aboutsummaryrefslogtreecommitdiffstats
path: root/module/os/linux/zfs/zpl_file.c
blob: 0319148b983d4bdb872bd1fc2fd3b56f78c05883 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 */


#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#include <sys/file.h>
#include <sys/dmu_objset.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_project.h>

/*
 * When using fallocate(2) to preallocate space, inflate the requested
 * capacity check by 10% to account for the required metadata blocks.
 */
unsigned int zfs_fallocate_reserve_percent = 110;

static int
zpl_open(struct inode *ip, struct file *filp)
{
	cred_t *cr = CRED();
	int error;
	fstrans_cookie_t cookie;

	error = generic_file_open(ip, filp);
	if (error)
		return (error);

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);
	ASSERT3S(error, <=, 0);

	return (error);
}

static int
zpl_release(struct inode *ip, struct file *filp)
{
	cred_t *cr = CRED();
	int error;
	fstrans_cookie_t cookie;

	cookie = spl_fstrans_mark();
	if (ITOZ(ip)->z_atime_dirty)
		zfs_mark_inode_dirty(ip);

	crhold(cr);
	error = -zfs_close(ip, filp->f_flags, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);
	ASSERT3S(error, <=, 0);

	return (error);
}

static int
zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
{
	cred_t *cr = CRED();
	int error;
	fstrans_cookie_t cookie;

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfs_readdir(file_inode(filp), ctx, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);
	ASSERT3S(error, <=, 0);

	return (error);
}

#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
static int
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
	zpl_dir_context_t ctx =
	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
	int error;

	error = zpl_iterate(filp, &ctx);
	filp->f_pos = ctx.pos;

	return (error);
}
#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */

#if defined(HAVE_FSYNC_WITHOUT_DENTRY)
/*
 * Linux 2.6.35 - 3.0 API,
 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
 * redundant.  The dentry is still accessible via filp->f_path.dentry,
 * and we are guaranteed that filp will never be NULL.
 */
static int
zpl_fsync(struct file *filp, int datasync)
{
	struct inode *inode = filp->f_mapping->host;
	cred_t *cr = CRED();
	int error;
	fstrans_cookie_t cookie;

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfs_fsync(ITOZ(inode), datasync, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);
	ASSERT3S(error, <=, 0);

	return (error);
}

#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
	return (zpl_fsync(kiocb->ki_filp, datasync));
}
#endif

#elif defined(HAVE_FSYNC_RANGE)
/*
 * Linux 3.1 API,
 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
 * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
 * lock is no longer held by the caller, for zfs we don't require the lock
 * to be held so we don't acquire it.
 */
static int
zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
	struct inode *inode = filp->f_mapping->host;
	cred_t *cr = CRED();
	int error;
	fstrans_cookie_t cookie;

	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return (error);

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfs_fsync(ITOZ(inode), datasync, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);
	ASSERT3S(error, <=, 0);

	return (error);
}

#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
}
#endif

#else
#error "Unsupported fops->fsync() implementation"
#endif

static inline int
zfs_io_flags(struct kiocb *kiocb)
{
	int flags = 0;

#if defined(IOCB_DSYNC)
	if (kiocb->ki_flags & IOCB_DSYNC)
		flags |= O_DSYNC;
#endif
#if defined(IOCB_SYNC)
	if (kiocb->ki_flags & IOCB_SYNC)
		flags |= O_SYNC;
#endif
#if defined(IOCB_APPEND)
	if (kiocb->ki_flags & IOCB_APPEND)
		flags |= O_APPEND;
#endif
#if defined(IOCB_DIRECT)
	if (kiocb->ki_flags & IOCB_DIRECT)
		flags |= O_DIRECT;
#endif
	return (flags);
}

/*
 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
 * is true.  This is needed since datasets with inherited "relatime" property
 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
 * `zfs set relatime=...`), which is what relatime test in VFS by
 * relatime_need_update() is based on.
 */
static inline void
zpl_file_accessed(struct file *filp)
{
	struct inode *ip = filp->f_mapping->host;

	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
		if (zfs_relatime_need_update(ip))
			file_accessed(filp);
	} else {
		file_accessed(filp);
	}
}

#if defined(HAVE_VFS_RW_ITERATE)

