1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* This file contains the core framework routines for the
* kernel cryptographic framework. These routines are at the
* layer, between the kernel API/ioctls and the SPI.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/sched_impl.h>
#include <sys/crypto/api.h>
static kcf_global_swq_t *gswq; /* Global software queue */
/* Thread pool related variables */
static kcf_pool_t *kcfpool; /* Thread pool of kcfd LWPs */
static const int kcf_maxthreads = 2;
static const int kcf_minthreads = 1;
/* kmem caches used by the scheduler */
static kmem_cache_t *kcf_sreq_cache;
static kmem_cache_t *kcf_areq_cache;
static kmem_cache_t *kcf_context_cache;
/* Global request ID table */
static kcf_reqid_table_t *kcf_reqid_table[REQID_TABLES];
/* KCF stats. Not protected. */
static kcf_stats_t kcf_ksdata = {
{ "total threads in pool", KSTAT_DATA_UINT32},
{ "idle threads in pool", KSTAT_DATA_UINT32},
{ "min threads in pool", KSTAT_DATA_UINT32},
{ "max threads in pool", KSTAT_DATA_UINT32},
{ "requests in gswq", KSTAT_DATA_UINT32},
{ "max requests in gswq", KSTAT_DATA_UINT32},
{ "threads for HW taskq", KSTAT_DATA_UINT32},
{ "minalloc for HW taskq", KSTAT_DATA_UINT32},
{ "maxalloc for HW taskq", KSTAT_DATA_UINT32}
};
static kstat_t *kcf_misc_kstat = NULL;
ulong_t kcf_swprov_hndl = 0;
static int kcf_disp_sw_request(kcf_areq_node_t *);
static void process_req_hwp(void *);
static int kcf_enqueue(kcf_areq_node_t *);
static void kcfpool_alloc(void);
static void kcf_reqid_delete(kcf_areq_node_t *areq);
static crypto_req_id_t kcf_reqid_insert(kcf_areq_node_t *areq);
static int kcf_misc_kstat_update(kstat_t *ksp, int rw);
/*
* Create a new context.
*/
crypto_ctx_t *
kcf_new_ctx(crypto_call_req_t *crq, kcf_provider_desc_t *pd,
crypto_session_id_t sid)
{
crypto_ctx_t *ctx;
kcf_context_t *kcf_ctx;
kcf_ctx = kmem_cache_alloc(kcf_context_cache,
(crq == NULL) ? KM_SLEEP : KM_NOSLEEP);
if (kcf_ctx == NULL)
return (NULL);
/* initialize the context for the consumer */
kcf_ctx->kc_refcnt = 1;
kcf_ctx->kc_req_chain_first = NULL;
kcf_ctx->kc_req_chain_last = NULL;
kcf_ctx->kc_secondctx = NULL;
KCF_PROV_REFHOLD(pd);
kcf_ctx->kc_prov_desc = pd;
kcf_ctx->kc_sw_prov_desc = NULL;
kcf_ctx->kc_mech = NULL;
ctx = &kcf_ctx->kc_glbl_ctx;
ctx->cc_provider = pd->pd_prov_handle;
ctx->cc_session = sid;
ctx->cc_provider_private = NULL;
ctx->cc_framework_private = (void *)kcf_ctx;
ctx->cc_flags = 0;
ctx->cc_opstate = NULL;
return (ctx);
}
/*
* Allocate a new async request node.
*
* ictx - Framework private context pointer
* crq - Has callback function and argument. Should be non NULL.
* req - The parameters to pass to the SPI
*/
static kcf_areq_node_t *
kcf_areqnode_alloc(kcf_provider_desc_t *pd, kcf_context_t *ictx,
crypto_call_req_t *crq, kcf_req_params_t *req)
{
kcf_areq_node_t *arptr, *areq;
ASSERT(crq != NULL);
arptr = kmem_cache_alloc(kcf_areq_cache, KM_NOSLEEP);
if (arptr == NULL)
return (NULL);
arptr->an_state = REQ_ALLOCATED;
arptr->an_reqarg = *crq;
arptr->an_params = *req;
arptr->an_context = ictx;
arptr->an_next = arptr->an_prev = NULL;
KCF_PROV_REFHOLD(pd);
arptr->an_provider = pd;
arptr->an_tried_plist = NULL;
arptr->an_refcnt = 1;
arptr->an_idnext = arptr->an_idprev = NULL;
/*
* Requests for context-less operations do not use the
* fields - an_is_my_turn, and an_ctxchain_next.
*/
if (ictx == NULL)
return (arptr);
KCF_CONTEXT_REFHOLD(ictx);
/*
* Chain this request to the context.
