue == NULL)
		return (1);

	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
	if (zso->zvo_disk == NULL) {
		blk_cleanup_queue(zso->zvo_queue);
		return (1);
	}

	zso->zvo_disk->queue = zso->zvo_queue;
#endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */

	zvol_queue_limits_apply(limits, zso->zvo_queue);

	return (0);

}

static int
zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits)
{
	struct zvol_state_os *zso = zv->zv_zso;

	/* Allocate our blk-mq tag_set */
	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
		return (1);

#if defined(HAVE_BLK_ALLOC_DISK)
	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
	if (zso->zvo_disk == NULL) {
		blk_mq_free_tag_set(&zso->tag_set);
		return (1);
	}
	zso->zvo_queue = zso->zvo_disk->queue;
	zso->zvo_disk->minors = ZVOL_MINORS;
#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
	struct queue_limits qlimits;
	zvol_queue_limits_convert(limits, &qlimits);
	struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv);
	if (IS_ERR(disk)) {
		zso->zvo_disk = NULL;
		blk_mq_free_tag_set(&zso->tag_set);
		return (1);
	}

	zso->zvo_disk = disk;
	zso->zvo_queue = zso->zvo_disk->queue;
	zso->zvo_disk->minors = ZVOL_MINORS;
#else
	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
	if (zso->zvo_disk == NULL) {
		blk_cleanup_queue(zso->zvo_queue);
		blk_mq_free_tag_set(&zso->tag_set);
		return (1);
	}
	/* Allocate queue */
	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
	if (IS_ERR(zso->zvo_queue)) {
		blk_mq_free_tag_set(&zso->tag_set);
		return (1);
	}

	/* Our queue is now created, assign it to our disk */
	zso->zvo_disk->queue = zso->zvo_queue;
#endif

	zvol_queue_limits_apply(limits, zso->zvo_queue);

	return (0);
}

/*
 * Allocate memory for a new zvol_state_t and setup the required
 * request queue and generic disk structures for the block device.
 */
static zvol_state_t *
zvol_alloc(dev_t dev, const char *name, uint64_t volblocksize)
{
	zvol_state_t *zv;
	struct zvol_state_os *zso;
	uint64_t volmode;
	int ret;

	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
		return (NULL);

	if (volmode == ZFS_VOLMODE_DEFAULT)
		volmode = zvol_volmode;

	if (volmode == ZFS_VOLMODE_NONE)
		return (NULL);

	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
	zv->zv_zso = zso;
	zv->zv_volmode = volmode;
	zv->zv_volblocksize = volblocksize;

	list_link_init(&zv->zv_next);
	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL);

	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;

	zvol_queue_limits_t limits;
	zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq);

	/*
	 * The block layer has 3 interfaces for getting BIOs:
	 *
	 * 1. blk-mq request queues (new)
	 * 2. submit_bio() (oldest)
	 * 3. regular request queues (old).
	 *
	 * Each of those interfaces has two permutations:
	 *
	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
	 *    both the disk and its queue (5.14 kernel or newer)
	 *
	 * b) We don't have blk_*alloc_disk(), and have to allocate the
	 *    disk and the queue separately. (5.13 kernel or older)
	 */
	if (zv->zv_zso->use_blk_mq) {
		ret = zvol_alloc_blk_mq(zv, &limits);
		zso->zvo_disk->fops = &zvol_ops_blk_mq;
	} else {
		ret = zvol_alloc_non_blk_mq(zso, &limits);
		zso->zvo_disk->fops = &zvol_ops;
	}
	if (ret != 0)
		goto out_kmem;

	/* Limit read-ahead to a single page to prevent over-prefetching. */
	blk_queue_set_read_ahead(zso->zvo_queue, 1);

	if (!zv->zv_zso->use_blk_mq) {
		/* Disable write merging in favor of the ZIO pipeline. */
		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
	}

	zso->zvo_queue->queuedata = zv;
	zso->zvo_dev = dev;
	zv->zv_open_count = 0;
	strlcpy(zv->zv_name, name, sizeof (zv->zv_name));

	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);

	zso->zvo_disk->major = zvol_major;
	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;

	/*
	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
	 * This is accomplished by limiting the number of minors for the
	 * device to one and explicitly disabling partition scanning.
	 */
	if (volmode == ZFS_VOLMODE_DEV) {
		zso->zvo_disk->minors = 1;
		zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT;
		zso->zvo_disk->flags |= GENHD_FL_NO_PART;
	}

	zso->zvo_disk->first_minor = (dev & MINORMASK);
	zso->zvo_disk->private_data = zv;
	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
	    ZVOL_DEV_NAME, (dev & MINORMASK));

	return (zv);

out_kmem:
	kmem_free(zso, sizeof (struct zvol_state_os));
	kmem_free(zv, sizeof (zvol_state_t));
	return (NULL);
}

