aboutsummaryrefslogtreecommitdiffstats
path: root/module/os/linux/zfs/zfs_vfsops.c
blob: a24f504129d78b2a3606faf3276bd0ee33720e50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 */

/* Portions Copyright 2010 Robert Milkowski */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/pathname.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/mntent.h>
#include <sys/cmn_err.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_dir.h>
#include <sys/zil.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_quota.h>
#include <sys/sunddi.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/objlist.h>
#include <sys/zfeature.h>
#include <sys/zpl.h>
#include <linux/vfs_compat.h>
#include <linux/fs.h>
#include "zfs_comutil.h"

enum {
	TOKEN_RO,
	TOKEN_RW,
	TOKEN_SETUID,
	TOKEN_NOSETUID,
	TOKEN_EXEC,
	TOKEN_NOEXEC,
	TOKEN_DEVICES,
	TOKEN_NODEVICES,
	TOKEN_DIRXATTR,
	TOKEN_SAXATTR,
	TOKEN_XATTR,
	TOKEN_NOXATTR,
	TOKEN_ATIME,
	TOKEN_NOATIME,
	TOKEN_RELATIME,
	TOKEN_NORELATIME,
	TOKEN_NBMAND,
	TOKEN_NONBMAND,
	TOKEN_MNTPOINT,
	TOKEN_LAST,
};

static const match_table_t zpl_tokens = {
	{ TOKEN_RO,		MNTOPT_RO },
	{ TOKEN_RW,		MNTOPT_RW },
	{ TOKEN_SETUID,		MNTOPT_SETUID },
	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
	{ TOKEN_EXEC,		MNTOPT_EXEC },
	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
	{ TOKEN_XATTR,		MNTOPT_XATTR },
	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
	{ TOKEN_ATIME,		MNTOPT_ATIME },
	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
	{ TOKEN_LAST,		NULL },
};

static void
zfsvfs_vfs_free(vfs_t *vfsp)
{
	if (vfsp != NULL) {
		if (vfsp->vfs_mntpoint != NULL)
			kmem_strfree(vfsp->vfs_mntpoint);

		kmem_free(vfsp, sizeof (vfs_t));
	}
}

static int
zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
{
	switch (token) {
	case TOKEN_RO:
		vfsp->vfs_readonly = B_TRUE;
		vfsp->vfs_do_readonly = B_TRUE;
		break;
	case TOKEN_RW:
		vfsp->vfs_readonly = B_FALSE;
		vfsp->vfs_do_readonly = B_TRUE;
		break;
	case TOKEN_SETUID:
		vfsp->vfs_setuid = B_TRUE;
		vfsp->vfs_do_setuid = B_TRUE;
		break;
	case TOKEN_NOSETUID:
		vfsp->vfs_setuid = B_FALSE;
		vfsp->vfs_do_setuid = B_TRUE;
		break;
	case TOKEN_EXEC:
		vfsp->vfs_exec = B_TRUE;
		vfsp->vfs_do_exec = B_TRUE;
		break;
	case TOKEN_NOEXEC:
		vfsp->vfs_exec = B_FALSE;
		vfsp->vfs_do_exec = B_TRUE;
		break;
	case TOKEN_DEVICES:
		vfsp->vfs_devices = B_TRUE;
		vfsp->vfs_do_devices = B_TRUE;
		break;
	case TOKEN_NODEVICES:
		vfsp->vfs_devices = B_FALSE;
		vfsp->vfs_do_devices = B_TRUE;
		break;
	case TOKEN_DIRXATTR:
		vfsp->vfs_xattr = ZFS_XATTR_DIR;
		vfsp->vfs_do_xattr = B_TRUE;
		break;
	case TOKEN_SAXATTR:
		vfsp->vfs_xattr = ZFS_XATTR_SA;
		vfsp->vfs_do_xattr = B_TRUE;
		break;
	case TOKEN_XATTR:
		vfsp->vfs_xattr = ZFS_XATTR_SA;
		vfsp->vfs_do_xattr = B_TRUE;
		break;
	case TOKEN_NOXATTR:
		vfsp->vfs_xattr = ZFS_XATTR_OFF;
		vfsp->vfs_do_xattr = B_TRUE;
		break;
	case TOKEN_ATIME:
		vfsp->vfs_atime = B_TRUE;
		vfsp->vfs_do_atime = B_TRUE;
		break;
	case TOKEN_NOATIME:
		vfsp->vfs_atime = B_FALSE;
		vfsp->vfs_do_atime = B_TRUE;
		break;
	case TOKEN_RELATIME:
		vfsp->vfs_relatime = B_TRUE;
		vfsp->vfs_do_relatime = B_TRUE;
		break;
	case TOKEN_NORELATIME:
		vfsp->vfs_relatime = B_FALSE;
		vfsp->vfs_do_relatime = B_TRUE;
		break;
	case TOKEN_NBMAND:
		vfsp->vfs_nbmand = B_TRUE;
		vfsp->vfs_do_nbmand = B_TRUE;
		break;
	case TOKEN_NONBMAND:
		vfsp->vfs_nbmand = B_FALSE;
		vfsp->vfs_do_nbmand = B_TRUE;
		break;
	case TOKEN_MNTPOINT:
		vfsp->vfs_mntpoint = match_strdup(&args[0]);
		if (vfsp->vfs_mntpoint == NULL)
			return (SET_ERROR(ENOMEM));

		break;
	default:
		break;
	}

	return (0);
}

/*
 * Parse the raw mntopts and return a vfs_t describing the options.
 */
static int
zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
{
	vfs_t *tmp_vfsp;
	int error;

	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);

	if (mntopts != NULL) {
		substring_t args[MAX_OPT_ARGS];
		char *tmp_mntopts, *p, *t;
		int token;

		tmp_mntopts = t = kmem_strdup(mntopts);
		if (tmp_mntopts == NULL)
			return (SET_ERROR(ENOMEM));

		while ((p = strsep(&t, ",")) != NULL) {
			if (!*p)
				continue;

			args[0].to = args[0].from = NULL;
			token = match_token(p, zpl_tokens, args);
			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
			if (error) {
				kmem_strfree(tmp_mntopts);
				zfsvfs_vfs_free(tmp_vfsp);
				return (error);
			}
		}

		kmem_strfree(tmp_mntopts);
	}

	*vfsp = tmp_vfsp;

	return (0);
}

boolean_t
zfs_is_readonly(zfsvfs_t *zfsvfs)
{
	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
}

int
zfs_sync(struct super_block *sb, int wait, cred_t *cr)
{
	(void) cr;
	zfsvfs_t *zfsvfs = sb->s_fs_info;