*/
mutex_enter(&ictx->kc_in_use_lock);
arptr->an_ctxchain_next = NULL;
if ((areq = ictx->kc_req_chain_last) == NULL) {
arptr->an_is_my_turn = B_TRUE;
ictx->kc_req_chain_last =
ictx->kc_req_chain_first = arptr;
} else {
ASSERT(ictx->kc_req_chain_first != NULL);
arptr->an_is_my_turn = B_FALSE;
/* Insert the new request to the end of the chain. */
areq->an_ctxchain_next = arptr;
ictx->kc_req_chain_last = arptr;
}
mutex_exit(&ictx->kc_in_use_lock);
return (arptr);
}
/*
* Queue the request node and do one of the following:
* - If there is an idle thread signal it to run.
* - If there is no idle thread and max running threads is not
* reached, signal the creator thread for more threads.
*
* If the two conditions above are not met, we don't need to do
* anything. The request will be picked up by one of the
* worker threads when it becomes available.
*/
static int
kcf_disp_sw_request(kcf_areq_node_t *areq)
{
int err;
int cnt = 0;
if ((err = kcf_enqueue(areq)) != 0)
return (err);
if (kcfpool->kp_idlethreads > 0) {
/* Signal an idle thread to run */
mutex_enter(&gswq->gs_lock);
cv_signal(&gswq->gs_cv);
mutex_exit(&gswq->gs_lock);
return (CRYPTO_QUEUED);
}
/*
* We keep the number of running threads to be at
* kcf_minthreads to reduce gs_lock contention.
*/
cnt = kcf_minthreads -
(kcfpool->kp_threads - kcfpool->kp_blockedthreads);
if (cnt > 0) {
/*
* The following ensures the number of threads in pool
* does not exceed kcf_maxthreads.
*/
cnt = MIN(cnt, kcf_maxthreads - (int)kcfpool->kp_threads);
if (cnt > 0) {
/* Signal the creator thread for more threads */
mutex_enter(&kcfpool->kp_user_lock);
if (!kcfpool->kp_signal_create_thread) {
kcfpool->kp_signal_create_thread = B_TRUE;
kcfpool->kp_nthrs = cnt;
cv_signal(&kcfpool->kp_user_cv);
}
mutex_exit(&kcfpool->kp_user_lock);
}
}
return (CRYPTO_QUEUED);
}
/*
* This routine is called by the taskq associated with
* each hardware provider. We notify the kernel consumer
* via the callback routine in case of CRYPTO_SUCCESS or
* a failure.
*
* A request can be of type kcf_areq_node_t or of type
* kcf_sreq_node_t.
*/
static void
process_req_hwp(void *ireq)
{
int error = 0;
crypto_ctx_t *ctx;
kcf_call_type_t ctype;
kcf_provider_desc_t *pd;
kcf_areq_node_t *areq = (kcf_areq_node_t *)ireq;
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)ireq;
pd = ((ctype = GET_REQ_TYPE(ireq)) == CRYPTO_SYNCH) ?
sreq->sn_provider : areq->an_provider;
/*
* Wait if flow control is in effect for the provider. A
* CRYPTO_PROVIDER_READY or CRYPTO_PROVIDER_FAILED
* notification will signal us. We also get signaled if
* the provider is unregistering.
*/
if (pd->pd_state == KCF_PROV_BUSY) {
mutex_enter(&pd->pd_lock);
while (pd->pd_state == KCF_PROV_BUSY)
cv_wait(&pd->pd_resume_cv, &pd->pd_lock);
mutex_exit(&pd->pd_lock);
}
/*
* Bump the internal reference count while the request is being
* processed. This is how we know when it's safe to unregister
* a provider. This step must precede the pd_state check below.
*/
KCF_PROV_IREFHOLD(pd);
/*
* Fail the request if the provider has failed. We return a
* recoverable error and the notified clients attempt any
* recovery. For async clients this is done in kcf_aop_done()
* and for sync clients it is done in the k-api routines.
*/
if (pd->pd_state >= KCF_PROV_FAILED) {
error = CRYPTO_DEVICE_ERROR;
goto bail;
}
if (ctype == CRYPTO_SYNCH) {
mutex_enter(&sreq->sn_lock);
sreq->sn_state = REQ_INPROGRESS;
mutex_exit(&sreq->sn_lock);
ctx = sreq->sn_context ? &sreq->sn_context->kc_glbl_ctx : NULL;
error = common_submit_request(sreq->sn_provider, ctx,
sreq->sn_params, sreq);
} else {
kcf_context_t *ictx;
ASSERT(ctype == CRYPTO_ASYNCH);
/*
* We are in the per-hardware provider thread context and
* hence can sleep. Note that the caller would have done
* a taskq_dispatch(..., TQ_NOSLEEP) and would have returned.
*/
ctx = (ictx = areq->an_context) ? &ictx->kc_glbl_ctx : NULL;
mutex_enter(&areq->an_lock);
/*
* We need to maintain ordering for multi-part requests.