/*
 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
 * manipulate the iov_iter are available.  In which case the full iov_iter
 * can be attached to the uio and correctly handled in the lower layers.
 * Otherwise, for older kernels extract the iovec and pass it instead.
 */
static void
zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
    loff_t pos, ssize_t count, size_t skip)
{
#if defined(HAVE_VFS_IOV_ITER)
	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
#else
	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
	    to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
	    count, skip);
#endif
}

static ssize_t
zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
{
	cred_t *cr = CRED();
	fstrans_cookie_t cookie;
	struct file *filp = kiocb->ki_filp;
	ssize_t count = iov_iter_count(to);
	zfs_uio_t uio;

	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);

	crhold(cr);
	cookie = spl_fstrans_mark();

	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
	    filp->f_flags | zfs_io_flags(kiocb), cr);

	spl_fstrans_unmark(cookie);
	crfree(cr);

	if (error < 0)
		return (error);

	ssize_t read = count - uio.uio_resid;
	kiocb->ki_pos += read;

	zpl_file_accessed(filp);

	return (read);
}

static inline ssize_t
zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
    size_t *countp)
{
#ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
	ssize_t ret = generic_write_checks(kiocb, from);
	if (ret <= 0)
		return (ret);

	*countp = ret;
#else
	struct file *file = kiocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode *ip = mapping->host;
	int isblk = S_ISBLK(ip->i_mode);

	*countp = iov_iter_count(from);
	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
	if (ret)
		return (ret);
#endif

	return (0);
}

static ssize_t
zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
{
	cred_t *cr = CRED();
	fstrans_cookie_t cookie;
	struct file *filp = kiocb->ki_filp;
	struct inode *ip = filp->f_mapping->host;
	zfs_uio_t uio;
	size_t count = 0;
	ssize_t ret;

	ret = zpl_generic_write_checks(kiocb, from, &count);
	if (ret)
		return (ret);

	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);

	crhold(cr);
	cookie = spl_fstrans_mark();

	int error = -zfs_write(ITOZ(ip), &uio,
	    filp->f_flags | zfs_io_flags(kiocb), cr);

	spl_fstrans_unmark(cookie);
	crfree(cr);

	if (error < 0)
		return (error);

	ssize_t wrote = count - uio.uio_resid;
	kiocb->ki_pos += wrote;

	return (wrote);
}

#else /* !HAVE_VFS_RW_ITERATE */

static ssize_t
zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
    unsigned long nr_segs, loff_t pos)
{
	cred_t *cr = CRED();
	fstrans_cookie_t cookie;
	struct file *filp = kiocb->ki_filp;
	size_t count;
	ssize_t ret;

	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
	if (ret)
		return (ret);

	zfs_uio_t uio;
	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
	    count, 0);

	crhold(cr);
	cookie = spl_fstrans_mark();

	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
	    filp->f_flags | zfs_io_flags(kiocb), cr);

	spl_fstrans_unmark(cookie);
	crfree(cr);

	if (error < 0)
		return (error);

	ssize_t read = count - uio.uio_resid;
	kiocb->ki_pos += read;

	zpl_file_accessed(filp);

	return (read);
}

static ssize_t
zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
    unsigned long nr_segs, loff_t pos)
{
	cred_t *cr = CRED();
	fstrans_cookie_t cookie;
	struct file *filp = kiocb->ki_filp;
	struct inode *ip = filp->f_mapping->host;
	size_t count;
	ssize_t ret;

	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
	if (ret)
		return (ret);

	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
	if (ret)
		return (ret);

	zfs_uio_t uio;
	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
	    count, 0);

	crhold(cr);
	cookie = spl_fstrans_mark();

	int error = -zfs_write(ITOZ(ip), &uio,
	    filp->f_flags | zfs_io_flags(kiocb), cr);

	spl_fstrans_unmark(cookie);
	crfree(cr);

	if (error < 0)
		return (error);

	ssize_t wrote = count - uio.uio_resid;
	kiocb->ki_pos += wrote;

	return (wrote);
}
#endif /* HAVE_VFS_RW_ITERATE */

#if defined(HAVE_VFS_RW_ITERATE)
static ssize_t
zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
{
	if (rw == WRITE)
		return (zpl_iter_write(kiocb, iter));
	else
		return (zpl_iter_read(kiocb, iter));
}
#if defined(HAVE_VFS_DIRECT_IO_ITER)
static ssize_t
zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
{
	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
}
#elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
static ssize_t
zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
{
	ASSERT3S(pos, ==, kiocb->ki_pos);
	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
}
#elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
static ssize_t
zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
{
	ASSERT3S(pos, ==, kiocb->ki_pos);
	return (zpl_direct_IO_impl(rw, kiocb, iter));
}
#else
#error "Unknown direct IO interface"
#endif