	/*
	 * Semantically, the only requirement is that the sync be initiated.
	 * The DMU syncs out txgs frequently, so there's nothing to do.
	 */
	if (!wait)
		return (0);

	if (zfsvfs != NULL) {
		/*
		 * Sync a specific filesystem.
		 */
		dsl_pool_t *dp;
		int error;

		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
			return (error);
		dp = dmu_objset_pool(zfsvfs->z_os);

		/*
		 * If the system is shutting down, then skip any
		 * filesystems which may exist on a suspended pool.
		 */
		if (spa_suspended(dp->dp_spa)) {
			zfs_exit(zfsvfs, FTAG);
			return (0);
		}

		if (zfsvfs->z_log != NULL)
			zil_commit(zfsvfs->z_log, 0);

		zfs_exit(zfsvfs, FTAG);
	} else {
		/*
		 * Sync all ZFS filesystems.  This is what happens when you
		 * run sync(1).  Unlike other filesystems, ZFS honors the
		 * request by waiting for all pools to commit all dirty data.
		 */
		spa_sync_allpools();
	}

	return (0);
}

static void
atime_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;
	struct super_block *sb = zfsvfs->z_sb;

	if (sb == NULL)
		return;
	/*
	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
	 * determined by atime_needs_update(), atime_needs_update() needs to
	 * return false if atime is turned off, and not unconditionally return
	 * false if atime is turned on.
	 */
	if (newval)
		sb->s_flags &= ~SB_NOATIME;
	else
		sb->s_flags |= SB_NOATIME;
}

static void
relatime_changed_cb(void *arg, uint64_t newval)
{
	((zfsvfs_t *)arg)->z_relatime = newval;
}

static void
xattr_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;

	if (newval == ZFS_XATTR_OFF) {
		zfsvfs->z_flags &= ~ZSB_XATTR;
	} else {
		zfsvfs->z_flags |= ZSB_XATTR;

		if (newval == ZFS_XATTR_SA)
			zfsvfs->z_xattr_sa = B_TRUE;
		else
			zfsvfs->z_xattr_sa = B_FALSE;
	}
}

static void
acltype_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;

	switch (newval) {
	case ZFS_ACLTYPE_NFSV4:
	case ZFS_ACLTYPE_OFF:
		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
		break;
	case ZFS_ACLTYPE_POSIX:
#ifdef CONFIG_FS_POSIX_ACL
		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
#else
		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
#endif /* CONFIG_FS_POSIX_ACL */
		break;
	default:
		break;
	}
}

static void
blksz_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;
	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
	ASSERT(ISP2(newval));

	zfsvfs->z_max_blksz = newval;
}

static void
readonly_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;
	struct super_block *sb = zfsvfs->z_sb;

	if (sb == NULL)
		return;

	if (newval)
		sb->s_flags |= SB_RDONLY;
	else
		sb->s_flags &= ~SB_RDONLY;
}

static void
devices_changed_cb(void *arg, uint64_t newval)
{
}

static void
setuid_changed_cb(void *arg, uint64_t newval)
{
}

static void
exec_changed_cb(void *arg, uint64_t newval)
{
}

static void
nbmand_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;
	struct super_block *sb = zfsvfs->z_sb;

	if (sb == NULL)
		return;

	if (newval == TRUE)
		sb->s_flags |= SB_MANDLOCK;
	else
		sb->s_flags &= ~SB_MANDLOCK;
}

static void
snapdir_changed_cb(void *arg, uint64_t newval)
{
	((zfsvfs_t *)arg)->z_show_ctldir = newval;
}

static void
acl_mode_changed_cb(void *arg, uint64_t newval)
{
	zfsvfs_t *zfsvfs = arg;

	zfsvfs->z_acl_mode = newval;
}

static void
acl_inherit_changed_cb(void *arg, uint64_t newval)
{
	((zfsvfs_t *)arg)->z_acl_inherit = newval;
}

static void
longname_changed_cb(void *arg, uint64_t newval)
{
	((zfsvfs_t *)arg)->z_longname = newval;
}

static int
zfs_register_callbacks(vfs_t *vfsp)
{
	struct dsl_dataset *ds = NULL;
	objset_t *os = NULL;
	zfsvfs_t *zfsvfs = NULL;
	int error = 0;

	ASSERT(vfsp);
	zfsvfs = vfsp->vfs_data;
	ASSERT(zfsvfs);
	os = zfsvfs->z_os;

	/*
	 * The act of registering our callbacks will destroy any mount
	 * options we may have.  In order to enable temporary overrides
	 * of mount options, we stash away the current values and
	 * restore them after we register the callbacks.
	 */
	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
		vfsp->vfs_do_readonly = B_TRUE;
		vfsp->vfs_readonly = B_TRUE;
	}

	/*
	 * Register property callbacks.
	 *
	 * It would probably be fine to just check for i/o error from
	 * the first prop_register(), but I guess I like to go
	 * overboard...
	 */
	ds = dmu_objset_ds(os);
	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
	error = dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
	    zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
	error = error ? error : dsl_prop_register(ds,
	    zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
	if (error)
		goto unregister;

	/*
	 * Invoke our callbacks to restore temporary mount options.
	 */
	if (vfsp->vfs_do_readonly)
		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
	if (vfsp->vfs_do_setuid)
		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
	if (vfsp->vfs_do_exec)
		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
	if (vfsp->vfs_do_devices)
		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
	if (vfsp->vfs_do_xattr)
		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
	if (vfsp->vfs_do_atime)
		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
	if (vfsp->vfs_do_relatime)
		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
	if (vfsp->vfs_do_nbmand)
		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);

	return (0);

unregister:
	dsl_prop_unregister_all(ds, zfsvfs);
	return (error);
}

/*
 * Takes a dataset, a property, a value and that value's setpoint as
 * found in the ZAP. Checks if the property has been changed in the vfs.
 * If so, val and setpoint will be overwritten with updated content.
 * Otherwise, they are left unchanged.
 */
int
zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
    char *setpoint)
{
	int error;
	zfsvfs_t *zfvp;
	vfs_t *vfsp;
	objset_t *os;
	uint64_t tmp = *val;

	error = dmu_objset_from_ds(ds, &os);
	if (error != 0)
		return (error);

	if (dmu_objset_type(os) != DMU_OST_ZFS)
		return (EINVAL);