* an_is_my_turn is set to B_TRUE initially for a request
* when it is enqueued and there are no other requests
* for that context. It is set later from kcf_aop_done() when
* the request before us in the chain of requests for the
* context completes. We get signaled at that point.
*/
if (ictx != NULL) {
ASSERT(ictx->kc_prov_desc == areq->an_provider);
while (areq->an_is_my_turn == B_FALSE) {
cv_wait(&areq->an_turn_cv, &areq->an_lock);
}
}
areq->an_state = REQ_INPROGRESS;
mutex_exit(&areq->an_lock);
error = common_submit_request(areq->an_provider, ctx,
&areq->an_params, areq);
}
bail:
if (error == CRYPTO_QUEUED) {
/*
* The request is queued by the provider and we should
* get a crypto_op_notification() from the provider later.
* We notify the consumer at that time.
*/
return;
} else { /* CRYPTO_SUCCESS or other failure */
KCF_PROV_IREFRELE(pd);
if (ctype == CRYPTO_SYNCH)
kcf_sop_done(sreq, error);
else
kcf_aop_done(areq, error);
}
}
/*
* This routine checks if a request can be retried on another
* provider. If true, mech1 is initialized to point to the mechanism
* structure. fg is initialized to the correct crypto_func_group_t bit flag.
* They are initialized by this routine, so that the caller can pass them to
* kcf_get_mech_provider() with no further change.
*
* We check that the request is for a init or atomic routine and that
* it is for one of the operation groups used from k-api .
*/
static boolean_t
can_resubmit(kcf_areq_node_t *areq, crypto_mechanism_t **mech1,
crypto_func_group_t *fg)
{
kcf_req_params_t *params;
kcf_op_type_t optype;
params = &areq->an_params;
optype = params->rp_optype;
if (!(IS_INIT_OP(optype) || IS_ATOMIC_OP(optype)))
return (B_FALSE);
switch (params->rp_opgrp) {
case KCF_OG_DIGEST: {
kcf_digest_ops_params_t *dops = ¶ms->rp_u.digest_params;
dops->do_mech.cm_type = dops->do_framework_mechtype;
*mech1 = &dops->do_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DIGEST :
CRYPTO_FG_DIGEST_ATOMIC;
break;
}
case KCF_OG_MAC: {
kcf_mac_ops_params_t *mops = ¶ms->rp_u.mac_params;
mops->mo_mech.cm_type = mops->mo_framework_mechtype;
*mech1 = &mops->mo_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_MAC :
CRYPTO_FG_MAC_ATOMIC;
break;
}
case KCF_OG_ENCRYPT: {
kcf_encrypt_ops_params_t *eops = ¶ms->rp_u.encrypt_params;
eops->eo_mech.cm_type = eops->eo_framework_mechtype;
*mech1 = &eops->eo_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_ENCRYPT :
CRYPTO_FG_ENCRYPT_ATOMIC;
break;
}
case KCF_OG_DECRYPT: {
kcf_decrypt_ops_params_t *dcrops = ¶ms->rp_u.decrypt_params;
dcrops->dop_mech.cm_type = dcrops->dop_framework_mechtype;
*mech1 = &dcrops->dop_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DECRYPT :
CRYPTO_FG_DECRYPT_ATOMIC;
break;
}
default:
return (B_FALSE);
}
return (B_TRUE);
}
/*
* This routine is called when a request to a provider has failed
* with a recoverable error. This routine tries to find another provider
* and dispatches the request to the new provider, if one is available.
* We reuse the request structure.
*
* A return value of NULL from kcf_get_mech_provider() indicates
* we have tried the last provider.
*/
static int
kcf_resubmit_request(kcf_areq_node_t *areq)
{
int error = CRYPTO_FAILED;
kcf_context_t *ictx;
kcf_provider_desc_t *old_pd;
kcf_provider_desc_t *new_pd;
crypto_mechanism_t *mech1 = NULL;
crypto_func_group_t fg = 0;
if (!can_resubmit(areq, &mech1, &fg))
return (error);
old_pd = areq->an_provider;
/*
* Add old_pd to the list of providers already tried. We release
* the hold on old_pd (from the earlier kcf_get_mech_provider()) in
* kcf_free_triedlist().
*/
if (kcf_insert_triedlist(&areq->an_tried_plist, old_pd,
KM_NOSLEEP) == NULL)
return (error);
new_pd = kcf_get_mech_provider(mech1->cm_type, NULL, &error,
areq->an_tried_plist, fg,
(areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED), 0);
if (new_pd == NULL)
return (error);
/*
* We reuse the old context by resetting provider specific
* fields in it.