#else /* HAVE_VFS_RW_ITERATE */

#if defined(HAVE_VFS_DIRECT_IO_IOVEC)
static ssize_t
zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
    loff_t pos, unsigned long nr_segs)
{
	if (rw == WRITE)
		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
	else
		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
}
#elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
static ssize_t
zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
{
	const struct iovec *iovp = iov_iter_iovec(iter);
	unsigned long nr_segs = iter->nr_segs;

	ASSERT3S(pos, ==, kiocb->ki_pos);
	if (rw == WRITE)
		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
	else
		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
}
#else
#error "Unknown direct IO interface"
#endif

#endif /* HAVE_VFS_RW_ITERATE */

static loff_t
zpl_llseek(struct file *filp, loff_t offset, int whence)
{
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
	fstrans_cookie_t cookie;

	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
		struct inode *ip = filp->f_mapping->host;
		loff_t maxbytes = ip->i_sb->s_maxbytes;
		loff_t error;

		spl_inode_lock_shared(ip);
		cookie = spl_fstrans_mark();
		error = -zfs_holey(ITOZ(ip), whence, &offset);
		spl_fstrans_unmark(cookie);
		if (error == 0)
			error = lseek_execute(filp, ip, offset, maxbytes);
		spl_inode_unlock_shared(ip);

		return (error);
	}
#endif /* SEEK_HOLE && SEEK_DATA */

	return (generic_file_llseek(filp, offset, whence));
}

/*
 * It's worth taking a moment to describe how mmap is implemented
 * for zfs because it differs considerably from other Linux filesystems.
 * However, this issue is handled the same way under OpenSolaris.
 *
 * The issue is that by design zfs bypasses the Linux page cache and
 * leaves all caching up to the ARC.  This has been shown to work
 * well for the common read(2)/write(2) case.  However, mmap(2)
 * is problem because it relies on being tightly integrated with the
 * page cache.  To handle this we cache mmap'ed files twice, once in
 * the ARC and a second time in the page cache.  The code is careful
 * to keep both copies synchronized.
 *
 * When a file with an mmap'ed region is written to using write(2)
 * both the data in the ARC and existing pages in the page cache
 * are updated.  For a read(2) data will be read first from the page
 * cache then the ARC if needed.  Neither a write(2) or read(2) will
 * will ever result in new pages being added to the page cache.
 *
 * New pages are added to the page cache only via .readpage() which
 * is called when the vfs needs to read a page off disk to back the
 * virtual memory region.  These pages may be modified without
 * notifying the ARC and will be written out periodically via
 * .writepage().  This will occur due to either a sync or the usual
 * page aging behavior.  Note because a read(2) of a mmap'ed file
 * will always check the page cache first even when the ARC is out
 * of date correct data will still be returned.
 *
 * While this implementation ensures correct behavior it does have
 * have some drawbacks.  The most obvious of which is that it
 * increases the required memory footprint when access mmap'ed
 * files.  It also adds additional complexity to the code keeping
 * both caches synchronized.
 *
 * Longer term it may be possible to cleanly resolve this wart by
 * mapping page cache pages directly on to the ARC buffers.  The
 * Linux address space operations are flexible enough to allow
 * selection of which pages back a particular index.  The trick
 * would be working out the details of which subsystem is in
 * charge, the ARC, the page cache, or both.  It may also prove
 * helpful to move the ARC buffers to a scatter-gather lists
 * rather than a vmalloc'ed region.
 */
static int
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct inode *ip = filp->f_mapping->host;
	znode_t *zp = ITOZ(ip);
	int error;
	fstrans_cookie_t cookie;

	cookie = spl_fstrans_mark();
	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
	spl_fstrans_unmark(cookie);
	if (error)
		return (error);

	error = generic_file_mmap(filp, vma);
	if (error)
		return (error);

	mutex_enter(&zp->z_lock);
	zp->z_is_mapped = B_TRUE;
	mutex_exit(&zp->z_lock);

	return (error);
}

/*
 * Populate a page with data for the Linux page cache.  This function is
 * only used to support mmap(2).  There will be an identical copy of the
 * data in the ARC which is kept up to date via .write() and .writepage().
 */
static inline int
zpl_readpage_common(struct page *pp)
{
	struct inode *ip;
	struct page *pl[1];
	int error = 0;
	fstrans_cookie_t cookie;