	mutex_enter(&os->os_user_ptr_lock);
	zfvp = dmu_objset_get_user(os);
	mutex_exit(&os->os_user_ptr_lock);
	if (zfvp == NULL)
		return (ESRCH);

	vfsp = zfvp->z_vfs;

	switch (zfs_prop) {
	case ZFS_PROP_ATIME:
		if (vfsp->vfs_do_atime)
			tmp = vfsp->vfs_atime;
		break;
	case ZFS_PROP_RELATIME:
		if (vfsp->vfs_do_relatime)
			tmp = vfsp->vfs_relatime;
		break;
	case ZFS_PROP_DEVICES:
		if (vfsp->vfs_do_devices)
			tmp = vfsp->vfs_devices;
		break;
	case ZFS_PROP_EXEC:
		if (vfsp->vfs_do_exec)
			tmp = vfsp->vfs_exec;
		break;
	case ZFS_PROP_SETUID:
		if (vfsp->vfs_do_setuid)
			tmp = vfsp->vfs_setuid;
		break;
	case ZFS_PROP_READONLY:
		if (vfsp->vfs_do_readonly)
			tmp = vfsp->vfs_readonly;
		break;
	case ZFS_PROP_XATTR:
		if (vfsp->vfs_do_xattr)
			tmp = vfsp->vfs_xattr;
		break;
	case ZFS_PROP_NBMAND:
		if (vfsp->vfs_do_nbmand)
			tmp = vfsp->vfs_nbmand;
		break;
	default:
		return (ENOENT);
	}

	if (tmp != *val) {
		if (setpoint)
			(void) strcpy(setpoint, "temporary");
		*val = tmp;
	}
	return (0);
}

/*
 * Associate this zfsvfs with the given objset, which must be owned.
 * This will cache a bunch of on-disk state from the objset in the
 * zfsvfs.
 */
static int
zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
{
	int error;
	uint64_t val;

	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
	zfsvfs->z_os = os;

	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
	if (error != 0)
		return (error);
	if (zfsvfs->z_version >
	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
		(void) printk("Can't mount a version %lld file system "
		    "on a version %lld pool\n. Pool must be upgraded to mount "
		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
		return (SET_ERROR(ENOTSUP));
	}
	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
	if (error != 0)
		return (error);
	zfsvfs->z_norm = (int)val;

	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
	if (error != 0)
		return (error);
	zfsvfs->z_utf8 = (val != 0);

	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
	if (error != 0)
		return (error);
	zfsvfs->z_case = (uint_t)val;

	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
		return (error);
	zfsvfs->z_acl_type = (uint_t)val;

	/*
	 * Fold case on file systems that are always or sometimes case
	 * insensitive.
	 */
	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
	    zfsvfs->z_case == ZFS_CASE_MIXED)
		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;

	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);

	uint64_t sa_obj = 0;
	if (zfsvfs->z_use_sa) {
		/* should either have both of these objects or none */
		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
		    &sa_obj);
		if (error != 0)
			return (error);

		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
		if ((error == 0) && (val == ZFS_XATTR_SA))
			zfsvfs->z_xattr_sa = B_TRUE;
	}

	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
	    &zfsvfs->z_root);
	if (error != 0)
		return (error);
	ASSERT(zfsvfs->z_root != 0);

	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
	    &zfsvfs->z_unlinkedobj);
	if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ,
	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
	    8, 1, &zfsvfs->z_userquota_obj);
	if (error == ENOENT)
		zfsvfs->z_userquota_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ,
	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
	    8, 1, &zfsvfs->z_groupquota_obj);
	if (error == ENOENT)
		zfsvfs->z_groupquota_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ,
	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
	    8, 1, &zfsvfs->z_projectquota_obj);
	if (error == ENOENT)
		zfsvfs->z_projectquota_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ,
	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
	    8, 1, &zfsvfs->z_userobjquota_obj);
	if (error == ENOENT)
		zfsvfs->z_userobjquota_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ,
	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
	    8, 1, &zfsvfs->z_groupobjquota_obj);
	if (error == ENOENT)
		zfsvfs->z_groupobjquota_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ,
	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
	    8, 1, &zfsvfs->z_projectobjquota_obj);
	if (error == ENOENT)
		zfsvfs->z_projectobjquota_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
	    &zfsvfs->z_fuid_obj);
	if (error == ENOENT)
		zfsvfs->z_fuid_obj = 0;
	else if (error != 0)
		return (error);

	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
	    &zfsvfs->z_shares_dir);
	if (error == ENOENT)
		zfsvfs->z_shares_dir = 0;
	else if (error != 0)
		return (error);

	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
	    &zfsvfs->z_attr_table);
	if (error != 0)
		return (error);

	if (zfsvfs->z_version >= ZPL_VERSION_SA)
		sa_register_update_callback(os, zfs_sa_upgrade);

	return (0);
}

int
zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
{
	objset_t *os;
	zfsvfs_t *zfsvfs;
	int error;
	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));

	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);

	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
	if (error != 0) {
		kmem_free(zfsvfs, sizeof (zfsvfs_t));
		return (error);
	}

	error = zfsvfs_create_impl(zfvp, zfsvfs, os);

	return (error);
}


/*
 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
 * on a failure.  Do not pass in a statically allocated zfsvfs.
 */
int
zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
{
	int error;

	zfsvfs->z_vfs = NULL;
	zfsvfs->z_sb = NULL;
	zfsvfs->z_parent = zfsvfs;

	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
	    offsetof(znode_t, z_link_node));
	ZFS_TEARDOWN_INIT(zfsvfs);
	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);

	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
	    ZFS_OBJ_MTX_MAX);
	zfsvfs->z_hold_size = size;
	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
	    KM_SLEEP);
	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
	for (int i = 0; i != size; i++) {
		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
	}

	error = zfsvfs_init(zfsvfs, os);
	if (error != 0) {
		dmu_objset_disown(os, B_TRUE, zfsvfs);
		*zfvp = NULL;
		zfsvfs_free(zfsvfs);
		return (error);
	}

	zfsvfs->z_drain_task = TASKQID_INVALID;
	zfsvfs->z_draining = B_FALSE;
	zfsvfs->z_drain_cancel = B_TRUE;

	*zfvp = zfsvfs;
	return (0);
}

static int
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
{
	int error;
	boolean_t readonly = zfs_is_readonly(zfsvfs);

	error = zfs_register_callbacks(zfsvfs->z_vfs);
	if (error)
		return (error);

	/*
	 * If we are not mounting (ie: online recv), then we don't
	 * have to worry about replaying the log as we blocked all
	 * operations out since we closed the ZIL.
	 */
	if (mounting) {
		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
		if (error)
			return (error);
		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
		    &zfsvfs->z_kstat.dk_zil_sums);