*/
if ((ictx = areq->an_context) != NULL) {
crypto_ctx_t *ctx;
ASSERT(old_pd == ictx->kc_prov_desc);
KCF_PROV_REFRELE(ictx->kc_prov_desc);
KCF_PROV_REFHOLD(new_pd);
ictx->kc_prov_desc = new_pd;
ctx = &ictx->kc_glbl_ctx;
ctx->cc_provider = new_pd->pd_prov_handle;
ctx->cc_session = new_pd->pd_sid;
ctx->cc_provider_private = NULL;
}
/* We reuse areq. by resetting the provider and context fields. */
KCF_PROV_REFRELE(old_pd);
KCF_PROV_REFHOLD(new_pd);
areq->an_provider = new_pd;
mutex_enter(&areq->an_lock);
areq->an_state = REQ_WAITING;
mutex_exit(&areq->an_lock);
switch (new_pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
error = kcf_disp_sw_request(areq);
break;
case CRYPTO_HW_PROVIDER: {
taskq_t *taskq = new_pd->pd_sched_info.ks_taskq;
if (taskq_dispatch(taskq, process_req_hwp, areq, TQ_NOSLEEP) ==
TASKQID_INVALID) {
error = CRYPTO_HOST_MEMORY;
} else {
error = CRYPTO_QUEUED;
}
break;
default:
break;
}
}
return (error);
}
/*
* Routine called by both ioctl and k-api. The consumer should
* bundle the parameters into a kcf_req_params_t structure. A bunch
* of macros are available in ops_impl.h for this bundling. They are:
*
* KCF_WRAP_DIGEST_OPS_PARAMS()
* KCF_WRAP_MAC_OPS_PARAMS()
* KCF_WRAP_ENCRYPT_OPS_PARAMS()
* KCF_WRAP_DECRYPT_OPS_PARAMS() ... etc.
*
* It is the caller's responsibility to free the ctx argument when
* appropriate. See the KCF_CONTEXT_COND_RELEASE macro for details.
*/
int
kcf_submit_request(kcf_provider_desc_t *pd, crypto_ctx_t *ctx,
crypto_call_req_t *crq, kcf_req_params_t *params)
{
int error = CRYPTO_SUCCESS;
kcf_areq_node_t *areq;
kcf_sreq_node_t *sreq;
kcf_context_t *kcf_ctx;
taskq_t *taskq = pd->pd_sched_info.ks_taskq;
kcf_ctx = ctx ? (kcf_context_t *)ctx->cc_framework_private : NULL;
/* Synchronous cases */
if (crq == NULL) {
switch (pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
error = common_submit_request(pd, ctx, params,
KCF_RHNDL(KM_SLEEP));
break;
case CRYPTO_HW_PROVIDER:
/*
* Special case for CRYPTO_SYNCHRONOUS providers that
* never return a CRYPTO_QUEUED error. We skip any
* request allocation and call the SPI directly.
*/
if ((pd->pd_flags & CRYPTO_SYNCHRONOUS) &&
taskq_empty(taskq)) {
KCF_PROV_IREFHOLD(pd);
if (pd->pd_state == KCF_PROV_READY) {
error = common_submit_request(pd, ctx,
params, KCF_RHNDL(KM_SLEEP));
KCF_PROV_IREFRELE(pd);
ASSERT(error != CRYPTO_QUEUED);
break;
}
KCF_PROV_IREFRELE(pd);
}
sreq = kmem_cache_alloc(kcf_sreq_cache, KM_SLEEP);
sreq->sn_state = REQ_ALLOCATED;
sreq->sn_rv = CRYPTO_FAILED;
sreq->sn_params = params;
/*
* Note that we do not need to hold the context
* for synchronous case as the context will never
* become invalid underneath us. We do not need to hold
* the provider here either as the caller has a hold.
*/
sreq->sn_context = kcf_ctx;
ASSERT(KCF_PROV_REFHELD(pd));
sreq->sn_provider = pd;
ASSERT(taskq != NULL);
/*
* Call the SPI directly if the taskq is empty and the
* provider is not busy, else dispatch to the taskq.
* Calling directly is fine as this is the synchronous
* case. This is unlike the asynchronous case where we
* must always dispatch to the taskq.
*/
if (taskq_empty(taskq) &&
pd->pd_state == KCF_PROV_READY) {
process_req_hwp(sreq);
} else {
/*
* We can not tell from taskq_dispatch() return
* value if we exceeded maxalloc. Hence the
* check here. Since we are allowed to wait in
* the synchronous case, we wait for the taskq
* to become empty.
*/
if (taskq->tq_nalloc >= crypto_taskq_maxalloc) {
taskq_wait(taskq);
}
(void) taskq_dispatch(taskq, process_req_hwp,
sreq, TQ_SLEEP);
}
/*
* Wait for the notification to arrive,
* if the operation is not done yet.
* Bug# 4722589 will make the wait a cv_wait_sig().