/*
 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
 * At this time, the structure is not opened by anyone, is taken off
 * the zvol_state_list, and has its private data set to NULL.
 * The zvol_state_lock is dropped.
 *
 * This function may take many milliseconds to complete (e.g. we've seen
 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
 * "del_gendisk". Thus, consumers need to be careful to account for this
 * latency when calling this function.
 */
void
zvol_os_free(zvol_state_t *zv)
{

	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
	ASSERT0(zv->zv_open_count);
	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);

	rw_destroy(&zv->zv_suspend_lock);
	zfs_rangelock_fini(&zv->zv_rangelock);

	del_gendisk(zv->zv_zso->zvo_disk);
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
	(defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
#if defined(HAVE_BLK_CLEANUP_DISK)
	blk_cleanup_disk(zv->zv_zso->zvo_disk);
#else
	put_disk(zv->zv_zso->zvo_disk);
#endif
#else
	blk_cleanup_queue(zv->zv_zso->zvo_queue);
	put_disk(zv->zv_zso->zvo_disk);
#endif

	if (zv->zv_zso->use_blk_mq)
		blk_mq_free_tag_set(&zv->zv_zso->tag_set);

	ida_simple_remove(&zvol_ida,
	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);

	cv_destroy(&zv->zv_removing_cv);
	mutex_destroy(&zv->zv_state_lock);
	dataset_kstats_destroy(&zv->zv_kstat);

	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
	kmem_free(zv, sizeof (zvol_state_t));
}

void
zvol_wait_close(zvol_state_t *zv)
{
}

struct add_disk_work {
	struct delayed_work work;
	struct gendisk *disk;
	int error;
};

static int
__zvol_os_add_disk(struct gendisk *disk)
{
	int error = 0;
#ifdef HAVE_ADD_DISK_RET
	error = add_disk(disk);
#else
	add_disk(disk);
#endif
	return (error);
}

#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
static void
zvol_os_add_disk_work(struct work_struct *work)
{
	struct add_disk_work *add_disk_work;
	add_disk_work = container_of(work, struct add_disk_work, work.work);
	add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk);
}
#endif

/*
 * SPECIAL CASE:
 *
 * This function basically calls add_disk() from a workqueue.   You may be
 * thinking: why not just call add_disk() directly?
 *
 * When you call add_disk(), the zvol appears to the world.  When this happens,
 * the kernel calls disk_scan_partitions() on the zvol, which behaves
 * differently on the 6.9+ kernels:
 *
 * - 6.8 and older kernels -
 * disk_scan_partitions()
 *	handle = bdev_open_by_dev(
 *		zvol_open()
 *	bdev_release(handle);
 *		zvol_release()
 *
 *
 * - 6.9+ kernels -
 * disk_scan_partitions()
 * 	file = bdev_file_open_by_dev()
 *		zvol_open()
 *	fput(file)
 *	< wait for return to userspace >
 *		zvol_release()
 *
 * The difference is that the bdev_release() from the 6.8 kernel is synchronous
 * while the fput() from the 6.9 kernel is async.  Or more specifically it's
 * async that has to wait until we return to userspace (since it adds the fput
 * into the caller's work queue with the TWA_RESUME flag set).  This is not the
 * behavior we want, since we want do things like create+destroy a zvol within
 * a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the
 * reference to the zvol while we're in the IOCTL, which can't wait until we
 * return to userspace.
 *
 * We can get around this since fput() has a special codepath for when it's
 * running in a kernel thread or interrupt.  In those cases, it just puts the
 * fput into the system workqueue, which we can force to run with
 * __flush_workqueue().  That is why we call add_disk() from a workqueue - so it
 * run from a kernel thread and "tricks" the fput() codepaths.
 *
 * Note that __flush_workqueue() is slowly getting deprecated.  This may be ok
 * though, since our IOCTL will spin on EBUSY waiting for the zvol release (via
 * fput) to happen, which it eventually, naturally, will from the system_wq
 * without us explicitly calling __flush_workqueue().
 */
static int
zvol_os_add_disk(struct gendisk *disk)
{
#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)	/* 6.9+ kernel */
	struct add_disk_work add_disk_work;

	INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work);
	add_disk_work.disk = disk;
	add_disk_work.error = 0;

	/* Use *_delayed_work functions since they're not GPL'd */
	schedule_delayed_work(&add_disk_work.work, 0);
	flush_delayed_work(&add_disk_work.work);

