diff options
author | Alexander Motin <[email protected]> | 2022-06-24 16:55:58 -0400 |
---|---|---|
committer | GitHub <[email protected]> | 2022-06-24 13:55:58 -0700 |
commit | c0bf952c846100750f526c2a32ebec17694a201b (patch) | |
tree | eb9d87edafcc23a03e6e489371995c14fe6d6dd2 | |
parent | ccf89b39fe7f30dd53aec69e04de3f2728c7387c (diff) |
Several B-tree optimizations
- Introduce first element offset within a leaf. It allows to reduce
by ~50% average memmove() size when adding/removing elements. If the
added/removed element is in the first half of the leaf, we may shift
elements before it and adjust the bth_first instead of moving more
elements after it.
- Use memcpy() instead of memmove() when we know there is no overlap.
- Switch from uint64_t to uint32_t. It does not limit anything,
but 32-bit arches should appreciate it greatly in hot paths.
- Store leaf capacity in struct btree to avoid 64-bit divisions.
- Adjust zfs_btree_insert_into_leaf() to always result in balanced
leaves after splitting, no matter where the new element was inserted.
Not that we care about it much, but it should also allow B-trees with
as little as two elements per leaf instead of 4 previously.
When scrubbing pool of 12 SSDs, storing 1.5TB of 4KB zvol blocks this
reduces amount of time spent in memmove() inside the scan thread from
13.7% to 5.7% and total scrub time by ~15 seconds out of 9 minutes.
It should also reduce spacemaps load time, but I haven't measured it.
Reviewed-by: Paul Dagnelie <[email protected]>
Signed-off-by: Alexander Motin <[email protected]>
Sponsored-By: iXsystems, Inc.
Closes #13582
-rw-r--r-- | include/sys/btree.h | 12 | ||||
-rw-r--r-- | module/zfs/btree.c | 770 |
2 files changed, 419 insertions, 363 deletions
diff --git a/include/sys/btree.h b/include/sys/btree.h index 3b53476c7..a901d654e 100644 --- a/include/sys/btree.h +++ b/include/sys/btree.h @@ -72,7 +72,11 @@ extern kmem_cache_t *zfs_btree_leaf_cache; typedef struct zfs_btree_hdr { struct zfs_btree_core *bth_parent; - boolean_t bth_core; + /* + * Set to -1 to indicate core nodes. Other values represent first + * valid element offset for leaf nodes. + */ + uint32_t bth_first; /* * For both leaf and core nodes, represents the number of elements in * the node. For core nodes, they will have bth_count + 1 children. @@ -91,9 +95,12 @@ typedef struct zfs_btree_leaf { uint8_t btl_elems[]; } zfs_btree_leaf_t; +#define BTREE_LEAF_ESIZE (BTREE_LEAF_SIZE - \ + offsetof(zfs_btree_leaf_t, btl_elems)) + typedef struct zfs_btree_index { zfs_btree_hdr_t *bti_node; - uint64_t bti_offset; + uint32_t bti_offset; /* * True if the location is before the list offset, false if it's at * the listed offset. @@ -105,6 +112,7 @@ typedef struct btree { zfs_btree_hdr_t *bt_root; int64_t bt_height; size_t bt_elem_size; + uint32_t bt_leaf_cap; uint64_t bt_num_elems; uint64_t bt_num_nodes; zfs_btree_leaf_t *bt_bulk; // non-null if bulk loading diff --git a/module/zfs/btree.c b/module/zfs/btree.c index a079929b5..14cab4054 100644 --- a/module/zfs/btree.c +++ b/module/zfs/btree.c @@ -56,15 +56,27 @@ kmem_cache_t *zfs_btree_leaf_cache; int zfs_btree_verify_intensity = 0; /* - * A convenience function to silence warnings from memmove's return value and - * change argument order to src, dest. + * Convenience functions to silence warnings from memcpy/memmove's + * return values and change argument order to src, dest. */ static void +bcpy(const void *src, void *dest, size_t size) +{ + (void) memcpy(dest, src, size); +} + +static void bmov(const void *src, void *dest, size_t size) { (void) memmove(dest, src, size); } +static boolean_t +zfs_btree_is_core(struct zfs_btree_hdr *hdr) +{ + return (hdr->bth_first == -1); +} + #ifdef _ILP32 #define BTREE_POISON 0xabadb10c #else @@ -76,59 +88,74 @@ zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { #ifdef ZFS_DEBUG size_t size = tree->bt_elem_size; - if (!hdr->bth_core) { - zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; - (void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f, - BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) - - hdr->bth_count * size); - } else { + if (zfs_btree_is_core(hdr)) { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; - for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { + for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; + i++) { node->btc_children[i] = (zfs_btree_hdr_t *)BTREE_POISON; } (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f, (BTREE_CORE_ELEMS - hdr->bth_count) * size); + } else { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + (void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size); + (void) memset(leaf->btl_elems + + (hdr->bth_first + hdr->bth_count) * size, 0x0f, + BTREE_LEAF_ESIZE - + (hdr->bth_first + hdr->bth_count) * size); } #endif } static inline void zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, - uint64_t offset) + uint32_t idx, uint32_t count) { #ifdef ZFS_DEBUG size_t size = tree->bt_elem_size; - ASSERT3U(offset, >=, hdr->bth_count); - if (!hdr->bth_core) { - zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; - (void) memset(leaf->btl_elems + offset * size, 0x0f, size); - } else { + if (zfs_btree_is_core(hdr)) { + ASSERT3U(idx, >=, hdr->bth_count); + ASSERT3U(idx, <=, BTREE_CORE_ELEMS); + ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS); zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; - node->btc_children[offset + 1] = - (zfs_btree_hdr_t *)BTREE_POISON; - (void) memset(node->btc_elems + offset * size, 0x0f, size); + for (uint32_t i = 1; i <= count; i++) { + node->btc_children[idx + i] = + (zfs_btree_hdr_t *)BTREE_POISON; + } + (void) memset(node->btc_elems + idx * size, 0x0f, count * size); + } else { + ASSERT3U(idx, <=, tree->bt_leaf_cap); + ASSERT3U(idx + count, <=, tree->bt_leaf_cap); + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + (void) memset(leaf->btl_elems + + (hdr->bth_first + idx) * size, 0x0f, count * size); } #endif } static inline void zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, - uint64_t offset) + uint32_t idx) { #ifdef ZFS_DEBUG size_t size = tree->bt_elem_size; - uint8_t eval = 0x0f; - if (hdr->bth_core) { + if (zfs_btree_is_core(hdr)) { + ASSERT3U(idx, <, BTREE_CORE_ELEMS); zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON; - VERIFY3P(node->btc_children[offset + 1], ==, cval); - for (int i = 0; i < size; i++) - VERIFY3U(node->btc_elems[offset * size + i], ==, eval); + VERIFY3P(node->btc_children[idx + 1], ==, cval); + for (size_t i = 0; i < size; i++) + VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f); } else { + ASSERT3U(idx, <, tree->bt_leaf_cap); zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; - for (int i = 0; i < size; i++) - VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval); + if (idx >= tree->bt_leaf_cap - hdr->bth_first) + return; + for (size_t i = 0; i < size; i++) { + VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx) + * size + i], ==, 0x0f); + } } #endif } @@ -137,8 +164,7 @@ void zfs_btree_init(void) { zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache", - BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, - NULL, 0); + BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); } void @@ -151,17 +177,12 @@ void zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *), size_t size) { - /* - * We need a minimmum of 4 elements so that when we split a node we - * always have at least two elements in each node. This simplifies the - * logic in zfs_btree_bulk_finish, since it means the last leaf will - * always have a left sibling to share with (unless it's the root). - */ - ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4); + ASSERT3U(size, <=, BTREE_LEAF_ESIZE / 2); memset(tree, 0, sizeof (*tree)); tree->bt_compar = compar; tree->bt_elem_size = size; + tree->bt_leaf_cap = P2ALIGN(BTREE_LEAF_ESIZE / size, 2); tree->bt_height = -1; tree->bt_bulk = NULL; } @@ -170,21 +191,20 @@ zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *), * Find value in the array of elements provided. Uses a simple binary search. */ static void * -zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems, +zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems, const void *value, zfs_btree_index_t *where) { - uint64_t max = nelems; - uint64_t min = 0; + uint32_t max = nelems; + uint32_t min = 0; while (max > min) { - uint64_t idx = (min + max) / 2; + uint32_t idx = (min + max) / 2; uint8_t *cur = buf + idx * tree->bt_elem_size; int comp = tree->bt_compar(cur, value); - if (comp == -1) { + if (comp < 0) { min = idx + 1; - } else if (comp == 1) { + } else if (comp > 0) { max = idx; } else { - ASSERT0(comp); where->bti_offset = idx; where->bti_before = B_FALSE; return (cur); @@ -219,12 +239,13 @@ zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) * bulk-insert mode are to insert new elements. */ zfs_btree_index_t idx; + size_t size = tree->bt_elem_size; if (tree->bt_bulk != NULL) { zfs_btree_leaf_t *last_leaf = tree->bt_bulk; - int compar = tree->bt_compar(last_leaf->btl_elems + - ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size), - value); - if (compar < 0) { + int comp = tree->bt_compar(last_leaf->btl_elems + + (last_leaf->btl_hdr.bth_first + + last_leaf->btl_hdr.bth_count - 1) * size, value); + if (comp < 0) { /* * If what they're looking for is after the last * element, it's not in the tree. @@ -236,7 +257,7 @@ zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) where->bti_before = B_TRUE; } return (NULL); - } else if (compar == 0) { + } else if (comp == 0) { if (where != NULL) { where->bti_node = (zfs_btree_hdr_t *)last_leaf; where->bti_offset = @@ -244,18 +265,20 @@ zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) where->bti_before = B_FALSE; } return (last_leaf->btl_elems + - ((last_leaf->btl_hdr.bth_count - 1) * - tree->bt_elem_size)); + (last_leaf->btl_hdr.bth_first + + last_leaf->btl_hdr.bth_count - 1) * size); } - if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) { + if (tree->bt_compar(last_leaf->btl_elems + + last_leaf->btl_hdr.bth_first * size, value) <= 0) { /* * If what they're looking for is after the first * element in the last leaf, it's in the last leaf or * it's not in the tree. */ void *d = zfs_btree_find_in_buf(tree, - last_leaf->btl_elems, last_leaf->btl_hdr.bth_count, - value, &idx); + last_leaf->btl_elems + + last_leaf->btl_hdr.bth_first * size, + last_leaf->btl_hdr.bth_count, value, &idx); if (where != NULL) { idx.bti_node = (zfs_btree_hdr_t *)last_leaf; @@ -266,7 +289,7 @@ zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) } zfs_btree_core_t *node = NULL; - uint64_t child = 0; + uint32_t child = 0; uint64_t depth = 0; /* @@ -296,7 +319,8 @@ zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) */ zfs_btree_leaf_t *leaf = (depth == 0 ? (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node); - void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems, + void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems + + leaf->btl_hdr.bth_first * size, leaf->btl_hdr.bth_count, value, &idx); if (where != NULL) { @@ -366,24 +390,23 @@ enum bt_shift_direction { * shift is determined by shape. The direction is determined by dir. */ static inline void -bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, - uint64_t count, uint64_t off, enum bt_shift_shape shape, +bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx, + uint32_t count, uint32_t off, enum bt_shift_shape shape, enum bt_shift_direction dir) { size_t size = tree->bt_elem_size; - ASSERT(node->btc_hdr.bth_core); + ASSERT(zfs_btree_is_core(&node->btc_hdr)); uint8_t *e_start = node->btc_elems + idx * size; - int sign = (dir == BSD_LEFT ? -1 : +1); - uint8_t *e_out = e_start + sign * off * size; - uint64_t e_count = count; - bmov(e_start, e_out, e_count * size); + uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size : + e_start + off * size); + bmov(e_start, e_out, count * size); zfs_btree_hdr_t **c_start = node->btc_children + idx + (shape == BSS_TRAPEZOID ? 0 : 1); zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off : c_start + off); - uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); + uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); bmov(c_start, c_out, c_count * sizeof (*c_start)); } @@ -394,8 +417,8 @@ bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, * false if it is a parallelogram. */ static inline void -bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, - uint64_t count, enum bt_shift_shape shape) +bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx, + uint32_t count, enum bt_shift_shape shape) { bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT); } @@ -405,8 +428,8 @@ bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, * Starts with elements[idx] and children[idx] and one more child than element. */ static inline void -bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, - uint64_t count, enum bt_shift_shape shape) +bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx, + uint32_t count, enum bt_shift_shape shape) { bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT); } @@ -417,30 +440,78 @@ bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, * is determined by left. */ static inline void -bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx, - uint64_t count, uint64_t off, enum bt_shift_direction dir) +bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx, + uint32_t count, uint32_t off, enum bt_shift_direction dir) { size_t size = tree->bt_elem_size; - ASSERT(!node->btl_hdr.bth_core); + zfs_btree_hdr_t *hdr = &node->btl_hdr; + ASSERT(!zfs_btree_is_core(hdr)); - uint8_t *start = node->btl_elems + idx * size; - int sign = (dir == BSD_LEFT ? -1 : +1); - uint8_t *out = start + sign * off * size; + if (count == 0) + return; + uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size; + uint8_t *out = (dir == BSD_LEFT ? start - off * size : + start + off * size); bmov(start, out, count * size); } -static inline void -bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, - uint64_t count) +/* + * Grow leaf for n new elements before idx. + */ +static void +bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx, + uint32_t n) { - bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT); + zfs_btree_hdr_t *hdr = &leaf->btl_hdr; + ASSERT(!zfs_btree_is_core(hdr)); + ASSERT3U(idx, <=, hdr->bth_count); + uint32_t capacity = tree->bt_leaf_cap; + ASSERT3U(hdr->bth_count + n, <=, capacity); + boolean_t cl = (hdr->bth_first >= n); + boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity); + + if (cl && (!cr || idx <= hdr->bth_count / 2)) { + /* Grow left. */ + hdr->bth_first -= n; + bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT); + } else if (cr) { + /* Grow right. */ + bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n, + BSD_RIGHT); + } else { + /* Grow both ways. */ + uint32_t fn = hdr->bth_first - + (capacity - (hdr->bth_count + n)) / 2; + hdr->bth_first -= fn; + bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT); + bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx, + n - fn, BSD_RIGHT); + } + hdr->bth_count += n; } -static inline void -bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, - uint64_t count) +/* + * Shrink leaf for count elements starting from idx. + */ +static void +bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx, + uint32_t n) { - bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT); + zfs_btree_hdr_t *hdr = &leaf->btl_hdr; + ASSERT(!zfs_btree_is_core(hdr)); + ASSERT3U(idx, <=, hdr->bth_count); + ASSERT3U(idx + n, <=, hdr->bth_count); + + if (idx <= (hdr->bth_count - n) / 2) { + bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT); + zfs_btree_poison_node_at(tree, hdr, 0, n); + hdr->bth_first += n; + } else { + bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n, + BSD_LEFT); + zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n); + } + hdr->bth_count -= n; } /* @@ -448,32 +519,33 @@ bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, * parameter behaves the same as it does in the shift logic. */ static inline void -bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx, - uint64_t count, zfs_btree_core_t *dest, uint64_t didx, +bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx, + uint32_t count, zfs_btree_core_t *dest, uint32_t didx, enum bt_shift_shape shape) { size_t size = tree->bt_elem_size; - ASSERT(source->btc_hdr.bth_core); - ASSERT(dest->btc_hdr.bth_core); + ASSERT(zfs_btree_is_core(&source->btc_hdr)); + ASSERT(zfs_btree_is_core(&dest->btc_hdr)); - bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size, + bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size, count * size); - uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); - bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1), + uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); + bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1), dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1), c_count * sizeof (*source->btc_children)); } static inline void -bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx, - uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx) +bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx, + uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx) { size_t size = tree->bt_elem_size; - ASSERT(!source->btl_hdr.bth_core); - ASSERT(!dest->btl_hdr.bth_core); + ASSERT(!zfs_btree_is_core(&source->btl_hdr)); + ASSERT(!zfs_btree_is_core(&dest->btl_hdr)); - bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size, + bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size, + dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size, count * size); } @@ -482,30 +554,31 @@ bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx, * put its location in where if non-null. */ static void * -zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where) +zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, + zfs_btree_index_t *where) { zfs_btree_hdr_t *node; - for (node = hdr; node->bth_core; node = - ((zfs_btree_core_t *)node)->btc_children[0]) + for (node = hdr; zfs_btree_is_core(node); + node = ((zfs_btree_core_t *)node)->btc_children[0]) ; - ASSERT(!node->bth_core); + ASSERT(!zfs_btree_is_core(node)); zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; if (where != NULL) { where->bti_node = node; where->bti_offset = 0; where->bti_before = B_FALSE; } - return (&leaf->btl_elems[0]); + return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]); } /* Insert an element and a child into a core node at the given offset. */ static void zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent, - uint64_t offset, zfs_btree_hdr_t *new_node, void *buf) + uint32_t offset, zfs_btree_hdr_t *new_node, void *buf) { - uint64_t size = tree->bt_elem_size; + size_t size = tree->bt_elem_size; zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; ASSERT3P(par_hdr, ==, new_node->bth_parent); ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS); @@ -515,13 +588,13 @@ zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent, par_hdr->bth_count); } /* Shift existing elements and children */ - uint64_t count = par_hdr->bth_count - offset; + uint32_t count = par_hdr->bth_count - offset; bt_shift_core_right(tree, parent, offset, count, BSS_PARALLELOGRAM); /* Insert new values */ parent->btc_children[offset + 1] = new_node; - bmov(buf, parent->btc_elems + offset * size, size); + bcpy(buf, parent->btc_elems + offset * size, size); par_hdr->bth_count++; } @@ -534,7 +607,7 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, zfs_btree_hdr_t *new_node, void *buf) { ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent); - uint64_t size = tree->bt_elem_size; + size_t size = tree->bt_elem_size; zfs_btree_core_t *parent = old_node->bth_parent; /* @@ -549,13 +622,13 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, size, KM_SLEEP); zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr; new_root_hdr->bth_parent = NULL; - new_root_hdr->bth_core = B_TRUE; + new_root_hdr->bth_first = -1; new_root_hdr->bth_count = 1; old_node->bth_parent = new_node->bth_parent = new_root; new_root->btc_children[0] = old_node; new_root->btc_children[1] = new_node; - bmov(buf, new_root->btc_elems, size); + bcpy(buf, new_root->btc_elems, size); tree->bt_height++; tree->bt_root = new_root_hdr; @@ -569,11 +642,11 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, */ zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; zfs_btree_index_t idx; - ASSERT(par_hdr->bth_core); + ASSERT(zfs_btree_is_core(par_hdr)); VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, par_hdr->bth_count, buf, &idx), ==, NULL); ASSERT(idx.bti_before); - uint64_t offset = idx.bti_offset; + uint32_t offset = idx.bti_offset; ASSERT3U(offset, <=, par_hdr->bth_count); ASSERT3P(parent->btc_children[offset], ==, old_node); @@ -604,16 +677,16 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, * We do this in two stages: first we split into two nodes, and then we * reuse our existing logic to insert the new element and child. */ - uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ? + uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ? 2 : 4)) - 1, 2); - uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1; + uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1; ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2); tree->bt_num_nodes++; zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * size, KM_SLEEP); zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr; new_par_hdr->bth_parent = par_hdr->bth_parent; - new_par_hdr->bth_core = B_TRUE; + new_par_hdr->bth_first = -1; new_par_hdr->bth_count = move_count; zfs_btree_poison_node(tree, new_par_hdr); @@ -624,7 +697,7 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, /* Store the new separator in a buffer. */ uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP); - bmov(parent->btc_elems + keep_count * size, tmp_buf, + bcpy(parent->btc_elems + keep_count * size, tmp_buf, size); zfs_btree_poison_node(tree, par_hdr); @@ -636,7 +709,7 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, /* * Move the new separator to the existing buffer. */ - bmov(tmp_buf, buf, size); + bcpy(tmp_buf, buf, size); } else if (offset > keep_count) { /* Insert the new node into the right half */ new_node->bth_parent = new_parent; @@ -646,7 +719,7 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, /* * Move the new separator to the existing buffer. */ - bmov(tmp_buf, buf, size); + bcpy(tmp_buf, buf, size); } else { /* * Move the new separator into the right half, and replace it @@ -656,16 +729,16 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, bt_shift_core_right(tree, new_parent, 0, move_count, BSS_TRAPEZOID); new_parent->btc_children[0] = new_node; - bmov(tmp_buf, new_parent->btc_elems, size); + bcpy(tmp_buf, new_parent->btc_elems, size); new_par_hdr->bth_count++; } kmem_free(tmp_buf, size); zfs_btree_poison_node(tree, par_hdr); - for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++) + for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++) new_parent->btc_children[i]->bth_parent = new_parent; - for (int i = 0; i <= parent->btc_hdr.bth_count; i++) + for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++) ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent); /* @@ -679,34 +752,32 @@ zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, /* Insert an element into a leaf node at the given offset. */ static void zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, - uint64_t idx, const void *value) + uint32_t idx, const void *value) { - uint64_t size = tree->bt_elem_size; - uint8_t *start = leaf->btl_elems + (idx * size); + size_t size = tree->bt_elem_size; zfs_btree_hdr_t *hdr = &leaf->btl_hdr; - uint64_t capacity __maybe_unused = P2ALIGN((BTREE_LEAF_SIZE - - sizeof (zfs_btree_hdr_t)) / size, 2); - uint64_t count = leaf->btl_hdr.bth_count - idx; - ASSERT3U(leaf->btl_hdr.bth_count, <, capacity); + ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap); if (zfs_btree_verify_intensity >= 5) { zfs_btree_verify_poison_at(tree, &leaf->btl_hdr, leaf->btl_hdr.bth_count); } - bt_shift_leaf_right(tree, leaf, idx, count); - bmov(value, start, size); - hdr->bth_count++; + bt_grow_leaf(tree, leaf, idx, 1); + uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size; + bcpy(value, start, size); } +static void +zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr); + /* Helper function for inserting a new value into leaf at the given index. */ static void zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, - const void *value, uint64_t idx) + const void *value, uint32_t idx) { - uint64_t size = tree->bt_elem_size; - uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - - sizeof (zfs_btree_hdr_t)) / size, 2); + size_t size = tree->bt_elem_size; + uint32_t capacity = tree->bt_leaf_cap; /* * If the leaf isn't full, shift the elements after idx and insert @@ -731,32 +802,36 @@ zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, * In