*/
mutex_enter(&sreq->sn_lock);
while (sreq->sn_state < REQ_DONE)
cv_wait(&sreq->sn_cv, &sreq->sn_lock);
mutex_exit(&sreq->sn_lock);
error = sreq->sn_rv;
kmem_cache_free(kcf_sreq_cache, sreq);
break;
default:
error = CRYPTO_FAILED;
break;
}
} else { /* Asynchronous cases */
switch (pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
if (!(crq->cr_flag & CRYPTO_ALWAYS_QUEUE)) {
/*
* This case has less overhead since there is
* no switching of context.
*/
error = common_submit_request(pd, ctx, params,
KCF_RHNDL(KM_NOSLEEP));
} else {
/*
* CRYPTO_ALWAYS_QUEUE is set. We need to
* queue the request and return.
*/
areq = kcf_areqnode_alloc(pd, kcf_ctx, crq,
params);
if (areq == NULL)
error = CRYPTO_HOST_MEMORY;
else {
if (!(crq->cr_flag
& CRYPTO_SKIP_REQID)) {
/*
* Set the request handle. We have to
* do this before dispatching the
* request.
*/
crq->cr_reqid = kcf_reqid_insert(areq);
}
error = kcf_disp_sw_request(areq);
/*
* There is an error processing this
* request. Remove the handle and
* release the request structure.
*/
if (error != CRYPTO_QUEUED) {
if (!(crq->cr_flag
& CRYPTO_SKIP_REQID))
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
}
}
}
break;
case CRYPTO_HW_PROVIDER:
/*
* We need to queue the request and return.
*/
areq = kcf_areqnode_alloc(pd, kcf_ctx, crq, params);
if (areq == NULL) {
error = CRYPTO_HOST_MEMORY;
goto done;
}
ASSERT(taskq != NULL);
/*
* We can not tell from taskq_dispatch() return
* value if we exceeded maxalloc. Hence the check
* here.
*/
if (taskq->tq_nalloc >= crypto_taskq_maxalloc) {
error = CRYPTO_BUSY;
KCF_AREQ_REFRELE(areq);
goto done;
}
if (!(crq->cr_flag & CRYPTO_SKIP_REQID)) {
/*
* Set the request handle. We have to do this
* before dispatching the request.
*/
crq->cr_reqid = kcf_reqid_insert(areq);
}
if (taskq_dispatch(taskq,
process_req_hwp, areq, TQ_NOSLEEP) ==
TASKQID_INVALID) {
error = CRYPTO_HOST_MEMORY;
if (!(crq->cr_flag & CRYPTO_SKIP_REQID))
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
} else {
error = CRYPTO_QUEUED;
}
break;
default:
error = CRYPTO_FAILED;
break;
}
}
done:
return (error);
}
/*
* We're done with this framework context, so free it. Note that freeing
* framework context (kcf_context) frees the global context (crypto_ctx).
*
* The provider is responsible for freeing provider private context after a
* final or single operation and resetting the cc_provider_private field
* to NULL. It should do this before it notifies the framework of the
* completion. We still need to call KCF_PROV_FREE_CONTEXT to handle cases
* like crypto_cancel_ctx(9f).
*/
void
kcf_free_context(kcf_context_t *kcf_ctx)
{
kcf_provider_desc_t *pd = kcf_ctx->kc_prov_desc;
crypto_ctx_t *gctx = &kcf_ctx->kc_glbl_ctx;
kcf_context_t *kcf_secondctx = kcf_ctx->kc_secondctx;
/* Release the second context, if any */
if (kcf_secondctx != NULL)
KCF_CONTEXT_REFRELE(kcf_secondctx);
if (gctx->cc_provider_private != NULL) {
mutex_enter(&pd->pd_lock);
if (!KCF_IS_PROV_REMOVED(pd)) {
/*
* Increment the provider's internal refcnt so it
* doesn't unregister from the framework while
* we're calling the entry point.
*/
KCF_PROV_IREFHOLD(pd);
mutex_exit(&pd->pd_lock);
(void) KCF_PROV_FREE_CONTEXT(pd, gctx);
KCF_PROV_IREFRELE(pd);
} else {
mutex_exit(&pd->pd_lock);
}
}
/* kcf_ctx->kc_prov_desc has a hold on pd */
KCF_PROV_REFRELE(kcf_ctx->kc_prov_desc);
/* check if this context is shared with a software provider */
if ((gctx->cc_flags & CRYPTO_INIT_OPSTATE) &&
kcf_ctx->kc_sw_prov_desc != NULL) {
KCF_PROV_REFRELE(kcf_ctx->kc_sw_prov_desc);
}
kmem_cache_free(kcf_context_cache, kcf_ctx);
}
/*
* Free the request after releasing all the holds.