		/*
		 * During replay we remove the read only flag to
		 * allow replays to succeed.
		 */
		if (readonly != 0) {
			readonly_changed_cb(zfsvfs, B_FALSE);
		} else {
			zap_stats_t zs;
			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
			    &zs) == 0) {
				dataset_kstats_update_nunlinks_kstat(
				    &zfsvfs->z_kstat, zs.zs_num_entries);
				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
				    "num_entries in unlinked set: %llu",
				    zs.zs_num_entries);
			}
			zfs_unlinked_drain(zfsvfs);
			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
			dd->dd_activity_cancelled = B_FALSE;
		}

		/*
		 * Parse and replay the intent log.
		 *
		 * Because of ziltest, this must be done after
		 * zfs_unlinked_drain().  (Further note: ziltest
		 * doesn't use readonly mounts, where
		 * zfs_unlinked_drain() isn't called.)  This is because
		 * ziltest causes spa_sync() to think it's committed,
		 * but actually it is not, so the intent log contains
		 * many txg's worth of changes.
		 *
		 * In particular, if object N is in the unlinked set in
		 * the last txg to actually sync, then it could be
		 * actually freed in a later txg and then reallocated
		 * in a yet later txg.  This would write a "create
		 * object N" record to the intent log.  Normally, this
		 * would be fine because the spa_sync() would have
		 * written out the fact that object N is free, before
		 * we could write the "create object N" intent log
		 * record.
		 *
		 * But when we are in ziltest mode, we advance the "open
		 * txg" without actually spa_sync()-ing the changes to
		 * disk.  So we would see that object N is still
		 * allocated and in the unlinked set, and there is an
		 * intent log record saying to allocate it.
		 */
		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
			if (zil_replay_disable) {
				zil_destroy(zfsvfs->z_log, B_FALSE);
			} else {
				zfsvfs->z_replay = B_TRUE;
				zil_replay(zfsvfs->z_os, zfsvfs,
				    zfs_replay_vector);
				zfsvfs->z_replay = B_FALSE;
			}
		}

		/* restore readonly bit */
		if (readonly != 0)
			readonly_changed_cb(zfsvfs, B_TRUE);
	} else {
		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
		    &zfsvfs->z_kstat.dk_zil_sums);
	}

	/*
	 * Set the objset user_ptr to track its zfsvfs.
	 */
	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);

	return (0);
}

void
zfsvfs_free(zfsvfs_t *zfsvfs)
{
	int i, size = zfsvfs->z_hold_size;

	zfs_fuid_destroy(zfsvfs);

	mutex_destroy(&zfsvfs->z_znodes_lock);
	mutex_destroy(&zfsvfs->z_lock);
	list_destroy(&zfsvfs->z_all_znodes);
	ZFS_TEARDOWN_DESTROY(zfsvfs);
	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
	rw_destroy(&zfsvfs->z_fuid_lock);
	for (i = 0; i != size; i++) {
		avl_destroy(&zfsvfs->z_hold_trees[i]);
		mutex_destroy(&zfsvfs->z_hold_locks[i]);
	}
	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
	zfsvfs_vfs_free(zfsvfs->z_vfs);
	dataset_kstats_destroy(&zfsvfs->z_kstat);
	kmem_free(zfsvfs, sizeof (zfsvfs_t));
}

static void
zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
{
	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
}

static void
zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
{
	objset_t *os = zfsvfs->z_os;

	if (!dmu_objset_is_snapshot(os))
		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
}

#ifdef HAVE_MLSLABEL
/*
 * Check that the hex label string is appropriate for the dataset being
 * mounted into the global_zone proper.
 *
 * Return an error if the hex label string is not default or
 * admin_low/admin_high.  For admin_low labels, the corresponding
 * dataset must be readonly.
 */
int
zfs_check_global_label(const char *dsname, const char *hexsl)
{
	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
		return (0);
	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
		return (0);
	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
		/* must be readonly */
		uint64_t rdonly;

		if (dsl_prop_get_integer(dsname,
		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
			return (SET_ERROR(EACCES));
		return (rdonly ? 0 : SET_ERROR(EACCES));
	}
	return (SET_ERROR(EACCES));
}
#endif /* HAVE_MLSLABEL */

static int
zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
    uint32_t bshift)
{
	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
	uint64_t quota;
	uint64_t used;
	int err;

	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
	    sizeof (buf) - offset, B_FALSE);
	if (err)
		return (err);

	if (zfsvfs->z_projectquota_obj == 0)
		goto objs;

	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
	    buf + offset, 8, 1, &quota);
	if (err == ENOENT)
		goto objs;
	else if (err)
		return (err);

	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
	    buf + offset, 8, 1, &used);
	if (unlikely(err == ENOENT)) {
		uint32_t blksize;
		u_longlong_t nblocks;

		/*
		 * Quota accounting is async, so it is possible race case.
		 * There is at least one object with the given project ID.
		 */
		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
		if (unlikely(zp->z_blksz == 0))
			blksize = zfsvfs->z_max_blksz;

		used = blksize * nblocks;
	} else if (err) {
		return (err);
	}

	statp->f_blocks = quota >> bshift;
	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
	statp->f_bavail = statp->f_bfree;

objs:
	if (zfsvfs->z_projectobjquota_obj == 0)
		return (0);

	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
	    buf + offset, 8, 1, &quota);
	if (err == ENOENT)
		return (0);
	else if (err)
		return (err);

	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
	    buf, 8, 1, &used);
	if (unlikely(err == ENOENT)) {
		/*
		 * Quota accounting is async, so it is possible race case.
		 * There is at least one object with the given project ID.
		 */
		used = 1;
	} else if (err) {
		return (err);
	}

	statp->f_files = quota;
	statp->f_ffree = (quota > used) ? (quota - used) : 0;

	return (0);
}

int
zfs_statvfs(struct inode *ip, struct kstatfs *statp)
{
	zfsvfs_t *zfsvfs = ITOZSB(ip);
	uint64_t refdbytes, availbytes, usedobjs, availobjs;
	int err = 0;

	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
		return (err);

	dmu_objset_space(zfsvfs->z_os,
	    &refdbytes, &availbytes, &usedobjs, &availobjs);

