1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/byteorder.h>
/*
* Encrypt and decrypt multiple blocks of data in counter mode.
*/
int
ctr_mode_contiguous_blocks(ctr_ctx_t *ctx, char *data, size_t length,
crypto_data_t *out, size_t block_size,
int (*cipher)(const void *ks, const uint8_t *pt, uint8_t *ct),
void (*xor_block)(uint8_t *, uint8_t *))
{
size_t remainder = length;
size_t need = 0;
uint8_t *datap = (uint8_t *)data;
uint8_t *blockp;
uint8_t *lastp;
void *iov_or_mp;
offset_t offset;
uint8_t *out_data_1;
uint8_t *out_data_2;
size_t out_data_1_len;
uint64_t lower_counter, upper_counter;
if (length + ctx->ctr_remainder_len < block_size) {
/* accumulate bytes here and return */
bcopy(datap,
(uint8_t *)ctx->ctr_remainder + ctx->ctr_remainder_len,
length);
ctx->ctr_remainder_len += length;
ctx->ctr_copy_to = datap;
return (CRYPTO_SUCCESS);
}
lastp = (uint8_t *)ctx->ctr_cb;
if (out != NULL)
crypto_init_ptrs(out, &iov_or_mp, &offset);
do {
/* Unprocessed data from last call. */
if (ctx->ctr_remainder_len > 0) {
need = block_size - ctx->ctr_remainder_len;
if (need > remainder)
return (CRYPTO_DATA_LEN_RANGE);
bcopy(datap, &((uint8_t *)ctx->ctr_remainder)
[ctx->ctr_remainder_len], need);
blockp = (uint8_t *)ctx->ctr_remainder;
} else {
blockp = datap;
}
/* ctr_cb is the counter block */
cipher(ctx->ctr_keysched, (uint8_t *)ctx->ctr_cb,
(uint8_t *)ctx->ctr_tmp);
lastp = (uint8_t *)ctx->ctr_tmp;
/*
* Increment Counter.
*/
lower_counter = ntohll(ctx->ctr_cb[1] & ctx->ctr_lower_mask);
lower_counter = htonll(lower_counter + 1);
lower_counter &= ctx->ctr_lower_mask;
ctx->ctr_cb[1] = (ctx->ctr_cb[1] & ~(ctx->ctr_lower_mask)) |
lower_counter;
/* wrap around */
if (lower_counter == 0) {
upper_counter =
ntohll(ctx->ctr_cb[0] & ctx->ctr_upper_mask);
upper_counter = htonll(upper_counter + 1);
upper_counter &= ctx->ctr_upper_mask;
ctx->ctr_cb[0] =
(ctx->ctr_cb[0] & ~(ctx->ctr_upper_mask)) |
upper_counter;
}
/*
* XOR encrypted counter block with the current clear block.
*/
xor_block(blockp, lastp);
if (out == NULL) {
if (ctx->ctr_remainder_len > 0) {
bcopy(lastp, ctx->ctr_copy_to,
ctx->ctr_remainder_len);
bcopy(lastp + ctx->ctr_remainder_len, datap,
need);
}
} else {
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
&out_data_1_len, &out_data_2, block_size);
/* copy block to where it belongs */
bcopy(lastp, out_data_1, out_data_1_len);
if (out_data_2 != NULL) {
bcopy(lastp + out_data_1_len, out_data_2,
block_size - out_data_1_len);
}
/* update offset */
out->cd_offset += block_size;
}
/* Update pointer to next block of data to be processed. */
if (ctx->ctr_remainder_len != 0) {
datap += need;
ctx->ctr_remainder_len = 0;
} else {
datap += block_size;
}
remainder = (size_t)&data[length] - (size_t)datap;
/* Incomplete last block. */
if (remainder > 0 && remainder < block_size) {
bcopy(datap, ctx->ctr_remainder, remainder);
ctx->ctr_remainder_len = remainder;
ctx->ctr_copy_to = datap;
goto out;
}
ctx->ctr_copy_to = NULL;
} while (remainder > 0);
out:
return (CRYPTO_SUCCESS);
}
int
ctr_mode_final(ctr_ctx_t *ctx, crypto_data_t *out,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
{
uint8_t *lastp;
void *iov_or_mp;
offset_t offset;
uint8_t *out_data_1;
uint8_t *out_data_2;
size_t out_data_1_len;
uint8_t *p;
int i;
if (out->cd_length < ctx->ctr_remainder_len)
return (CRYPTO_DATA_LEN_RANGE);
encrypt_block(ctx->ctr_keysched, (uint8_t *)ctx->ctr_cb,
(uint8_t *)ctx->ctr_tmp);
lastp = (uint8_t *)ctx->ctr_tmp;
p = (uint8_t *)ctx->ctr_remainder;
for (i = 0; i < ctx->ctr_remainder_len; i++) {
p[i] ^= lastp[i];
}
crypto_init_ptrs(out, &iov_or_mp, &offset);
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
&out_data_1_len, &out_data_2, ctx->ctr_remainder_len);
bcopy(p, out_data_1, out_data_1_len);
if (out_data_2 != NULL) {
bcopy((uint8_t *)p + out_data_1_len,
out_data_2, ctx->ctr_remainder_len - out_data_1_len);
}
out->cd_offset += ctx->ctr_remainder_len;
ctx->ctr_remainder_len = 0;
return (CRYPTO_SUCCESS);
}
int
ctr_init_ctx(ctr_ctx_t *ctr_ctx, ulong_t count, uint8_t *cb,
void (*copy_block)(uint8_t *, uint8_t *))
{
uint64_t upper_mask = 0;
uint64_t lower_mask = 0;
if (count == 0 || count > 128) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
/* upper 64 bits of the mask */
if (count >= 64) {
count -= 64;
upper_mask = (count == 64) ? UINT64_MAX : (1ULL << count) - 1;
lower_mask = UINT64_MAX;
} else {
/* now the lower 63 bits */
lower_mask = (1ULL << count) - 1;
}
ctr_ctx->ctr_lower_mask = htonll(lower_mask);
ctr_ctx->ctr_upper_mask = htonll(upper_mask);
copy_block(cb, (uchar_t *)ctr_ctx->ctr_cb);
ctr_ctx->ctr_lastp = (uint8_t *)&ctr_ctx->ctr_cb[0];
ctr_ctx->ctr_flags |= CTR_MODE;
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
void *
ctr_alloc_ctx(int kmflag)
{
ctr_ctx_t *ctr_ctx;
if ((ctr_ctx = kmem_zalloc(sizeof (ctr_ctx_t), kmflag)) == NULL)
return (NULL);
ctr_ctx->ctr_flags = CTR_MODE;
return (ctr_ctx);
}
|