	__flush_workqueue(system_wq);
	return (add_disk_work.error);
#else	/* <= 6.8 kernel */
	return (__zvol_os_add_disk(disk));
#endif
}

/*
 * Create a block device minor node and setup the linkage between it
 * and the specified volume.  Once this function returns the block
 * device is live and ready for use.
 */
int
zvol_os_create_minor(const char *name)
{
	zvol_state_t *zv;
	objset_t *os;
	dmu_object_info_t *doi;
	uint64_t volsize;
	uint64_t len;
	unsigned minor = 0;
	int error = 0;
	int idx;
	uint64_t hash = zvol_name_hash(name);
	uint64_t volthreading;
	bool replayed_zil = B_FALSE;

	if (zvol_inhibit_dev)
		return (0);

	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
	if (idx < 0)
		return (SET_ERROR(-idx));
	minor = idx << ZVOL_MINOR_BITS;
	if (MINOR(minor) != minor) {
		/* too many partitions can cause an overflow */
		zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
		    name, minor, MINOR(minor));
		ida_simple_remove(&zvol_ida, idx);
		return (SET_ERROR(EINVAL));
	}

	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
	if (zv) {
		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
		mutex_exit(&zv->zv_state_lock);
		ida_simple_remove(&zvol_ida, idx);
		return (SET_ERROR(EEXIST));
	}

	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);

	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
	if (error)
		goto out_doi;

	error = dmu_object_info(os, ZVOL_OBJ, doi);
	if (error)
		goto out_dmu_objset_disown;

	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
	if (error)
		goto out_dmu_objset_disown;

	zv = zvol_alloc(MKDEV(zvol_major, minor), name,
	    doi->doi_data_block_size);
	if (zv == NULL) {
		error = SET_ERROR(EAGAIN);
		goto out_dmu_objset_disown;
	}
	zv->zv_hash = hash;

	if (dmu_objset_is_snapshot(os))
		zv->zv_flags |= ZVOL_RDONLY;

	zv->zv_volsize = volsize;
	zv->zv_objset = os;

	/* Default */
	zv->zv_threading = B_TRUE;
	if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
	    == 0)
		zv->zv_threading = volthreading;

	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);

#ifdef QUEUE_FLAG_DISCARD
	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
#endif
#ifdef QUEUE_FLAG_NONROT
	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
#endif
#ifdef QUEUE_FLAG_ADD_RANDOM
	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
#endif
	/* This flag was introduced in kernel version 4.12. */
#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
#endif

	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
	if (error)
		goto out_dmu_objset_disown;
	ASSERT3P(zv->zv_zilog, ==, NULL);
	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
	if (spa_writeable(dmu_objset_spa(os))) {
		if (zil_replay_disable)
			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
		else
			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
	}
	if (replayed_zil)
		zil_close(zv->zv_zilog);
	zv->zv_zilog = NULL;

	/*
	 * When udev detects the addition of the device it will immediately
	 * invoke blkid(8) to determine the type of content on the device.
	 * Prefetching the blocks commonly scanned by blkid(8) will speed
	 * up this process.
	 */
	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
	if (len > 0) {
		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
		    ZIO_PRIORITY_SYNC_READ);
	}

	zv->zv_objset = NULL;
out_dmu_objset_disown:
	dmu_objset_disown(os, B_TRUE, FTAG);
out_doi:
	kmem_free(doi, sizeof (dmu_object_info_t));

	/*
	 * Keep in mind that once add_disk() is called, the zvol is
	 * announced to the world, and zvol_open()/zvol_release() can
	 * be called at any time. Incidentally, add_disk() itself calls
	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
	 * directly as well.
	 */
	if (error == 0) {
		rw_enter(&zvol_state_lock, RW_WRITER);
		zvol_insert(zv);
		rw_exit(&zvol_state_lock);
		error = zvol_os_add_disk(zv->zv_zso->zvo_disk);
	} else {
		ida_simple_remove(&zvol_ida, idx);
	}

	return (error);
}

void
zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
{
	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);

	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
	ASSERT(MUTEX_HELD(&zv->zv_state_lock));

	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));

	/* move to new hashtable entry  */
	zv->zv_hash = zvol_name_hash(newname);
	hlist_del(&zv->zv_hlink);
	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));