	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
	/*
	 * The underlying storage pool actually uses multiple block
	 * size.  Under Solaris frsize (fragment size) is reported as
	 * the smallest block size we support, and bsize (block size)
	 * as the filesystem's maximum block size.  Unfortunately,
	 * under Linux the fragment size and block size are often used
	 * interchangeably.  Thus we are forced to report both of them
	 * as the filesystem's maximum block size.
	 */
	statp->f_frsize = zfsvfs->z_max_blksz;
	statp->f_bsize = zfsvfs->z_max_blksz;
	uint32_t bshift = fls(statp->f_bsize) - 1;

	/*
	 * The following report "total" blocks of various kinds in
	 * the file system, but reported in terms of f_bsize - the
	 * "preferred" size.
	 */

	/* Round up so we never have a filesystem using 0 blocks. */
	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
	statp->f_blocks = (refdbytes + availbytes) >> bshift;
	statp->f_bfree = availbytes >> bshift;
	statp->f_bavail = statp->f_bfree; /* no root reservation */

	/*
	 * statvfs() should really be called statufs(), because it assumes
	 * static metadata.  ZFS doesn't preallocate files, so the best
	 * we can do is report the max that could possibly fit in f_files,
	 * and that minus the number actually used in f_ffree.
	 * For f_ffree, report the smaller of the number of objects available
	 * and the number of blocks (each object will take at least a block).
	 */
	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
	statp->f_files = statp->f_ffree + usedobjs;
	statp->f_fsid.val[0] = (uint32_t)fsid;
	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
	statp->f_type = ZFS_SUPER_MAGIC;
	statp->f_namelen =
	    zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);

	/*
	 * We have all of 40 characters to stuff a string here.
	 * Is there anything useful we could/should provide?
	 */
	memset(statp->f_spare, 0, sizeof (statp->f_spare));

	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
		znode_t *zp = ITOZ(ip);

		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
		    zpl_is_valid_projid(zp->z_projid))
			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
	}

	zfs_exit(zfsvfs, FTAG);
	return (err);
}

static int
zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
{
	znode_t *rootzp;
	int error;

	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
		return (error);

	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
	if (error == 0)
		*ipp = ZTOI(rootzp);

	zfs_exit(zfsvfs, FTAG);
	return (error);
}

/*
 * The ARC has requested that the filesystem drop entries from the dentry
 * and inode caches.  This can occur when the ARC needs to free meta data
 * blocks but can't because they are all pinned by entries in these caches.
 */
#if defined(HAVE_SUPER_BLOCK_S_SHRINK)
#define	S_SHRINK(sb)	(&(sb)->s_shrink)
#elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
#define	S_SHRINK(sb)	((sb)->s_shrink)
#endif

int
zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
{
	zfsvfs_t *zfsvfs = sb->s_fs_info;
	int error = 0;
	struct shrinker *shrinker = S_SHRINK(sb);
	struct shrink_control sc = {
		.nr_to_scan = nr_to_scan,
		.gfp_mask = GFP_KERNEL,
	};

	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
		return (error);

#ifdef SHRINKER_NUMA_AWARE
	if (shrinker->flags & SHRINKER_NUMA_AWARE) {
		long tc = 1;
		for_each_online_node(sc.nid) {
			long c = shrinker->count_objects(shrinker, &sc);
			if (c  == 0 || c == SHRINK_EMPTY)
				continue;
			tc += c;
		}
		*objects = 0;
		for_each_online_node(sc.nid) {
			long c = shrinker->count_objects(shrinker, &sc);
			if (c  == 0 || c == SHRINK_EMPTY)
				continue;
			if (c > tc)
				tc = c;
			sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
			*objects += (*shrinker->scan_objects)(shrinker, &sc);
		}
	} else {
			*objects = (*shrinker->scan_objects)(shrinker, &sc);
	}
#else
	*objects = (*shrinker->scan_objects)(shrinker, &sc);
#endif

	zfs_exit(zfsvfs, FTAG);

	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
	    nr_to_scan, *objects, error);

	return (error);
}

/*
 * Teardown the zfsvfs_t.
 *
 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
 * and 'z_teardown_inactive_lock' held.
 */
static int
zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
{
	znode_t	*zp;

	zfs_unlinked_drain_stop_wait(zfsvfs);

	/*
	 * If someone has not already unmounted this file system,
	 * drain the zrele_taskq to ensure all active references to the
	 * zfsvfs_t have been handled only then can it be safely destroyed.
	 */
	if (zfsvfs->z_os) {
		/*
		 * If we're unmounting we have to wait for the list to
		 * drain completely.
		 *
		 * If we're not unmounting there's no guarantee the list
		 * will drain completely, but iputs run from the taskq
		 * may add the parents of dir-based xattrs to the taskq
		 * so we want to wait for these.
		 *
		 * We can safely check z_all_znodes for being empty because the
		 * VFS has already blocked operations which add to it.
		 */
		int round = 0;
		while (!list_is_empty(&zfsvfs->z_all_znodes)) {
			taskq_wait_outstanding(dsl_pool_zrele_taskq(
			    dmu_objset_pool(zfsvfs->z_os)), 0);
			if (++round > 1 && !unmounting)
				break;
		}
	}

	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);

	if (!unmounting) {
		/*
		 * We purge the parent filesystem's super block as the
		 * parent filesystem and all of its snapshots have their
		 * inode's super block set to the parent's filesystem's
		 * super block.  Note,  'z_parent' is self referential
		 * for non-snapshots.
		 */
		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
	}

	/*
	 * Close the zil. NB: Can't close the zil while zfs_inactive
	 * threads are blocked as zil_close can call zfs_inactive.
	 */
	if (zfsvfs->z_log) {
		zil_close(zfsvfs->z_log);
		zfsvfs->z_log = NULL;
	}

	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);

	/*
	 * If we are not unmounting (ie: online recv) and someone already
	 * unmounted this file system while we were doing the switcheroo,
	 * or a reopen of z_os failed then just bail out now.
	 */
	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
		rw_exit(&zfsvfs->z_teardown_inactive_lock);
		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
		return (SET_ERROR(EIO));
	}

	/*
	 * At this point there are no VFS ops active, and any new VFS ops
	 * will fail with EIO since we have z_teardown_lock for writer (only
	 * relevant for forced unmount).
	 *
	 * Release all holds on dbufs. We also grab an extra reference to all
	 * the remaining inodes so that the kernel does not attempt to free
	 * any inodes of a suspended fs. This can cause deadlocks since the
	 * zfs_resume_fs() process may involve starting threads, which might
	 * attempt to free unreferenced inodes to free up memory for the new
	 * thread.
	 */
	if (!unmounting) {
		mutex_enter(&zfsvfs->z_znodes_lock);
		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
			if (zp->z_sa_hdl)
				zfs_znode_dmu_fini(zp);
			if (igrab(ZTOI(zp)) != NULL)
				zp->z_suspended = B_TRUE;

