diff options
Diffstat (limited to 'module/os/linux')
-rw-r--r-- | module/os/linux/zfs/abd_os.c | 211 | ||||
-rw-r--r-- | module/os/linux/zfs/zfs_racct.c | 29 | ||||
-rw-r--r-- | module/os/linux/zfs/zfs_uio.c | 295 | ||||
-rw-r--r-- | module/os/linux/zfs/zfs_vfsops.c | 1 | ||||
-rw-r--r-- | module/os/linux/zfs/zfs_vnops_os.c | 44 | ||||
-rw-r--r-- | module/os/linux/zfs/zpl_file.c | 71 |
6 files changed, 592 insertions, 59 deletions
diff --git a/module/os/linux/zfs/abd_os.c b/module/os/linux/zfs/abd_os.c index 60287ccdd..dae4107e0 100644 --- a/module/os/linux/zfs/abd_os.c +++ b/module/os/linux/zfs/abd_os.c @@ -186,6 +186,7 @@ static int zfs_abd_scatter_min_size = 512 * 3; abd_t *abd_zero_scatter = NULL; struct page; + /* * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will * point to ZERO_PAGE if it is available or it will be an allocated zero'd @@ -453,14 +454,21 @@ abd_free_chunks(abd_t *abd) if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); - abd_for_each_sg(abd, sg, nr_pages, i) { - page = sg_page(sg); - abd_unmark_zfs_page(page); - order = compound_order(page); - __free_pages(page, order); - ASSERT3U(sg->length, <=, PAGE_SIZE << order); - ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); + /* + * Scatter ABDs may be constructed by abd_alloc_from_pages() from + * an array of pages. In which case they should not be freed. + */ + if (!abd_is_from_pages(abd)) { + abd_for_each_sg(abd, sg, nr_pages, i) { + page = sg_page(sg); + abd_unmark_zfs_page(page); + order = compound_order(page); + __free_pages(page, order); + ASSERT3U(sg->length, <=, PAGE_SIZE << order); + ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); + } } + abd_free_sg_table(abd); } @@ -551,17 +559,19 @@ abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) void abd_verify_scatter(abd_t *abd) { - size_t n; - int i = 0; - struct scatterlist *sg = NULL; - ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); ASSERT3U(ABD_SCATTER(abd).abd_offset, <, ABD_SCATTER(abd).abd_sgl->length); - n = ABD_SCATTER(abd).abd_nents; + +#ifdef ZFS_DEBUG + struct scatterlist *sg = NULL; + size_t n = ABD_SCATTER(abd).abd_nents; + int i = 0; + abd_for_each_sg(abd, sg, n, i) { ASSERT3P(sg_page(sg), !=, NULL); } +#endif } static void @@ -687,14 +697,77 @@ abd_free_linear_page(abd_t *abd) { /* Transform it back into a scatter ABD for freeing */ struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; + + /* When backed by user page unmap it */ + if (abd_is_from_pages(abd)) + zfs_kunmap(sg_page(sg)); + abd->abd_flags &= ~ABD_FLAG_LINEAR; abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; ABD_SCATTER(abd).abd_nents = 1; ABD_SCATTER(abd).abd_offset = 0; ABD_SCATTER(abd).abd_sgl = sg; abd_free_chunks(abd); +} + +/* + * Allocate a scatter ABD structure from user pages. The pages must be + * pinned with get_user_pages, or similiar, but need not be mapped via + * the kmap interfaces. + */ +abd_t * +abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size) +{ + uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE); + struct sg_table table; + + VERIFY3U(size, <=, DMU_MAX_ACCESS); + ASSERT3U(offset, <, PAGE_SIZE); + ASSERT3P(pages, !