*/
void
kcf_free_req(kcf_areq_node_t *areq)
{
KCF_PROV_REFRELE(areq->an_provider);
if (areq->an_context != NULL)
KCF_CONTEXT_REFRELE(areq->an_context);
if (areq->an_tried_plist != NULL)
kcf_free_triedlist(areq->an_tried_plist);
kmem_cache_free(kcf_areq_cache, areq);
}
/*
* Add the request node to the end of the global software queue.
*
* The caller should not hold the queue lock. Returns 0 if the
* request is successfully queued. Returns CRYPTO_BUSY if the limit
* on the number of jobs is exceeded.
*/
static int
kcf_enqueue(kcf_areq_node_t *node)
{
kcf_areq_node_t *tnode;
mutex_enter(&gswq->gs_lock);
if (gswq->gs_njobs >= gswq->gs_maxjobs) {
mutex_exit(&gswq->gs_lock);
return (CRYPTO_BUSY);
}
if (gswq->gs_last == NULL) {
gswq->gs_first = gswq->gs_last = node;
} else {
ASSERT(gswq->gs_last->an_next == NULL);
tnode = gswq->gs_last;
tnode->an_next = node;
gswq->gs_last = node;
node->an_prev = tnode;
}
gswq->gs_njobs++;
/* an_lock not needed here as we hold gs_lock */
node->an_state = REQ_WAITING;
mutex_exit(&gswq->gs_lock);
return (0);
}
/*
* kmem_cache_alloc constructor for sync request structure.
*/
static int
kcf_sreq_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
(void) cdrarg, (void) kmflags;
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf;
sreq->sn_type = CRYPTO_SYNCH;
cv_init(&sreq->sn_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&sreq->sn_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
static void
kcf_sreq_cache_destructor(void *buf, void *cdrarg)
{
(void) cdrarg;
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf;
mutex_destroy(&sreq->sn_lock);
cv_destroy(&sreq->sn_cv);
}
/*
* kmem_cache_alloc constructor for async request structure.
*/
static int
kcf_areq_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
(void) cdrarg, (void) kmflags;
kcf_areq_node_t *areq = (kcf_areq_node_t *)buf;
areq->an_type = CRYPTO_ASYNCH;
areq->an_refcnt = 0;
mutex_init(&areq->an_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&areq->an_done, NULL, CV_DEFAULT, NULL);
cv_init(&areq->an_turn_cv, NULL, CV_DEFAULT, NULL);
return (0);
}
static void
kcf_areq_cache_destructor(void *buf, void *cdrarg)
{
(void) cdrarg;
kcf_areq_node_t *areq = (kcf_areq_node_t *)buf;
ASSERT(areq->an_refcnt == 0);
mutex_destroy(&areq->an_lock);
cv_destroy(&areq->an_done);
cv_destroy(&areq->an_turn_cv);
}
/*
* kmem_cache_alloc constructor for kcf_context structure.
*/
static int
kcf_context_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
(void) cdrarg, (void) kmflags;
kcf_context_t *kctx = (kcf_context_t *)buf;
kctx->kc_refcnt = 0;
mutex_init(&kctx->kc_in_use_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
static void
kcf_context_cache_destructor(void *buf, void *cdrarg)
{
(void) cdrarg;
kcf_context_t *kctx = (kcf_context_t *)buf;
ASSERT(kctx->kc_refcnt == 0);
mutex_destroy(&kctx->kc_in_use_lock);
}
void
kcf_sched_destroy(void)
{
int i;
if (kcf_misc_kstat)
kstat_delete(kcf_misc_kstat);
if (kcfpool) {
mutex_destroy(&kcfpool->kp_thread_lock);
cv_destroy(&kcfpool->kp_nothr_cv);
mutex_destroy(&kcfpool->kp_user_lock);
cv_destroy(&kcfpool->kp_user_cv);
kmem_free(kcfpool, sizeof (kcf_pool_t));
}
for (i = 0; i < REQID_TABLES; i++) {
if (kcf_reqid_table[i]) {
mutex_destroy(&(kcf_reqid_table[i]->rt_lock));
kmem_free(kcf_reqid_table[i],
sizeof (kcf_reqid_table_t));
}
}
if (gswq) {
mutex_destroy(&gswq->gs_lock);
cv_destroy(&gswq->gs_cv);
kmem_free(gswq, sizeof (kcf_global_swq_t));
}
if (kcf_context_cache)
kmem_cache_destroy(kcf_context_cache);
if (kcf_areq_cache)
kmem_cache_destroy(kcf_areq_cache);
if (kcf_sreq_cache)
kmem_cache_destroy(kcf_sreq_cache);
mutex_destroy(&ntfy_list_lock);
cv_destroy(&ntfy_list_cv);
}
/*
* Creates and initializes all the structures needed by the framework.