		}
		mutex_exit(&zfsvfs->z_znodes_lock);
	}

	/*
	 * If we are unmounting, set the unmounted flag and let new VFS ops
	 * unblock.  zfs_inactive will have the unmounted behavior, and all
	 * other VFS ops will fail with EIO.
	 */
	if (unmounting) {
		zfsvfs->z_unmounted = B_TRUE;
		rw_exit(&zfsvfs->z_teardown_inactive_lock);
		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
	}

	/*
	 * z_os will be NULL if there was an error in attempting to reopen
	 * zfsvfs, so just return as the properties had already been
	 *
	 * unregistered and cached data had been evicted before.
	 */
	if (zfsvfs->z_os == NULL)
		return (0);

	/*
	 * Unregister properties.
	 */
	zfs_unregister_callbacks(zfsvfs);

	/*
	 * Evict cached data. We must write out any dirty data before
	 * disowning the dataset.
	 */
	objset_t *os = zfsvfs->z_os;
	boolean_t os_dirty = B_FALSE;
	for (int t = 0; t < TXG_SIZE; t++) {
		if (dmu_objset_is_dirty(os, t)) {
			os_dirty = B_TRUE;
			break;
		}
	}
	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
	}
	dmu_objset_evict_dbufs(zfsvfs->z_os);
	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
	dsl_dir_cancel_waiters(dd);

	return (0);
}

static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);

int
zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
{
	const char *osname = zm->mnt_osname;
	struct inode *root_inode = NULL;
	uint64_t recordsize;
	int error = 0;
	zfsvfs_t *zfsvfs = NULL;
	vfs_t *vfs = NULL;
	int canwrite;
	int dataset_visible_zone;

	ASSERT(zm);
	ASSERT(osname);

	dataset_visible_zone = zone_dataset_visible(osname, &canwrite);

	/*
	 * Refuse to mount a filesystem if we are in a namespace and the
	 * dataset is not visible or writable in that namespace.
	 */
	if (!INGLOBALZONE(curproc) &&
	    (!dataset_visible_zone || !canwrite)) {
		return (SET_ERROR(EPERM));
	}

	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
	if (error)
		return (error);

	/*
	 * If a non-writable filesystem is being mounted without the
	 * read-only flag, pretend it was set, as done for snapshots.
	 */
	if (!canwrite)
		vfs->vfs_readonly = B_TRUE;

	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
	if (error) {
		zfsvfs_vfs_free(vfs);
		goto out;
	}

	if ((error = dsl_prop_get_integer(osname, "recordsize",
	    &recordsize, NULL))) {
		zfsvfs_vfs_free(vfs);
		goto out;
	}

	vfs->vfs_data = zfsvfs;
	zfsvfs->z_vfs = vfs;
	zfsvfs->z_sb = sb;
	sb->s_fs_info = zfsvfs;
	sb->s_magic = ZFS_SUPER_MAGIC;
	sb->s_maxbytes = MAX_LFS_FILESIZE;
	sb->s_time_gran = 1;
	sb->s_blocksize = recordsize;
	sb->s_blocksize_bits = ilog2(recordsize);

	error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
	    atomic_long_inc_return(&zfs_bdi_seq));
	if (error)
		goto out;

	sb->s_bdi->ra_pages = 0;

	/* Set callback operations for the file system. */
	sb->s_op = &zpl_super_operations;
	sb->s_xattr = zpl_xattr_handlers;
	sb->s_export_op = &zpl_export_operations;

	/* Set features for file system. */
	zfs_set_fuid_feature(zfsvfs);

	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
		uint64_t pval;

		atime_changed_cb(zfsvfs, B_FALSE);
		readonly_changed_cb(zfsvfs, B_TRUE);
		if ((error = dsl_prop_get_integer(osname,
		    "xattr", &pval, NULL)))
			goto out;
		xattr_changed_cb(zfsvfs, pval);
		if ((error = dsl_prop_get_integer(osname,
		    "acltype", &pval, NULL)))
			goto out;
		acltype_changed_cb(zfsvfs, pval);
		zfsvfs->z_issnap = B_TRUE;
		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
		zfsvfs->z_snap_defer_time = jiffies;

		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
	} else {
		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
			goto out;
	}

	/* Allocate a root inode for the filesystem. */
	error = zfs_root(zfsvfs, &root_inode);
	if (error) {
		(void) zfs_umount(sb);
		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
		goto out;
	}

	/* Allocate a root dentry for the filesystem */
	sb->s_root = d_make_root(root_inode);
	if (sb->s_root == NULL) {
		(void) zfs_umount(sb);
		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
		error = SET_ERROR(ENOMEM);
		goto out;
	}

	if (!zfsvfs->z_issnap)
		zfsctl_create(zfsvfs);

	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
out:
	if (error) {
		if (zfsvfs != NULL) {
			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
			zfsvfs_free(zfsvfs);
		}
		/*
		 * make sure we don't have dangling sb->s_fs_info which
		 * zfs_preumount will use.
		 */
		sb->s_fs_info = NULL;
	}

	return (error);
}

/*
 * Called when an unmount is requested and certain sanity checks have
 * already passed.  At this point no dentries or inodes have been reclaimed
 * from their respective caches.  We drop the extra reference on the .zfs
 * control directory to allow everything to be reclaimed.  All snapshots
 * must already have been unmounted to reach this point.
 */
void
zfs_preumount(struct super_block *sb)
{
	zfsvfs_t *zfsvfs = sb->s_fs_info;

	/* zfsvfs is NULL when zfs_domount fails during mount */
	if (zfsvfs) {
		zfs_unlinked_drain_stop_wait(zfsvfs);
		zfsctl_destroy(sb->s_fs_info);
		/*
		 * Wait for zrele_async before entering evict_inodes in
		 * generic_shutdown_super. The reason we must finish before
		 * evict_inodes is when lazytime is on, or when zfs_purgedir
		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
		 * would race with the i_count check in evict_inodes. This means
		 * it could destroy the inode while we are still using it.
		 *
		 * We wait for two passes. xattr directories in the first pass
		 * may add xattr entries in zfs_purgedir, so in the second pass
		 * we wait for them. We don't use taskq_wait here because it is
		 * a pool wide taskq. Other mounted filesystems can constantly
		 * do zrele_async and there's no guarantee when taskq will be
		 * empty.
		 */
		taskq_wait_outstanding(dsl_pool_zrele_taskq(
		    dmu_objset_pool(zfsvfs->z_os)), 0);
		taskq_wait_outstanding(dsl_pool_zrele_taskq(
		    dmu_objset_pool(zfsvfs->z_os)), 0);
	}
}