=, NULL); + + /* + * Even if this buf is filesystem metadata, we only track that we + * own the underlying data buffer, which is not true in this case. + * Therefore, we don't ever use ABD_FLAG_META here. + */ + abd_t *abd = abd_alloc_struct(0); + abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER; + abd->abd_size = size; + + while (sg_alloc_table_from_pages(&table, pages, npages, offset, + size, __GFP_NOWARN | GFP_NOIO) != 0) { + ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); + schedule_timeout_interruptible(1); + } + + if ((offset + size) <= PAGE_SIZE) { + /* + * Since there is only one entry, this ABD can be represented + * as a linear buffer. All single-page (4K) ABD's constructed + * from a user page can be represented this way as long as the + * page is mapped to a virtual address. This allows us to + * apply an offset in to the mapped page. + * + * Note that kmap() must be used, not kmap_atomic(), because + * the mapping needs to bet set up on all CPUs. Using kmap() + * also enables the user of highmem pages when required. + */ + abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE; + abd->abd_u.abd_linear.abd_sgl = table.sgl; + zfs_kmap(sg_page(table.sgl)); + ABD_LINEAR_BUF(abd) = sg_virt(table.sgl); + } else { + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); + abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; + + ABD_SCATTER(abd).abd_offset = offset; + ABD_SCATTER(abd).abd_sgl = table.sgl; + ABD_SCATTER(abd).abd_nents = table.nents; + + ASSERT0(ABD_SCATTER(abd).abd_offset); + } - abd_update_scatter_stats(abd, ABDSTAT_DECR); + return (abd); } /* @@ -746,6 +819,9 @@ abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off, ABD_SCATTER(abd).abd_offset = new_offset; ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; + if (abd_is_from_pages(sabd)) + abd->abd_flags |= ABD_FLAG_FROM_PAGES; + return (abd); } @@ -874,6 +950,115 @@ abd_cache_reap_now(void) } /* + * Borrow a raw buffer from an ABD without copying the contents of the ABD + * into the buffer. If the ABD is scattered, this will allocate a raw buffer + * whose contents are undefined. To copy over the existing data in the ABD, use + * abd_borrow_buf_copy() instead. + */ +void * +abd_borrow_buf(abd_t *abd, size_t n) +{ + void *buf; + abd_verify(abd); + ASSERT3U(abd->abd_size, >=, 0); + /* + * In the event the ABD is composed of a single user page from Direct + * I/O we can not direclty return the raw buffer. This is a consequence + * of not being able to write protect the page and the contents of the + * page can be changed at any time by the user. + */ + if (abd_is_from_pages(abd)) { + buf = zio_buf_alloc(n); + } else if (abd_is_linear(abd)) { + buf = abd_to_buf(abd); + } else { + buf = zio_buf_alloc(n); + } + +#ifdef ZFS_DEBUG + (void) zfs_refcount_add_many(&abd->abd_children, n, buf); +#endif + return (buf); +} + +void * +abd_borrow_buf_copy(abd_t *abd, size_t n) +{ + void *buf = abd_borrow_buf(abd, n); + + /* + * In the event the ABD is composed of a single user page from Direct + * I/O we must make sure copy the data over into the newly allocated + * buffer. This is a consequence of the fact that we can not write + * protect the user page and there is a risk the contents of the page + * could be changed by the user at any moment. + */ + if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { + abd_copy_to_buf(buf, abd, n); + } + return (buf); +} + +/* + * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will + * not change the contents of the ABD. If you want any changes you made to + * buf to be copied back to abd, use abd_return_buf_copy() instead. If the + * ABD is not constructed from user pages for Direct I/O then an ASSERT + * checks to make sure the contents of buffer have not changed since it was + * borrowed. We can not ASSERT that the contents of the buffer have not changed + * if it is composed of user pages because the pages can not be placed under + * write protection and the user could have possibly changed the contents in + * the pages at any time. + */ +void +abd_return_buf(abd_t *abd, void *buf, size_t n) +{ + abd_verify(abd); + ASSERT3U(abd->abd_size, >=, n); +#ifdef ZFS_DEBUG + (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); +#endif + if (abd_is_from_pages(abd)) { + zio_buf_free(buf, n); + } else if (abd_is_linear(abd)) { + ASSERT3P(buf, ==, abd_to_buf(abd)); + } else if (abd_is_gang(abd)) { +#ifdef ZFS_DEBUG + /* + * We have to be careful with gang ABD's that we do not ASSERT0 + * for any ABD's that contain user pages from Direct I/O. In + * order to handle this, we just iterate through the gang ABD + * and only verify ABDs that are not from user pages. + */ + void *cmp_buf = buf; + + for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); + cabd != NULL; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + if (!abd_is_from_pages(cabd)) { + ASSERT0(abd_cmp_buf(cabd, cmp_buf, + cabd->abd_size)); + } + cmp_buf = (char *)cmp_buf + cabd->abd_size; + } +#endif + zio_buf_free(buf, n); + } else { + ASSERT0(abd_cmp_buf(abd, buf, n)); + zio_buf_free(buf, n); + } +} + +void +abd_return_buf_copy(abd_t *abd, void *buf, size_t n) +{ + if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { + abd_copy_from_buf(abd, buf, n); + } + abd_return_buf(abd, buf, n); +} + +/* * This is abd_iter_page(), the function underneath abd_iterate_page_func(). * It yields the next page struct and data offset and size within it, without * mapping it into the address space. diff --git a/module/os/linux/zfs/zfs_racct.c b/module/os/linux/zfs/zfs_racct.c index ce623ef9d..ce197caa4 100644 --- a/module/os/linux/zfs/zfs_racct.c +++ b/module/os/linux/zfs/zfs_racct.c @@ -25,14 +25,35 @@ #include <sys/zfs_racct.h> +#ifdef _KERNEL +#include <linux/task_io_accounting_ops.h> + +void +zfs_racct_read(spa_t *spa, uint64_t size, uint64_t iops, uint32_t flags) +{ + task_io_account_read(size); + spa_iostats_read_add(spa, size, iops, flags); +} + void -zfs_racct_read(uint64_t size, uint64_t iops) +zfs_racct_write(spa_t *spa, uint64_t size, uint64_t iops, uint32_t flags) { - (void) size, (void) iops; + task_io_account_write(size); + spa_iostats_write_add(spa, size, iops, flags); } +#else + void -zfs_racct_write(uint64_t size, uint64_t iops) +zfs_racct_read(spa_t *spa, uint64_t size, uint64_t iops, uint32_t flags) { - (void) size, (void) iops; + (void) spa, (void) size, (void) iops, (void) flags; } + +void +zfs_racct_write(spa_t *spa, uint64_t size, uint64_t iops, uint32_t flags) +{ + (void) spa, (void) size, (void) iops, (void) flags; +} + +#endif /* _KERNEL */ diff --git a/module/os/linux/zfs/zfs_uio.c b/module/os/linux/zfs/zfs_uio.c index a99a1ba88..637f968f8 100644 --- a/module/os/linux/zfs/zfs_uio.c +++ b/module/os/linux/zfs/zfs_uio.c @@ -41,12 +41,19 @@ #ifdef _KERNEL +#include <sys/errno.h> +#include <sys/vmem.h> +#include <sys/sysmacros.h> #include <sys/types.h> #include <sys/uio_impl.h> #include <sys/sysmacros.h> #include <sys/string.h> +#include <sys/zfs_refcount.h> +#include <sys/zfs_debug.h> #include <linux/kmap_compat.h> #include <linux/uaccess.h> +#include <linux/pagemap.h> +#include <linux/mman.h> /* * Move "n" bytes at byte address "p"; "rw" indicates the direction @@ -327,8 +334,13 @@ EXPORT_SYMBOL(zfs_uiomove); int zfs_uio_prefaultpages(ssize_t n, zfs_uio_t *uio) { - if (uio->uio_segflg == UIO_SYSSPACE || uio->uio_segflg == UIO_BVEC) { - /* There's never a need to fault in kernel pages */ + if (uio->uio_segflg == UIO_SYSSPACE || uio->uio_segflg == UIO_BVEC || + (uio->uio_extflg & UIO_DIRECT)) { + /* + * There's never a need to fault in kernel pages or Direct I/O + * write pages. Direct I/O write pages have been pinned in so + * there is never a time for these pages a fault will occur. + */ return (0); #if defined(HAVE_VFS_IOV_ITER) } else if (uio->uio_segflg == UIO_ITER) { @@ -437,9 +449,288 @@ zfs_uioskip(zfs_uio_t *uio, size_t n) uio->uio_iovcnt--; } } + uio->uio_loffset += n; uio->uio_resid -= n; } EXPORT_SYMBOL(zfs_uioskip); +/* + * Check if the uio is page-aligned in memory. + */ +boolean_t +zfs_uio_page_aligned(zfs_uio_t *uio) +{ + boolean_t aligned = B_TRUE; + + if (uio->uio_segflg == UIO_USERSPACE || + uio->uio_segflg == UIO_SYSSPACE) { + const struct iovec *iov = uio->uio_iov; + size_t skip = uio->uio_skip; + + for (int i = uio->uio_iovcnt; i > 0; iov++, i--) { + uintptr_t addr = (uintptr_t)(iov->iov_base + skip); + size_t size = iov->iov_len - skip; + if ((addr & (PAGE_SIZE - 1)) || + (size & (PAGE_SIZE - 1))) { + aligned = B_FALSE; + break; + } + skip = 0; + } +#if defined(HAVE_VFS_IOV_ITER) + } else if (uio->uio_segflg == UIO_ITER) { + unsigned long alignment = + iov_iter_alignment(uio->uio_iter); + aligned = IS_P2ALIGNED(alignment, PAGE_SIZE); +#endif + } else { + /* Currently not supported */ + aligned = B_FALSE; + } + + return (aligned); +} + + +#if defined(HAVE_ZERO_PAGE_GPL_ONLY) || !defined(_LP64) +#define ZFS_MARKEED_PAGE 0x0 +#define IS_ZFS_MARKED_PAGE(_p) 0 +#define zfs_mark_page(_p) +#define zfs_unmark_page(_p) +#define IS_ZERO_PAGE(_p) 0 + +#else +/* + * Mark pages to know if they were allocated to replace ZERO_PAGE() for + * Direct I/O writes. + */ +#define ZFS_MARKED_PAGE 0x5a465350414745 /* ASCII: ZFSPAGE */ +#define IS_ZFS_MARKED_PAGE(_p) \ + (page_private(_p) == (unsigned long)ZFS_MARKED_PAGE) +#define IS_ZERO_PAGE(_p) ((_p) == ZERO_PAGE(0)) + +static inline void +zfs_mark_page(struct page *page) +{ + ASSERT3P(page, !=, NULL); + get_page(page); + SetPagePrivate(page); + set_page_private(page, ZFS_MARKED_PAGE); +} + +static inline void +zfs_unmark_page(struct page *page) +{ + ASSERT3P(page, !=, NULL); + set_page_private(page, 0UL); + ClearPagePrivate(page); + put_page(page); +} +#endif /* HAVE_ZERO_PAGE_GPL_ONLY || !_LP64 */ + +static void +zfs_uio_dio_check_for_zero_page(zfs_uio_t *uio) +{ + ASSERT3P(uio->uio_dio.pages, !=, NULL); + + for (long i = 0; i < uio->uio_dio.npages; i++) { + struct page *p = uio->uio_dio.pages[i]; + lock_page(p); + + if (IS_ZERO_PAGE(p)) { + /* + * If the user page points the kernels ZERO_PAGE() a + * new zero filled page will just be allocated so the + * contents of the page can not be changed by the user + * while a Direct I/O write is taking place. + */ + gfp_t gfp_zero_page = __GFP_NOWARN | GFP_NOIO | + __GFP_ZERO | GFP_KERNEL; + + ASSERT0(IS_ZFS_MARKED_PAGE(p)); + unlock_page(p); + put_page(p); + + p = __page_cache_alloc(gfp_zero_page); + zfs_mark_page(p); + } else { + unlock_page(p); + } + } +} + +void +zfs_uio_free_dio_pages(zfs_uio_t *uio, zfs_uio_rw_t rw) +{ + + ASSERT(uio->uio_extflg & UIO_DIRECT); + ASSERT3P(uio->uio_dio.pages, !=, NULL); + + for (long i = 0; i < uio->uio_dio.npages; i++) { + struct page *p = uio->uio_dio.pages[i]; + + if (IS_ZFS_MARKED_PAGE(p)) { + zfs_unmark_page(p); + __free_page(p); + continue; + } + + put_page(p); + } + + vmem_free(uio->uio_dio.pages, + uio->uio_dio.npages * sizeof (struct page *)); +} + +/* + * zfs_uio_iov_step() is just a modified version of the STEP function of Linux's + * iov_iter_get_pages(). + */ +static int +zfs_uio_iov_step(struct iovec v, zfs_uio_rw_t rw, zfs_uio_t *uio, + long *numpages) +{ + unsigned long addr = (unsigned long)(v.iov_base); + size_t len = v.iov_len; + unsigned long n = DIV_ROUND_UP(len, PAGE_SIZE); + + long res = zfs_get_user_pages( + P2ALIGN_TYPED(addr, PAGE_SIZE, unsigned long), n, rw == UIO_READ, + &uio->uio_dio.pages[uio->uio_dio.npages]); + if (res < 0) { + return (SET_ERROR(-res)); + } else if (len != (res * PAGE_SIZE)) { + return (SET_ERROR(EFAULT)); + } + + ASSERT3S(len, ==, res * PAGE_SIZE); + *numpages = res; + return (0); +} + +static int +zfs_uio_get_dio_pages_iov(zfs_uio_t *uio, zfs_uio_rw_t rw) +{ + const struct iovec *iovp = uio->uio_iov; + size_t skip = uio->uio_skip; + size_t len = uio->uio_resid - skip; + + ASSERT(uio->uio_segflg != UIO_SYSSPACE); + + for (int i = 0; i < uio->uio_iovcnt; i++) { + struct iovec iov; + long numpages = 0; + + if (iovp->iov_len == 0) { + iovp++; + skip = 0; + continue; + } + iov.iov_len = MIN(len, iovp->iov_len - skip); + iov.iov_base = iovp->iov_base + skip; + int error = zfs_uio_iov_step(iov, rw, uio, &numpages); + + if (error) + return (error); + + uio->uio_dio.npages += numpages; + len -= iov.iov_len; + skip = 0; + iovp++; + } + + ASSERT0(len); + + return (0); +} + +#if defined(HAVE_VFS_IOV_ITER) +static int +zfs_uio_get_dio_pages_iov_iter(zfs_uio_t *uio, zfs_uio_rw_t rw) +{ + size_t skip = uio->uio_skip; + size_t wanted = uio->uio_resid - uio->uio_skip; + ssize_t rollback = 0; + ssize_t cnt; + unsigned maxpages = DIV_ROUND_UP(wanted, PAGE_SIZE); + + while (wanted) { +#if defined(HAVE_IOV_ITER_GET_PAGES2) + cnt = iov_iter_get_pages2(uio->uio_iter, + &uio->uio_dio.pages[uio->uio_dio.npages], + wanted, maxpages, &skip); +#else + cnt = iov_iter_get_pages(uio->uio_iter, + &uio->uio_dio.pages[uio->uio_dio.npages], + wanted, maxpages, &skip); +#endif + if (cnt < 0) { + iov_iter_revert(uio->uio_iter, rollback); + return (SET_ERROR(-cnt)); + } + uio->uio_dio.npages += DIV_ROUND_UP(cnt, PAGE_SIZE); + rollback += cnt; + wanted -= cnt; + skip = 0; +#if !defined(HAVE_IOV_ITER_GET_PAGES2) + /* + * iov_iter_get_pages2() advances the iov_iter on success. + */ + iov_iter_advance(uio->uio_iter, cnt); +#endif + + } + ASSERT3U(rollback, ==, uio->uio_resid - uio->uio_skip); + iov_iter_revert(uio->uio_iter, rollback); + + return (0); +} +#endif /* HAVE_VFS_IOV_ITER */ + +/* + * This function pins user pages. In the event that the user pages were not + * successfully pinned an error value is returned. + * + * On success, 0 is returned. + */ +int +zfs_uio_get_dio_pages_alloc(zfs_uio_t *uio, zfs_uio_rw_t rw) +{ + int error = 0; + long npages = DIV_ROUND_UP(uio->uio_resid, PAGE_SIZE); + size_t size = npages * sizeof (struct page *); + + if (uio->uio_segflg == UIO_USERSPACE) { + uio->uio_dio.pages = vmem_alloc(size, KM_SLEEP); + error = zfs_uio_get_dio_pages_iov(uio, rw); +#if defined(HAVE_VFS_IOV_ITER) + } else if (uio->uio_segflg == UIO_ITER) { + uio->uio_dio.pages = vmem_alloc(size, KM_SLEEP); + error = zfs_uio_get_dio_pages_iov_iter(uio, rw); +#endif + } else { + return (SET_ERROR(EOPNOTSUPP)); + } + + ASSERT3S(uio->uio_dio.npages, >=, 0); + + if (error) { + for (long i = 0; i < uio->uio_dio.npages; i++) + put_page(uio->uio_dio.pages[i]); + vmem_free(uio->uio_dio.pages, size); + return (error); + } else { + ASSERT3S(uio->uio_dio.npages, ==, npages); + } + + if (rw == UIO_WRITE) { + zfs_uio_dio_check_for_zero_page(uio); + } + + uio->uio_extflg |= UIO_DIRECT; + + return (0); +} + #endif /* _KERNEL */ diff --git a/module/os/linux/zfs/zfs_vfsops.c b/module/os/linux/zfs/zfs_vfsops.c index a52f08868..22a4ad1ef 100644 --- a/module/os/linux/zfs/zfs_vfsops.c +++ b/module/os/linux/zfs/zfs_vfsops.c @@ -59,6 +59,7 @@ #include <sys/objlist.h> #include <sys/zpl.h> #include <linux/vfs_compat.h> +#include <linux/fs.h> #include "zfs_comutil.h" enum { diff --git a/module/os/linux/zfs/zfs_vnops_os.c b/module/os/linux/zfs/zfs_vnops_os.c index 9803c7fec..77e59a3ba 100644 --- a/module/os/linux/zfs/zfs_vnops_os.c +++ b/module/os/linux/zfs/zfs_vnops_os.c @@ -296,6 +296,7 @@ mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio) struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT); if (pp) { + /* * If filemap_fault() retries there exists a window * where the page will be unlocked and not up to date. @@ -3866,7 +3867,7 @@ zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc, } zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit, - for_sync ? zfs_putpage_sync_commit_cb : + B_FALSE, for_sync ? zfs_putpage_sync_commit_cb : zfs_putpage_async_commit_cb, pp); dmu_tx_commit(tx); @@ -4009,6 +4010,7 @@ zfs_inactive(struct inode *ip) static int zfs_fillpage(struct inode *ip, struct page *pp) { + znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); loff_t i_size = i_size_read(ip); u_offset_t io_off = page_offset(pp); @@ -4020,7 +4022,7 @@ zfs_fillpage(struct inode *ip, struct page *pp) io_len = i_size - io_off; void *va = kmap(pp); - int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off, + int error = dmu_read(zfsvfs->z_os, zp->z_id, io_off, io_len, va, DMU_READ_PREFETCH); if (io_len != PAGE_SIZE) memset((char *)va + io_len, 0, PAGE_SIZE - io_len); @@ -4058,11 +4060,49 @@ zfs_getpage(struct inode *ip, struct page *pp) zfsvfs_t *zfsvfs = ITOZSB(ip); znode_t *zp = ITOZ(ip); int error; + loff_t i_size = i_size_read(ip); + u_offset_t io_off = page_offset(pp); + size_t io_len = PAGE_SIZE; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); + ASSERT3U(io_off, <, i_size); + + if (io_off + io_len > i_size) + io_len = i_size - io_off; + + /* + * It is important to hold the rangelock here because it is possible + * a Direct I/O write or block clone might be taking place at the same + * time that a page is being faulted in through filemap_fault(). With + * Direct I/O writes and block cloning db->db_data will be set to NULL + * with dbuf_clear_data() in dmu_buif_will_clone_or_dio(). If the + * rangelock is not held, then there is a race between faulting in a + * page and writing out a Direct I/O write or block cloning. Without + * the rangelock a NULL pointer dereference can occur in + * dmu_read_impl() for db->db_data during the mempcy operation when + * zfs_fillpage() calls dmu_read(). + */ + zfs_locked_range_t *lr = zfs_rangelock_tryenter(&zp->z_rangelock, + io_off, io_len, RL_READER); + if (lr == NULL) { + /* + * It is important to drop the page lock before grabbing the + * rangelock to avoid another deadlock between here and + * zfs_write() -> update_pages(). update_pages() holds both the + * rangelock and the page lock. + */ + get_page(pp); + unlock_page(pp); + lr = zfs_rangelock_enter(&zp->z_rangelock, io_off, + io_len, RL_READER); + lock_page(pp); + put_page(pp); + } error = zfs_fillpage(ip, pp); + zfs_rangelock_exit(lr); + if (error == 0) dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE); diff --git a/module/os/linux/zfs/zpl_file.c b/module/os/linux/zfs/zpl_file.c index 9dec52215..6b16faa2b 100644 --- a/module/os/linux/zfs/zpl_file.c +++ b/module/os/linux/zfs/zpl_file.c @@ -322,14 +322,14 @@ zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) crhold(cr); cookie = spl_fstrans_mark(); - int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, + ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio, filp->f_flags | zfs_io_flags(kiocb), cr); spl_fstrans_unmark(cookie); crfree(cr); - if (error < 0) - return (error); + if (ret < 0) + return (ret); ssize_t read = count - uio.uio_resid; kiocb->ki_pos += read; @@ -384,14 +384,14 @@ zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) crhold(cr); cookie = spl_fstrans_mark(); - int error = -zfs_write(ITOZ(ip), &uio, + ret = -zfs_write(ITOZ(ip), &uio, filp->f_flags | zfs_io_flags(kiocb), cr); spl_fstrans_unmark(cookie); crfree(cr); - if (error < 0) - return (error); + if (ret < 0) + return (ret); ssize_t wrote = count - uio.uio_resid; kiocb->ki_pos += wrote; @@ -422,14 +422,14 @@ zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov, crhold(cr); cookie = spl_fstrans_mark(); - int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, - filp->f_flags | zfs_io_flags(kiocb), cr); + ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio, + flip->f_flags | zfs_io_flags(kiocb), cr); spl_fstrans_unmark(cookie); crfree(cr); - if (error < 0) - return (error); + if (ret < 0) + return (ret); ssize_t read = count - uio.uio_resid; kiocb->ki_pos += read; @@ -467,53 +467,57 @@ zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov, crhold(cr); cookie = spl_fstrans_mark(); - int error = -zfs_write(ITOZ(ip), &uio, + ret = -zfs_write(ITOZ(ip), &uio, filp->f_flags | zfs_io_flags(kiocb), cr); spl_fstrans_unmark(cookie); crfree(cr); - if (error < 0) - return (error); + if (ret < 0) + return (ret); ssize_t wrote = count - uio.uio_resid; kiocb->ki_pos += wrote; return (wrote); } + #endif /* HAVE_VFS_RW_ITERATE */ -#if defined(HAVE_VFS_RW_ITERATE) static ssize_t -zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter) +zpl_direct_IO_impl(void) { - if (rw == WRITE) - return (zpl_iter_write(kiocb, iter)); - else - return (zpl_iter_read(kiocb, iter)); + /* + * All O_DIRECT requests should be handled by + * zpl_{iter/aio}_{write/read}(). There is no way kernel generic code + * should call the direct_IO address_space_operations function. We set + * this code path to be fatal if it is executed. + */ + PANIC(0); + return (0); } + +#if defined(HAVE_VFS_RW_ITERATE) #if defined(HAVE_VFS_DIRECT_IO_ITER) static ssize_t zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) { - return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); + return (zpl_direct_IO_impl()); } #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET) static ssize_t zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) { - ASSERT3S(pos, ==, kiocb->ki_pos); - return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); + return (zpl_direct_IO_impl()); } #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) static ssize_t zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) { - ASSERT3S(pos, ==, kiocb->ki_pos); - return (zpl_direct_IO_impl(rw, kiocb, iter)); + return (zpl_direct_IO_impl()); } #else -#error "Unknown direct IO interface" +#error "Unknown Direct I/O interface" #endif #else /* HAVE_VFS_RW_ITERATE */ @@ -523,26 +527,16 @@ static ssize_t zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) { - if (rw == WRITE) - return (zpl_aio_write(kiocb, iov, nr_segs, pos)); - else - return (zpl_aio_read(kiocb, iov, nr_segs, pos)); + return (zpl_direct_IO_impl()); } #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) static ssize_t zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) { - const struct iovec *iovp = iov_iter_iovec(iter); - unsigned long nr_segs = iter->nr_segs; - - ASSERT3S(pos, ==, kiocb->ki_pos); - if (rw == WRITE) - return (zpl_aio_write(kiocb, iovp, nr_segs, pos)); - else - return (zpl_aio_read(kiocb, iovp, nr_segs, pos)); + return (zpl_direct_IO_impl()); } #else -#error "Unknown direct IO interface" +#error "Unknown Direct I/O interface" #endif #endif /* HAVE_VFS_RW_ITERATE */ @@ -627,6 +621,7 @@ zpl_mmap(struct file *filp, struct vm_area_struct *vma) error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); spl_fstrans_unmark(cookie); + if (error) return (error); |