*/
void
kcf_sched_init(void)
{
int i;
kcf_reqid_table_t *rt;
/*
* Create all the kmem caches needed by the framework. We set the
* align argument to 64, to get a slab aligned to 64-byte as well as
* have the objects (cache_chunksize) to be a 64-byte multiple.
* This helps to avoid false sharing as this is the size of the
* CPU cache line.
*/
kcf_sreq_cache = kmem_cache_create("kcf_sreq_cache",
sizeof (struct kcf_sreq_node), 64, kcf_sreq_cache_constructor,
kcf_sreq_cache_destructor, NULL, NULL, NULL, 0);
kcf_areq_cache = kmem_cache_create("kcf_areq_cache",
sizeof (struct kcf_areq_node), 64, kcf_areq_cache_constructor,
kcf_areq_cache_destructor, NULL, NULL, NULL, 0);
kcf_context_cache = kmem_cache_create("kcf_context_cache",
sizeof (struct kcf_context), 64, kcf_context_cache_constructor,
kcf_context_cache_destructor, NULL, NULL, NULL, 0);
gswq = kmem_alloc(sizeof (kcf_global_swq_t), KM_SLEEP);
mutex_init(&gswq->gs_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&gswq->gs_cv, NULL, CV_DEFAULT, NULL);
gswq->gs_njobs = 0;
gswq->gs_maxjobs = kcf_maxthreads * crypto_taskq_maxalloc;
gswq->gs_first = gswq->gs_last = NULL;
/* Initialize the global reqid table */
for (i = 0; i < REQID_TABLES; i++) {
rt = kmem_zalloc(sizeof (kcf_reqid_table_t), KM_SLEEP);
kcf_reqid_table[i] = rt;
mutex_init(&rt->rt_lock, NULL, MUTEX_DEFAULT, NULL);
rt->rt_curid = i;
}
/* Allocate and initialize the thread pool */
kcfpool_alloc();
/* Initialize the event notification list variables */
mutex_init(&ntfy_list_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&ntfy_list_cv, NULL, CV_DEFAULT, NULL);
/* Create the kcf kstat */
kcf_misc_kstat = kstat_create("kcf", 0, "framework_stats", "crypto",
KSTAT_TYPE_NAMED, sizeof (kcf_stats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (kcf_misc_kstat != NULL) {
kcf_misc_kstat->ks_data = &kcf_ksdata;
kcf_misc_kstat->ks_update = kcf_misc_kstat_update;
kstat_install(kcf_misc_kstat);
}
}
/*
* Signal the waiting sync client.
*/
void
kcf_sop_done(kcf_sreq_node_t *sreq, int error)
{
mutex_enter(&sreq->sn_lock);
sreq->sn_state = REQ_DONE;
sreq->sn_rv = error;
cv_signal(&sreq->sn_cv);
mutex_exit(&sreq->sn_lock);
}
/*
* Callback the async client with the operation status.
* We free the async request node and possibly the context.
* We also handle any chain of requests hanging off of
* the context.
*/
void
kcf_aop_done(kcf_areq_node_t *areq, int error)
{
kcf_op_type_t optype;
boolean_t skip_notify = B_FALSE;
kcf_context_t *ictx;
kcf_areq_node_t *nextreq;
/*
* Handle recoverable errors. This has to be done first
* before doing anything else in this routine so that
* we do not change the state of the request.
*/
if (error != CRYPTO_SUCCESS && IS_RECOVERABLE(error)) {
/*
* We try another provider, if one is available. Else
* we continue with the failure notification to the
* client.
*/
if (kcf_resubmit_request(areq) == CRYPTO_QUEUED)
return;
}
mutex_enter(&areq->an_lock);
areq->an_state = REQ_DONE;
mutex_exit(&areq->an_lock);
optype = (&areq->an_params)->rp_optype;
if ((ictx = areq->an_context) != NULL) {
/*
* A request after it is removed from the request
* queue, still stays on a chain of requests hanging
* of its context structure. It needs to be removed
* from this chain at this point.
*/
mutex_enter(&ictx->kc_in_use_lock);
nextreq = areq->an_ctxchain_next;
if (nextreq != NULL) {
mutex_enter(&nextreq->an_lock);
nextreq->an_is_my_turn = B_TRUE;
cv_signal(&nextreq->an_turn_cv);
mutex_exit(&nextreq->an_lock);
}
ictx->kc_req_chain_first = nextreq;
if (nextreq == NULL)
ictx->kc_req_chain_last = NULL;
mutex_exit(&ictx->kc_in_use_lock);
if (IS_SINGLE_OP(optype) || IS_FINAL_OP(optype)) {
ASSERT(nextreq == NULL);
KCF_CONTEXT_REFRELE(ictx);
} else if (error != CRYPTO_SUCCESS && IS_INIT_OP(optype)) {
/*
* NOTE - We do not release the context in case of update
* operations. We require the consumer to free it explicitly,
* in case it wants to abandon an update operation. This is done
* as there may be mechanisms in ECB mode that can continue
* even if an operation on a block fails.