/*
 * Called once all other unmount released tear down has occurred.
 * It is our responsibility to release any remaining infrastructure.
 */
int
zfs_umount(struct super_block *sb)
{
	zfsvfs_t *zfsvfs = sb->s_fs_info;
	objset_t *os;

	if (zfsvfs->z_arc_prune != NULL)
		arc_remove_prune_callback(zfsvfs->z_arc_prune);
	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
	os = zfsvfs->z_os;

	/*
	 * z_os will be NULL if there was an error in
	 * attempting to reopen zfsvfs.
	 */
	if (os != NULL) {
		/*
		 * Unset the objset user_ptr.
		 */
		mutex_enter(&os->os_user_ptr_lock);
		dmu_objset_set_user(os, NULL);
		mutex_exit(&os->os_user_ptr_lock);

		/*
		 * Finally release the objset
		 */
		dmu_objset_disown(os, B_TRUE, zfsvfs);
	}

	zfsvfs_free(zfsvfs);
	sb->s_fs_info = NULL;
	return (0);
}

int
zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
{
	zfsvfs_t *zfsvfs = sb->s_fs_info;
	vfs_t *vfsp;
	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
	int error;

	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
	    !(*flags & SB_RDONLY)) {
		*flags |= SB_RDONLY;
		return (EROFS);
	}

	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
	if (error)
		return (error);

	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);

	zfs_unregister_callbacks(zfsvfs);
	zfsvfs_vfs_free(zfsvfs->z_vfs);

	vfsp->vfs_data = zfsvfs;
	zfsvfs->z_vfs = vfsp;
	if (!issnap)
		(void) zfs_register_callbacks(vfsp);

	return (error);
}

int
zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
{
	zfsvfs_t	*zfsvfs = sb->s_fs_info;
	znode_t		*zp;
	uint64_t	object = 0;
	uint64_t	fid_gen = 0;
	uint64_t	gen_mask;
	uint64_t	zp_gen;
	int		i, err;

	*ipp = NULL;

	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
		zfid_short_t	*zfid = (zfid_short_t *)fidp;

		for (i = 0; i < sizeof (zfid->zf_object); i++)
			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);

		for (i = 0; i < sizeof (zfid->zf_gen); i++)
			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
	} else {
		return (SET_ERROR(EINVAL));
	}

	/* LONG_FID_LEN means snapdirs */
	if (fidp->fid_len == LONG_FID_LEN) {
		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
		uint64_t	objsetid = 0;
		uint64_t	setgen = 0;

		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);

		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);

		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
			dprintf("snapdir fid: objsetid (%llu) != "
			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
			    objsetid, ZFSCTL_INO_SNAPDIRS, object);

			return (SET_ERROR(EINVAL));
		}

		if (fid_gen > 1 || setgen != 0) {
			dprintf("snapdir fid: fid_gen (%llu) and setgen "
			    "(%llu)\n", fid_gen, setgen);
			return (SET_ERROR(EINVAL));
		}

		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
	}

	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
		return (err);
	/* A zero fid_gen means we are in the .zfs control directories */
	if (fid_gen == 0 &&
	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
		*ipp = zfsvfs->z_ctldir;
		ASSERT(*ipp != NULL);
		if (object == ZFSCTL_INO_SNAPDIR) {
			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
			    0, kcred, NULL, NULL) == 0);
		} else {
			/*
			 * Must have an existing ref, so igrab()
			 * cannot return NULL
			 */
			VERIFY3P(igrab(*ipp), !=, NULL);
		}
		zfs_exit(zfsvfs, FTAG);
		return (0);
	}

	gen_mask = -1ULL >> (64 - 8 * i);

	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
	if ((err = zfs_zget(zfsvfs, object, &zp))) {
		zfs_exit(zfsvfs, FTAG);
		return (err);
	}

	/* Don't export xattr stuff */
	if (zp->z_pflags & ZFS_XATTR) {
		zrele(zp);
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(ENOENT));
	}

	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
	    sizeof (uint64_t));
	zp_gen = zp_gen & gen_mask;
	if (zp_gen == 0)
		zp_gen = 1;
	if ((fid_gen == 0) && (zfsvfs->z_root == object))
		fid_gen = zp_gen;
	if (zp->z_unlinked || zp_gen != fid_gen) {
		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
		    fid_gen);
		zrele(zp);
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(ENOENT));
	}

	*ipp = ZTOI(zp);
	if (*ipp)
		zfs_znode_update_vfs(ITOZ(*ipp));

	zfs_exit(zfsvfs, FTAG);
	return (0);
}

/*
 * Block out VFS ops and close zfsvfs_t
 *
 * Note, if successful, then we return with the 'z_teardown_lock' and
 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
 * dataset and objset intact so that they can be atomically handed off during
 * a subsequent rollback or recv operation and the resume thereafter.
 */
int
zfs_suspend_fs(zfsvfs_t *zfsvfs)
{
	int error;

	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
		return (error);

	return (0);
}

/*
 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
 * is an invariant across any of the operations that can be performed while the
 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
 * are the same: the relevant objset and associated dataset are owned by
 * zfsvfs, held, and long held on entry.
 */
int
zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
{
	int err, err2;
	znode_t *zp;

	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));

	/*
	 * We already own this, so just update the objset_t, as the one we
	 * had before may have been evicted.
	 */
	objset_t *os;
	VERIFY3P(ds->ds_owner, ==, zfsvfs);
	VERIFY(dsl_dataset_long_held(ds));
	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
	dsl_pool_config_enter(dp, FTAG);
	VERIFY0(dmu_objset_from_ds(ds, &os));
	dsl_pool_config_exit(dp, FTAG);

	err = zfsvfs_init(zfsvfs, os);
	if (err != 0)
		goto bail;

	ds->ds_dir->dd_activity_cancelled = B_FALSE;
	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);

	zfs_set_fuid_feature(zfsvfs);
	zfsvfs->z_rollback_time = jiffies;