	ASSERT(PageLocked(pp));
	ip = pp->mapping->host;
	pl[0] = pp;

	cookie = spl_fstrans_mark();
	error = -zfs_getpage(ip, pl, 1);
	spl_fstrans_unmark(cookie);

	if (error) {
		SetPageError(pp);
		ClearPageUptodate(pp);
	} else {
		ClearPageError(pp);
		SetPageUptodate(pp);
		flush_dcache_page(pp);
	}

	unlock_page(pp);
	return (error);
}

static int
zpl_readpage(struct file *filp, struct page *pp)
{
	return (zpl_readpage_common(pp));
}

static int
zpl_readpage_filler(void *data, struct page *pp)
{
	return (zpl_readpage_common(pp));
}

/*
 * Populate a set of pages with data for the Linux page cache.  This
 * function will only be called for read ahead and never for demand
 * paging.  For simplicity, the code relies on read_cache_pages() to
 * correctly lock each page for IO and call zpl_readpage().
 */
static int
zpl_readpages(struct file *filp, struct address_space *mapping,
    struct list_head *pages, unsigned nr_pages)
{
	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
}

static int
zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
{
	struct address_space *mapping = data;
	fstrans_cookie_t cookie;

	ASSERT(PageLocked(pp));
	ASSERT(!PageWriteback(pp));

	cookie = spl_fstrans_mark();
	(void) zfs_putpage(mapping->host, pp, wbc);
	spl_fstrans_unmark(cookie);

	return (0);
}

static int
zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
	znode_t		*zp = ITOZ(mapping->host);
	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
	enum writeback_sync_modes sync_mode;
	int result;

	ZPL_ENTER(zfsvfs);
	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
		wbc->sync_mode = WB_SYNC_ALL;
	ZPL_EXIT(zfsvfs);
	sync_mode = wbc->sync_mode;

	/*
	 * We don't want to run write_cache_pages() in SYNC mode here, because
	 * that would make putpage() wait for a single page to be committed to
	 * disk every single time, resulting in atrocious performance. Instead
	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
	 * and then we commit it all in one go.
	 */
	wbc->sync_mode = WB_SYNC_NONE;
	result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
	if (sync_mode != wbc->sync_mode) {
		ZPL_ENTER(zfsvfs);
		ZPL_VERIFY_ZP(zp);
		if (zfsvfs->z_log != NULL)
			zil_commit(zfsvfs->z_log, zp->z_id);
		ZPL_EXIT(zfsvfs);

		/*
		 * We need to call write_cache_pages() again (we can't just
		 * return after the commit) because the previous call in
		 * non-SYNC mode does not guarantee that we got all the dirty
		 * pages (see the implementation of write_cache_pages() for
		 * details). That being said, this is a no-op in most cases.
		 */
		wbc->sync_mode = sync_mode;
		result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
	}
	return (result);
}

/*
 * Write out dirty pages to the ARC, this function is only required to
 * support mmap(2).  Mapped pages may be dirtied by memory operations
 * which never call .write().  These dirty pages are kept in sync with
 * the ARC buffers via this hook.
 */
static int
zpl_writepage(struct page *pp, struct writeback_control *wbc)
{
	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
		wbc->sync_mode = WB_SYNC_ALL;

	return (zpl_putpage(pp, wbc, pp->mapping));
}

/*
 * The flag combination which matches the behavior of zfs_space() is
 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
 * flag was introduced in the 2.6.38 kernel.
 *
 * The original mode=0 (allocate space) behavior can be reasonably emulated
 * by checking if enough space exists and creating a sparse file, as real
 * persistent space reservation is not possible due to COW, snapshots, etc.
 */
static long
zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
{
	cred_t *cr = CRED();
	loff_t olen;
	fstrans_cookie_t cookie;
	int error = 0;

	if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0)
		return (-EOPNOTSUPP);

	if (offset < 0 || len <= 0)
		return (-EINVAL);

	spl_inode_lock(ip);
	olen = i_size_read(ip);

	crhold(cr);
	cookie = spl_fstrans_mark();
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		flock64_t bf;

		if (offset > olen)
			goto out_unmark;

		if (offset + len > olen)
			len = olen - offset;
		bf.l_type = F_WRLCK;
		bf.l_whence = SEEK_SET;
		bf.l_start = offset;
		bf.l_len = len;
		bf.l_pid = 0;

