1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#ifndef _SPL_MUTEX_H
#define _SPL_MUTEX_H
#ifdef __cplusplus
extern "C" {
#endif
#include <linux/module.h>
#include <linux/hardirq.h>
#include <sys/types.h>
/* See the "Big Theory Statement" in solaris mutex.c.
*
* Spin mutexes apparently aren't needed by zfs so we assert
* if ibc is non-zero.
*
* Our impementation of adaptive mutexes aren't really adaptive.
* They go to sleep every time.
*/
#define MUTEX_DEFAULT 0
#define MUTEX_HELD(x) (mutex_owned(x))
#define KM_MAGIC 0x42424242
#define KM_POISON 0x84
typedef struct {
int km_magic;
char *km_name;
struct task_struct *km_owner;
struct semaphore km_sem;
spinlock_t km_lock;
} kmutex_t;
#undef mutex_init
static __inline__ void
mutex_init(kmutex_t *mp, char *name, int type, void *ibc)
{
ENTRY;
ASSERT(mp);
ASSERT(ibc == NULL); /* XXX - Spin mutexes not needed */
ASSERT(type == MUTEX_DEFAULT); /* XXX - Only default type supported */
mp->km_magic = KM_MAGIC;
spin_lock_init(&mp->km_lock);
sema_init(&mp->km_sem, 1);
mp->km_owner = NULL;
mp->km_name = NULL;
if (name) {
mp->km_name = kmalloc(strlen(name) + 1, GFP_KERNEL);
if (mp->km_name)
strcpy(mp->km_name, name);
}
EXIT;
}
#undef mutex_destroy
static __inline__ void
mutex_destroy(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
spin_lock(&mp->km_lock);
if (mp->km_name)
kfree(mp->km_name);
memset(mp, KM_POISON, sizeof(*mp));
spin_unlock(&mp->km_lock);
EXIT;
}
static __inline__ void
mutex_enter(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
spin_lock(&mp->km_lock);
if (unlikely(in_atomic() && !current->exit_state)) {
spin_unlock(&mp->km_lock);
__CDEBUG_LIMIT(S_MUTEX, D_ERROR,
"May schedule while atomic: %s/0x%08x/%d\n",
current->comm, preempt_count(), current->pid);
SBUG();
}
spin_unlock(&mp->km_lock);
down(&mp->km_sem);
spin_lock(&mp->km_lock);
ASSERT(mp->km_owner == NULL);
mp->km_owner = current;
spin_unlock(&mp->km_lock);
EXIT;
}
/* Return 1 if we acquired the mutex, else zero. */
static __inline__ int
mutex_tryenter(kmutex_t *mp)
{
int rc;
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
spin_lock(&mp->km_lock);
if (unlikely(in_atomic() && !current->exit_state)) {
spin_unlock(&mp->km_lock);
__CDEBUG_LIMIT(S_MUTEX, D_ERROR,
"May schedule while atomic: %s/0x%08x/%d\n",
current->comm, preempt_count(), current->pid);
SBUG();
}
spin_unlock(&mp->km_lock);
rc = down_trylock(&mp->km_sem); /* returns 0 if acquired */
if (rc == 0) {
spin_lock(&mp->km_lock);
ASSERT(mp->km_owner == NULL);
mp->km_owner = current;
spin_unlock(&mp->km_lock);
RETURN(1);
}
RETURN(0);
}
static __inline__ void
mutex_exit(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
spin_lock(&mp->km_lock);
ASSERT(mp->km_owner == current);
mp->km_owner = NULL;
spin_unlock(&mp->km_lock);
up(&mp->km_sem);
EXIT;
}
/* Return 1 if mutex is held by current process, else zero. */
static __inline__ int
mutex_owned(kmutex_t *mp)
{
int rc;
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
spin_lock(&mp->km_lock);
rc = (mp->km_owner == current);
spin_unlock(&mp->km_lock);
RETURN(rc);
}
/* Return owner if mutex is owned, else NULL. */
static __inline__ kthread_t *
mutex_owner(kmutex_t *mp)
{
kthread_t *thr;
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
spin_lock(&mp->km_lock);
thr = mp->km_owner;
spin_unlock(&mp->km_lock);
RETURN(thr);
}
#ifdef __cplusplus
}
#endif
#endif /* _SPL_MUTEX_H */
|