	/*
	 * Attempt to re-establish all the active inodes with their
	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
	 * and mark it stale.  This prevents a collision if a new
	 * inode/object is created which must use the same inode
	 * number.  The stale inode will be be released when the
	 * VFS prunes the dentry holding the remaining references
	 * on the stale inode.
	 */
	mutex_enter(&zfsvfs->z_znodes_lock);
	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
		err2 = zfs_rezget(zp);
		if (err2) {
			zpl_d_drop_aliases(ZTOI(zp));
			remove_inode_hash(ZTOI(zp));
		}

		/* see comment in zfs_suspend_fs() */
		if (zp->z_suspended) {
			zfs_zrele_async(zp);
			zp->z_suspended = B_FALSE;
		}
	}
	mutex_exit(&zfsvfs->z_znodes_lock);

	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
		/*
		 * zfs_suspend_fs() could have interrupted freeing
		 * of dnodes. We need to restart this freeing so
		 * that we don't "leak" the space.
		 */
		zfs_unlinked_drain(zfsvfs);
	}

	/*
	 * Most of the time zfs_suspend_fs is used for changing the contents
	 * of the underlying dataset. ZFS rollback and receive operations
	 * might create files for which negative dentries are present in
	 * the cache. Since walking the dcache would require a lot of GPL-only
	 * code duplication, it's much easier on these rather rare occasions
	 * just to flush the whole dcache for the given dataset/filesystem.
	 */
	shrink_dcache_sb(zfsvfs->z_sb);

bail:
	if (err != 0)
		zfsvfs->z_unmounted = B_TRUE;

	/* release the VFS ops */
	rw_exit(&zfsvfs->z_teardown_inactive_lock);
	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);

	if (err != 0) {
		/*
		 * Since we couldn't setup the sa framework, try to force
		 * unmount this file system.
		 */
		if (zfsvfs->z_os)
			(void) zfs_umount(zfsvfs->z_sb);
	}
	return (err);
}

/*
 * Release VOPs and unmount a suspended filesystem.
 */
int
zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
{
	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));

	/*
	 * We already own this, so just hold and rele it to update the
	 * objset_t, as the one we had before may have been evicted.
	 */
	objset_t *os;
	VERIFY3P(ds->ds_owner, ==, zfsvfs);
	VERIFY(dsl_dataset_long_held(ds));
	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
	dsl_pool_config_enter(dp, FTAG);
	VERIFY0(dmu_objset_from_ds(ds, &os));
	dsl_pool_config_exit(dp, FTAG);
	zfsvfs->z_os = os;

	/* release the VOPs */
	rw_exit(&zfsvfs->z_teardown_inactive_lock);
	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);

	/*
	 * Try to force unmount this file system.
	 */
	(void) zfs_umount(zfsvfs->z_sb);
	zfsvfs->z_unmounted = B_TRUE;
	return (0);
}

/*
 * Automounted snapshots rely on periodic revalidation
 * to defer snapshots from being automatically unmounted.
 */

inline void
zfs_exit_fs(zfsvfs_t *zfsvfs)
{
	if (!zfsvfs->z_issnap)
		return;

	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
		zfsvfs->z_snap_defer_time = jiffies;
		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
		    dmu_objset_id(zfsvfs->z_os),
		    zfs_expire_snapshot);
	}
}

int
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
{
	int error;
	objset_t *os = zfsvfs->z_os;
	dmu_tx_t *tx;

	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
		return (SET_ERROR(EINVAL));

	if (newvers < zfsvfs->z_version)
		return (SET_ERROR(EINVAL));

	if (zfs_spa_version_map(newvers) >
	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
		return (SET_ERROR(ENOTSUP));

	tx = dmu_tx_create(os);
	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
		    ZFS_SA_ATTRS);
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
	}
	error = dmu_tx_assign(tx, TXG_WAIT);
	if (error) {
		dmu_tx_abort(tx);
		return (error);
	}

	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
	    8, 1, &newvers, tx);

	if (error) {
		dmu_tx_commit(tx);
		return (error);
	}

	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
		uint64_t sa_obj;

		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
		    SPA_VERSION_SA);
		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
		    DMU_OT_NONE, 0, tx);

		error = zap_add(os, MASTER_NODE_OBJ,
		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
		ASSERT0(error);

		VERIFY(0 == sa_set_sa_object(os, sa_obj));
		sa_register_update_callback(os, zfs_sa_upgrade);
	}

	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
	    "from %llu to %llu", zfsvfs->z_version, newvers);

	dmu_tx_commit(tx);

	zfsvfs->z_version = newvers;
	os->os_version = newvers;

	zfs_set_fuid_feature(zfsvfs);

	return (0);
}

/*
 * Return true if the corresponding vfs's unmounted flag is set.
 * Otherwise return false.
 * If this function returns true we know VFS unmount has been initiated.
 */
boolean_t
zfs_get_vfs_flag_unmounted(objset_t *os)
{
	zfsvfs_t *zfvp;
	boolean_t unmounted = B_FALSE;

	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);

	mutex_enter(&os->os_user_ptr_lock);
	zfvp = dmu_objset_get_user(os);
	if (zfvp != NULL && zfvp->z_unmounted)
		unmounted = B_TRUE;
	mutex_exit(&os->os_user_ptr_lock);

	return (unmounted);
}

void
zfsvfs_update_fromname(const char *oldname, const char *newname)
{
	/*
	 * We don't need to do anything here, the devname is always current by
	 * virtue of zfsvfs->z_sb->s_op->show_devname.
	 */
	(void) oldname, (void) newname;
}

void
zfs_init(void)
{
	zfsctl_init();
	zfs_znode_init();
	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
	register_filesystem(&zpl_fs_type);
}

void
zfs_fini(void)
{
	/*
	 * we don't use outstanding because zpl_posix_acl_free might add more.
	 */
	taskq_wait(system_delay_taskq);
	taskq_wait(system_taskq);
	unregister_filesystem(&zpl_fs_type);
	zfs_znode_fini();
	zfsctl_fini();
}

#if defined(_KERNEL)
EXPORT_SYMBOL(zfs_suspend_fs);
EXPORT_SYMBOL(zfs_resume_fs);
EXPORT_SYMBOL(zfs_set_version);
EXPORT_SYMBOL(zfsvfs_create);
EXPORT_SYMBOL(zfsvfs_free);
EXPORT_SYMBOL(zfs_is_readonly);
EXPORT_SYMBOL(zfs_domount);
EXPORT_SYMBOL(zfs_preumount);
EXPORT_SYMBOL(zfs_umount);
EXPORT_SYMBOL(zfs_remount);
EXPORT_SYMBOL(zfs_statvfs);
EXPORT_SYMBOL(zfs_vget);
EXPORT_SYMBOL(zfs_prune);
#endif