		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
		unsigned int percent = zfs_fallocate_reserve_percent;
		struct kstatfs statfs;

		/* Legacy mode, disable fallocate compatibility. */
		if (percent == 0) {
			error = -EOPNOTSUPP;
			goto out_unmark;
		}

		/*
		 * Use zfs_statvfs() instead of dmu_objset_space() since it
		 * also checks project quota limits, which are relevant here.
		 */
		error = zfs_statvfs(ip, &statfs);
		if (error)
			goto out_unmark;

		/*
		 * Shrink available space a bit to account for overhead/races.
		 * We know the product previously fit into availbytes from
		 * dmu_objset_space(), so the smaller product will also fit.
		 */
		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
			error = -ENOSPC;
			goto out_unmark;
		}
		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
	}
out_unmark:
	spl_fstrans_unmark(cookie);
	spl_inode_unlock(ip);

	crfree(cr);

	return (error);
}

static long
zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
{
	return zpl_fallocate_common(file_inode(filp),
	    mode, offset, len);
}

#define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
#define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)

static uint32_t
__zpl_ioctl_getflags(struct inode *ip)
{
	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
	uint32_t ioctl_flags = 0;

	if (zfs_flags & ZFS_IMMUTABLE)
		ioctl_flags |= FS_IMMUTABLE_FL;

	if (zfs_flags & ZFS_APPENDONLY)
		ioctl_flags |= FS_APPEND_FL;

	if (zfs_flags & ZFS_NODUMP)
		ioctl_flags |= FS_NODUMP_FL;

	if (zfs_flags & ZFS_PROJINHERIT)
		ioctl_flags |= ZFS_PROJINHERIT_FL;

	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
}

/*
 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
 * attributes common to both Linux and Solaris are mapped.
 */
static int
zpl_ioctl_getflags(struct file *filp, void __user *arg)
{
	uint32_t flags;
	int err;

	flags = __zpl_ioctl_getflags(file_inode(filp));
	err = copy_to_user(arg, &flags, sizeof (flags));

	return (err);
}

/*
 * fchange() is a helper macro to detect if we have been asked to change a
 * flag. This is ugly, but the requirement that we do this is a consequence of
 * how the Linux file attribute interface was designed. Another consequence is
 * that concurrent modification of files suffers from a TOCTOU race. Neither
 * are things we can fix without modifying the kernel-userland interface, which
 * is outside of our jurisdiction.
 */

#define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))

static int
__zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
{
	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
	xoptattr_t *xoap;

	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
	    ZFS_PROJINHERIT_FL))
		return (-EOPNOTSUPP);

	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
		return (-EACCES);

	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
	    !capable(CAP_LINUX_IMMUTABLE))
		return (-EPERM);

	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
		return (-EACCES);

	xva_init(xva);
	xoap = xva_getxoptattr(xva);

	XVA_SET_REQ(xva, XAT_IMMUTABLE);
	if (ioctl_flags & FS_IMMUTABLE_FL)
		xoap->xoa_immutable = B_TRUE;

	XVA_SET_REQ(xva, XAT_APPENDONLY);
	if (ioctl_flags & FS_APPEND_FL)
		xoap->xoa_appendonly = B_TRUE;

	XVA_SET_REQ(xva, XAT_NODUMP);
	if (ioctl_flags & FS_NODUMP_FL)
		xoap->xoa_nodump = B_TRUE;

	XVA_SET_REQ(xva, XAT_PROJINHERIT);
	if (ioctl_flags & ZFS_PROJINHERIT_FL)
		xoap->xoa_projinherit = B_TRUE;

	return (0);
}

static int
zpl_ioctl_setflags(struct file *filp, void __user *arg)
{
	struct inode *ip = file_inode(filp);
	uint32_t flags;
	cred_t *cr = CRED();
	xvattr_t xva;
	int err;
	fstrans_cookie_t cookie;

	if (copy_from_user(&flags, arg, sizeof (flags)))
		return (-EFAULT);

	err = __zpl_ioctl_setflags(ip, flags, &xva);
	if (err)
		return (err);

	crhold(cr);
	cookie = spl_fstrans_mark();
	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);

	return (err);
}

static int
zpl_ioctl_getxattr(struct file *filp, void __user *arg)
{
	zfsxattr_t fsx = { 0 };
	struct inode *ip = file_inode(filp);
	int err;