either case, we're left with one extra element. The leftover * element will become the new dividing element between the two nodes. */ - uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) - - 1, 2); - uint64_t keep_count = capacity - move_count - 1; - ASSERT3U(capacity - move_count, >=, 2); + uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1; + uint32_t keep_count = capacity - move_count - 1; + ASSERT3U(keep_count, >=, 1); + /* If we insert on left. move one more to keep leaves balanced. */ + if (idx < keep_count) { + keep_count--; + move_count++; + } tree->bt_num_nodes++; zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP); zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr; new_hdr->bth_parent = leaf->btl_hdr.bth_parent; - new_hdr->bth_core = B_FALSE; + new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) + + (idx >= keep_count && idx <= keep_count + move_count / 2); new_hdr->bth_count = move_count; zfs_btree_poison_node(tree, new_hdr); - leaf->btl_hdr.bth_count = keep_count; - if (tree->bt_bulk != NULL && leaf == tree->bt_bulk) tree->bt_bulk = new_leaf; /* Copy the back part to the new leaf. */ - bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, - 0); + bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0); /* We store the new separator in a buffer we control for simplicity. */ uint8_t *buf = kmem_alloc(size, KM_SLEEP); - bmov(leaf->btl_elems + (keep_count * size), buf, size); - zfs_btree_poison_node(tree, &leaf->btl_hdr); + bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size, + buf, size); + + bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count); if (idx < keep_count) { /* Insert into the existing leaf. */ @@ -767,13 +842,11 @@ zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, 1, value); } else { /* - * Shift the elements in the new leaf to make room for the - * separator, and use the new value as the new separator. + * Insert planned separator into the new leaf, and use + * the new value as the new separator. */ - bt_shift_leaf_right(tree, new_leaf, 0, move_count); - bmov(buf, new_leaf->btl_elems, size); - bmov(value, buf, size); - new_hdr->bth_count++; + zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf); + bcpy(value, buf, size); } /* @@ -785,14 +858,15 @@ zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, kmem_free(buf, size); } -static uint64_t +static uint32_t zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { void *buf; - if (hdr->bth_core) { + if (zfs_btree_is_core(hdr)) { buf = ((zfs_btree_core_t *)hdr)->btc_elems; } else { - buf = ((zfs_btree_leaf_t *)hdr)->btl_elems; + buf = ((zfs_btree_leaf_t *)hdr)->btl_elems + + hdr->bth_first * tree->bt_elem_size; } zfs_btree_index_t idx; zfs_btree_core_t *parent = hdr->bth_parent; @@ -821,9 +895,8 @@ zfs_btree_bulk_finish(zfs_btree_t *tree) zfs_btree_leaf_t *leaf = tree->bt_bulk; zfs_btree_hdr_t *hdr = &leaf->btl_hdr; zfs_btree_core_t *parent = hdr->bth_parent; - uint64_t size = tree->bt_elem_size; - uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - - sizeof (zfs_btree_hdr_t)) / size, 2); + size_t size = tree->bt_elem_size; + uint32_t capacity = tree->bt_leaf_cap; /* * The invariant doesn't apply to the root node, if that's the only @@ -848,56 +921,54 @@ zfs_btree_bulk_finish(zfs_btree_t *tree) .bti_offset = 0 }; VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); - ASSERT(idx.bti_node->bth_core); + ASSERT(zfs_btree_is_core(idx.bti_node)); zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node; - uint64_t common_idx = idx.bti_offset; + uint32_t common_idx = idx.bti_offset; VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); - ASSERT(!idx.bti_node->bth_core); + ASSERT(!zfs_btree_is_core(idx.bti_node)); zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node; zfs_btree_hdr_t *l_hdr = idx.bti_node; - uint64_t move_count = (capacity / 2) - hdr->bth_count; + uint32_t move_count = (capacity / 2) - hdr->bth_count; ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=, capacity / 2); if (zfs_btree_verify_intensity >= 5) { - for (int i = 0; i < move_count; i++) { + for (uint32_t i = 0; i < move_count; i++) { zfs_btree_verify_poison_at(tree, hdr, leaf->btl_hdr.bth_count + i); } } /* First, shift elements in leaf back. */ - bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count, - BSD_RIGHT); + bt_grow_leaf(tree, leaf, 0, move_count); /* Next, move the separator from the common ancestor to leaf. */ - uint8_t *separator = common->btc_elems + (common_idx * size); - uint8_t *out = leaf->btl_elems + ((move_count - 1) * size); - bmov(separator, out, size); - move_count--; + uint8_t *separator = common->btc_elems + common_idx * size; + uint8_t *out = leaf->btl_elems + + (hdr->bth_first + move_count - 1) * size; + bcpy(separator, out, size); /* * Now we move elements from the tail of the left neighbor to * fill the remaining spots in leaf. */ bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count - - move_count, move_count, leaf, 0); + (move_count - 1), move_count - 1, leaf, 0); /* * Finally, move the new last element in the left neighbor to * the separator. */ - bmov(l_neighbor->btl_elems + (l_hdr->bth_count - - move_count - 1) * size, separator, size); + bcpy(l_neighbor->btl_elems + (l_hdr->bth_first + + l_hdr->bth_count - move_count) * size, separator, size); /* Adjust the node's counts, and we're done. */ - l_hdr->bth_count -= move_count + 1; - hdr->bth_count += move_count + 1; + bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count, + move_count); ASSERT3U(l_hdr->bth_count, >=, capacity / 2); ASSERT3U(hdr->bth_count, >=, capacity / 2); - zfs_btree_poison_node(tree, l_hdr); } /* @@ -921,16 +992,16 @@ zfs_btree_bulk_finish(zfs_btree_t *tree) * splitting is 2, we never need to worry about not having a * left sibling (a sibling is a neighbor with the same parent). */ - uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); + uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); ASSERT3U(parent_idx, >, 0); zfs_btree_core_t *l_neighbor = (zfs_btree_core_t *)parent->btc_children[parent_idx - 1]; - uint64_t move_count = (capacity / 2) - hdr->bth_count; + uint32_t move_count = (capacity / 2) - hdr->bth_count; ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=, capacity / 2); if (zfs_btree_verify_intensity >= 5) { - for (int i = 0; i < move_count; i++) { + for (uint32_t i = 0; i < move_count; i++) { zfs_btree_verify_poison_at(tree, hdr, hdr->bth_count + i); } @@ -943,14 +1014,14 @@ zfs_btree_bulk_finish(zfs_btree_t *tree) uint8_t *separator = parent->btc_elems + ((parent_idx - 1) * size); uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size); - bmov(separator, e_out, size); + bcpy(separator, e_out, size); /* * Now, move elements and children from the left node to the * right. We move one more child than elements. */ move_count--; - uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count; + uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count; bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0, BSS_TRAPEZOID); @@ -959,7 +1030,7 @@ zfs_btree_bulk_finish(zfs_btree_t *tree) * separator's position. */ move_idx--; - bmov(l_neighbor->btc_elems + move_idx * size, separator, size); + bcpy(l_neighbor->btc_elems + move_idx * size, separator, size); l_neighbor->btc_hdr.bth_count -= move_count + 1; hdr->bth_count += move_count + 1; @@ -969,11 +1040,12 @@ zfs_btree_bulk_finish(zfs_btree_t *tree) zfs_btree_poison_node(tree, &l_neighbor->btc_hdr); - for (int i = 0; i <= hdr->bth_count; i++) + for (uint32_t i = 0; i <= hdr->bth_count; i++) cur->btc_children[i]->bth_parent = cur; } tree->bt_bulk = NULL; + zfs_btree_verify(tree); } /* @@ -1013,13 +1085,13 @@ zfs_btree_add_idx(zfs_btree_t *tree, const void *value, zfs_btree_hdr_t *hdr = &leaf->btl_hdr; hdr->bth_parent = NULL; - hdr->bth_core = B_FALSE; + hdr->bth_first = 0; hdr->bth_count = 0; zfs_btree_poison_node(tree, hdr); zfs_btree_insert_into_leaf(tree, leaf, value, 0); tree->bt_bulk = leaf; - } else if (!where->bti_node->bth_core) { + } else if (!zfs_btree_is_core(where->bti_node)) { /* * If we're inserting into a leaf, go directly to the helper * function. @@ -1035,28 +1107,28 @@ zfs_btree_add_idx(zfs_btree_t *tree, const void *value, * value in the node at that spot and then insert the old * separator into the first slot in the subtree to the right. */ - ASSERT(where->bti_node->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node; /* * We can ignore bti_before, because either way the value * should end up in bti_offset. */ - uint64_t off = where->bti_offset; + uint32_t off = where->bti_offset; zfs_btree_hdr_t *subtree = node->btc_children[off + 1]; size_t size = tree->bt_elem_size; uint8_t *buf = kmem_alloc(size, KM_SLEEP); - bmov(node->btc_elems + off * size, buf, size); - bmov(value, node->btc_elems + off * size, size); + bcpy(node->btc_elems + off * size, buf, size); + bcpy(value, node->btc_elems + off * size, size); /* * Find the first slot in the subtree to the right, insert * there. */ zfs_btree_index_t new_idx; - VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL); + VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=, + NULL); ASSERT0(new_idx.bti_offset); - ASSERT(!new_idx.bti_node->bth_core); + ASSERT(!zfs_btree_is_core(new_idx.bti_node)); zfs_btree_insert_into_leaf(tree, (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0); kmem_free(buf, size); @@ -1075,7 +1147,7 @@ zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where) ASSERT0(tree->bt_num_elems); return (NULL); } - return (zfs_btree_first_helper(tree->bt_root, where)); + return (zfs_btree_first_helper(tree, tree->bt_root, where)); } /* @@ -1088,7 +1160,7 @@ zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr, { zfs_btree_hdr_t *node; - for (node = hdr; node->bth_core; node = + for (node = hdr; zfs_btree_is_core(node); node = ((zfs_btree_core_t *)node)->btc_children[node->bth_count]) ; @@ -1098,7 +1170,8 @@ zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr, where->bti_offset = node->bth_count - 