*/
KCF_CONTEXT_REFRELE(ictx);
}
}
/*
* If CRYPTO_NOTIFY_OPDONE flag is set, we should notify
* always. If this flag is clear, we skip the notification
* provided there are no errors. We check this flag for only
* init or update operations. It is ignored for single, final or
* atomic operations.
*/
skip_notify = (IS_UPDATE_OP(optype) || IS_INIT_OP(optype)) &&
(!(areq->an_reqarg.cr_flag & CRYPTO_NOTIFY_OPDONE)) &&
(error == CRYPTO_SUCCESS);
if (!skip_notify) {
NOTIFY_CLIENT(areq, error);
}
if (!(areq->an_reqarg.cr_flag & CRYPTO_SKIP_REQID))
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
}
/*
* Allocate the thread pool and initialize all the fields.
*/
static void
kcfpool_alloc()
{
kcfpool = kmem_alloc(sizeof (kcf_pool_t), KM_SLEEP);
kcfpool->kp_threads = kcfpool->kp_idlethreads = 0;
kcfpool->kp_blockedthreads = 0;
kcfpool->kp_signal_create_thread = B_FALSE;
kcfpool->kp_nthrs = 0;
kcfpool->kp_user_waiting = B_FALSE;
mutex_init(&kcfpool->kp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&kcfpool->kp_nothr_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kcfpool->kp_user_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&kcfpool->kp_user_cv, NULL, CV_DEFAULT, NULL);
}
/*
* Insert the async request in the hash table after assigning it
* an ID. Returns the ID.
*
* The ID is used by the caller to pass as an argument to a
* cancel_req() routine later.
*/
static crypto_req_id_t
kcf_reqid_insert(kcf_areq_node_t *areq)
{
int indx;
crypto_req_id_t id;
kcf_areq_node_t *headp;
kcf_reqid_table_t *rt;
rt = kcf_reqid_table[CPU_SEQID_UNSTABLE & REQID_TABLE_MASK];
mutex_enter(&rt->rt_lock);
rt->rt_curid = id =
(rt->rt_curid - REQID_COUNTER_LOW) | REQID_COUNTER_HIGH;
SET_REQID(areq, id);
indx = REQID_HASH(id);
headp = areq->an_idnext = rt->rt_idhash[indx];
areq->an_idprev = NULL;
if (headp != NULL)
headp->an_idprev = areq;
rt->rt_idhash[indx] = areq;
mutex_exit(&rt->rt_lock);
return (id);
}
/*
* Delete the async request from the hash table.
*/
static void
kcf_reqid_delete(kcf_areq_node_t *areq)
{
int indx;
kcf_areq_node_t *nextp, *prevp;
crypto_req_id_t id = GET_REQID(areq);
kcf_reqid_table_t *rt;
rt = kcf_reqid_table[id & REQID_TABLE_MASK];
indx = REQID_HASH(id);
mutex_enter(&rt->rt_lock);
nextp = areq->an_idnext;
prevp = areq->an_idprev;
if (nextp != NULL)
nextp->an_idprev = prevp;
if (prevp != NULL)
prevp->an_idnext = nextp;
else
rt->rt_idhash[indx] = nextp;
SET_REQID(areq, 0);
cv_broadcast(&areq->an_done);
mutex_exit(&rt->rt_lock);
}
/*
* Update kstats.
*/
static int
kcf_misc_kstat_update(kstat_t *ksp, int rw)
{
uint_t tcnt;
kcf_stats_t *ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
ks_data = ksp->ks_data;
ks_data->ks_thrs_in_pool.value.ui32 = kcfpool->kp_threads;
/*
* The failover thread is counted in kp_idlethreads in
* some corner cases. This is done to avoid doing more checks
* when submitting a request. We account for those cases below.
*/
if ((tcnt = kcfpool->kp_idlethreads) == (kcfpool->kp_threads + 1))
tcnt--;
ks_data->ks_idle_thrs.value.ui32 = tcnt;
ks_data->ks_minthrs.value.ui32 = kcf_minthreads;
ks_data->ks_maxthrs.value.ui32 = kcf_maxthreads;
ks_data->ks_swq_njobs.value.ui32 = gswq->gs_njobs;
ks_data->ks_swq_maxjobs.value.ui32 = gswq->gs_maxjobs;
ks_data->ks_taskq_threads.value.ui32 = crypto_taskq_threads;
ks_data->ks_taskq_minalloc.value.ui32 = crypto_taskq_minalloc;
ks_data->ks_taskq_maxalloc.value.ui32 = crypto_taskq_maxalloc;
return (0);
}
|