	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
	fsx.fsx_projid = ITOZ(ip)->z_projid;
	err = copy_to_user(arg, &fsx, sizeof (fsx));

	return (err);
}

static int
zpl_ioctl_setxattr(struct file *filp, void __user *arg)
{
	struct inode *ip = file_inode(filp);
	zfsxattr_t fsx;
	cred_t *cr = CRED();
	xvattr_t xva;
	xoptattr_t *xoap;
	int err;
	fstrans_cookie_t cookie;

	if (copy_from_user(&fsx, arg, sizeof (fsx)))
		return (-EFAULT);

	if (!zpl_is_valid_projid(fsx.fsx_projid))
		return (-EINVAL);

	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
	if (err)
		return (err);

	xoap = xva_getxoptattr(&xva);
	XVA_SET_REQ(&xva, XAT_PROJID);
	xoap->xoa_projid = fsx.fsx_projid;

	crhold(cr);
	cookie = spl_fstrans_mark();
	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);

	return (err);
}

static long
zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case FS_IOC_GETFLAGS:
		return (zpl_ioctl_getflags(filp, (void *)arg));
	case FS_IOC_SETFLAGS:
		return (zpl_ioctl_setflags(filp, (void *)arg));
	case ZFS_IOC_FSGETXATTR:
		return (zpl_ioctl_getxattr(filp, (void *)arg));
	case ZFS_IOC_FSSETXATTR:
		return (zpl_ioctl_setxattr(filp, (void *)arg));
	default:
		return (-ENOTTY);
	}
}

#ifdef CONFIG_COMPAT
static long
zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case FS_IOC32_GETFLAGS:
		cmd = FS_IOC_GETFLAGS;
		break;
	case FS_IOC32_SETFLAGS:
		cmd = FS_IOC_SETFLAGS;
		break;
	default:
		return (-ENOTTY);
	}
	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
}
#endif /* CONFIG_COMPAT */


const struct address_space_operations zpl_address_space_operations = {
	.readpages	= zpl_readpages,
	.readpage	= zpl_readpage,
	.writepage	= zpl_writepage,
	.writepages	= zpl_writepages,
	.direct_IO	= zpl_direct_IO,
};

const struct file_operations zpl_file_operations = {
	.open		= zpl_open,
	.release	= zpl_release,
	.llseek		= zpl_llseek,
#ifdef HAVE_VFS_RW_ITERATE
#ifdef HAVE_NEW_SYNC_READ
	.read		= new_sync_read,
	.write		= new_sync_write,
#endif
	.read_iter	= zpl_iter_read,
	.write_iter	= zpl_iter_write,
#ifdef HAVE_VFS_IOV_ITER
	.splice_read	= generic_file_splice_read,
	.splice_write	= iter_file_splice_write,
#endif
#else
	.read		= do_sync_read,
	.write		= do_sync_write,
	.aio_read	= zpl_aio_read,
	.aio_write	= zpl_aio_write,
#endif
	.mmap		= zpl_mmap,
	.fsync		= zpl_fsync,
#ifdef HAVE_FILE_AIO_FSYNC
	.aio_fsync	= zpl_aio_fsync,
#endif
	.fallocate	= zpl_fallocate,
	.unlocked_ioctl	= zpl_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= zpl_compat_ioctl,
#endif
};

const struct file_operations zpl_dir_file_operations = {
	.llseek		= generic_file_llseek,
	.read		= generic_read_dir,
#if defined(HAVE_VFS_ITERATE_SHARED)
	.iterate_shared	= zpl_iterate,
#elif defined(HAVE_VFS_ITERATE)
	.iterate	= zpl_iterate,
#else
	.readdir	= zpl_readdir,
#endif
	.fsync		= zpl_fsync,
	.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl   = zpl_compat_ioctl,
#endif
};

/* BEGIN CSTYLED */
module_param(zfs_fallocate_reserve_percent, uint, 0644);
MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
    "Percentage of length to use for the available capacity check");
/* END CSTYLED */