	/*
	 * The block device's read-only state is briefly changed causing
	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
	 * the name change and fixes the symlinks.  This does not change
	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
	 * changes.  This would normally be done using kobject_uevent() but
	 * that is a GPL-only symbol which is why we need this workaround.
	 */
	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
	set_disk_ro(zv->zv_zso->zvo_disk, readonly);

	dataset_kstats_rename(&zv->zv_kstat, newname);
}

void
zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
{

	set_disk_ro(zv->zv_zso->zvo_disk, flags);
}

void
zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
{

	set_capacity(zv->zv_zso->zvo_disk, capacity);
}

int
zvol_init(void)
{
	int error;

	/*
	 * zvol_threads is the module param the user passes in.
	 *
	 * zvol_actual_threads is what we use internally, since the user can
	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
	 */
	static unsigned int zvol_actual_threads;

	if (zvol_threads == 0) {
		/*
		 * See dde9380a1 for why 32 was chosen here.  This should
		 * probably be refined to be some multiple of the number
		 * of CPUs.
		 */
		zvol_actual_threads = MAX(num_online_cpus(), 32);
	} else {
		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
	}

	/*
	 * Use atleast 32 zvol_threads but for many core system,
	 * prefer 6 threads per taskq, but no more taskqs
	 * than threads in them on large systems.
	 *
	 *                 taskq   total
	 * cpus    taskqs  threads threads
	 * ------- ------- ------- -------
	 * 1       1       32       32
	 * 2       1       32       32
	 * 4       1       32       32
	 * 8       2       16       32
	 * 16      3       11       33
	 * 32      5       7        35
	 * 64      8       8        64
	 * 128     11      12       132
	 * 256     16      16       256
	 */
	zv_taskq_t *ztqs = &zvol_taskqs;
	uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
	if (num_tqs == 0) {
		num_tqs = 1 + num_online_cpus() / 6;
		while (num_tqs * num_tqs > zvol_actual_threads)
			num_tqs--;
	}
	uint_t per_tq_thread = zvol_actual_threads / num_tqs;
	if (per_tq_thread * num_tqs < zvol_actual_threads)
		per_tq_thread++;
	ztqs->tqs_cnt = num_tqs;
	ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
	error = register_blkdev(zvol_major, ZVOL_DRIVER);
	if (error) {
		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
		ztqs->tqs_taskq = NULL;
		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
		return (error);
	}

	if (zvol_blk_mq_queue_depth == 0) {
		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
	} else {
		zvol_actual_blk_mq_queue_depth =
		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
	}

	if (zvol_blk_mq_threads == 0) {
		zvol_blk_mq_actual_threads = num_online_cpus();
	} else {
		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
		    1024);
	}

	for (uint_t i = 0; i < num_tqs; i++) {
		char name[32];
		(void) snprintf(name, sizeof (name), "%s_tq-%u",
		    ZVOL_DRIVER, i);
		ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
		    maxclsyspri, per_tq_thread, INT_MAX,
		    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
		if (ztqs->tqs_taskq[i] == NULL) {
			for (int j = i - 1; j >= 0; j--)
				taskq_destroy(ztqs->tqs_taskq[j]);
			unregister_blkdev(zvol_major, ZVOL_DRIVER);
			kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
			    sizeof (taskq_t *));
			ztqs->tqs_taskq = NULL;
			return (-ENOMEM);
		}
	}

	zvol_init_impl();
	ida_init(&zvol_ida);
	return (0);
}

void
zvol_fini(void)
{
	zv_taskq_t *ztqs = &zvol_taskqs;
	zvol_fini_impl();
	unregister_blkdev(zvol_major, ZVOL_DRIVER);

	if (ztqs->tqs_taskq == NULL) {
		ASSERT3U(ztqs->tqs_cnt, ==, 0);
	} else {
		for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
			ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
			taskq_destroy(ztqs->tqs_taskq[i]);
		}
		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
		    sizeof (taskq_t *));
		ztqs->tqs_taskq = NULL;
	}

	ida_destroy(&zvol_ida);
}

/* BEGIN CSTYLED */
module_param(zvol_inhibit_dev, uint, 0644);
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");

module_param(zvol_major, uint, 0444);
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");

module_param(zvol_threads, uint, 0444);
MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
    "to 0 to use all active CPUs");

module_param(zvol_request_sync, uint, 0644);
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");

module_param(zvol_max_discard_blocks, ulong, 0444);
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");

module_param(zvol_num_taskqs, uint, 0444);
MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");

module_param(zvol_prefetch_bytes, uint, 0644);
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");

module_param(zvol_volmode, uint, 0644);
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");

module_param(zvol_blk_mq_queue_depth, uint, 0644);
MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");

module_param(zvol_use_blk_mq, uint, 0644);
MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");

module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
    "Process volblocksize blocks per thread");

#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
module_param(zvol_open_timeout_ms, uint, 0644);
MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
#endif

/* END CSTYLED */