1; where->bti_before = B_FALSE; } - return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size); + return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) * + btree->bt_elem_size); } /* @@ -1131,8 +1204,8 @@ zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, return (NULL); } - uint64_t offset = idx->bti_offset; - if (!idx->bti_node->bth_core) { + uint32_t offset = idx->bti_offset; + if (!zfs_btree_is_core(idx->bti_node)) { /* * When finding the next element of an element in a leaf, * there are two cases. If the element isn't the last one in @@ -1143,20 +1216,21 @@ zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, * separator after our ancestor in its parent. */ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; - uint64_t new_off = offset + (idx->bti_before ? 0 : 1); + uint32_t new_off = offset + (idx->bti_before ? 0 : 1); if (leaf->btl_hdr.bth_count > new_off) { out_idx->bti_node = &leaf->btl_hdr; out_idx->bti_offset = new_off; out_idx->bti_before = B_FALSE; - return (leaf->btl_elems + new_off * tree->bt_elem_size); + return (leaf->btl_elems + (leaf->btl_hdr.bth_first + + new_off) * tree->bt_elem_size); } zfs_btree_hdr_t *prev = &leaf->btl_hdr; for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; node != NULL; node = node->btc_hdr.bth_parent) { zfs_btree_hdr_t *hdr = &node->btc_hdr; - ASSERT(hdr->bth_core); - uint64_t i = zfs_btree_find_parent_idx(tree, prev); + ASSERT(zfs_btree_is_core(hdr)); + uint32_t i = zfs_btree_find_parent_idx(tree, prev); if (done_func != NULL) done_func(tree, prev); if (i == hdr->bth_count) { @@ -1178,7 +1252,7 @@ zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, } /* If we were before an element in a core node, return that element. */ - ASSERT(idx->bti_node->bth_core); + ASSERT(zfs_btree_is_core(idx->bti_node)); zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; if (idx->bti_before) { out_idx->bti_before = B_FALSE; @@ -1190,7 +1264,7 @@ zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, * the subtree just to the right of the separator. */ zfs_btree_hdr_t *child = node->btc_children[offset + 1]; - return (zfs_btree_first_helper(child, out_idx)); + return (zfs_btree_first_helper(tree, child, out_idx)); } /* @@ -1217,8 +1291,8 @@ zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, return (NULL); } - uint64_t offset = idx->bti_offset; - if (!idx->bti_node->bth_core) { + uint32_t offset = idx->bti_offset; + if (!zfs_btree_is_core(idx->bti_node)) { /* * When finding the previous element of an element in a leaf, * there are two cases. If the element isn't the first one in @@ -1233,15 +1307,15 @@ zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, out_idx->bti_node = &leaf->btl_hdr; out_idx->bti_offset = offset - 1; out_idx->bti_before = B_FALSE; - return (leaf->btl_elems + (offset - 1) * - tree->bt_elem_size); + return (leaf->btl_elems + (leaf->btl_hdr.bth_first + + offset - 1) * tree->bt_elem_size); } zfs_btree_hdr_t *prev = &leaf->btl_hdr; for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; node != NULL; node = node->btc_hdr.bth_parent) { zfs_btree_hdr_t *hdr = &node->btc_hdr; - ASSERT(hdr->bth_core); - uint64_t i = zfs_btree_find_parent_idx(tree, prev); + ASSERT(zfs_btree_is_core(hdr)); + uint32_t i = zfs_btree_find_parent_idx(tree, prev); if (i == 0) { prev = hdr; continue; @@ -1262,7 +1336,7 @@ zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, * The previous element from one in a core node is the last element in * the subtree just to the left of the separator. */ - ASSERT(idx->bti_node->bth_core); + ASSERT(zfs_btree_is_core(idx->bti_node)); zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; zfs_btree_hdr_t *child = node->btc_children[offset]; return (zfs_btree_last_helper(tree, child, out_idx)); @@ -1279,13 +1353,14 @@ void * zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx) { ASSERT(!idx->bti_before); - if (!idx->bti_node->bth_core) { + size_t size = tree->bt_elem_size; + if (!zfs_btree_is_core(idx->bti_node)) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; - return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size); + return (leaf->btl_elems + (leaf->btl_hdr.bth_first + + idx->bti_offset) * size); } - ASSERT(idx->bti_node->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; - return (node->btc_elems + idx->bti_offset * tree->bt_elem_size); + return (node->btc_elems + idx->bti_offset * size); } /* Add the given value to the tree. Must not already be in the tree. */ @@ -1302,7 +1377,7 @@ static void zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node) { tree->bt_num_nodes--; - if (!node->bth_core) { + if (!zfs_btree_is_core(node)) { kmem_cache_free(zfs_btree_leaf_cache, node); } else { kmem_free(node, sizeof (zfs_btree_core_t) + @@ -1320,7 +1395,7 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, zfs_btree_hdr_t *rm_hdr) { size_t size = tree->bt_elem_size; - uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1; + uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1; zfs_btree_hdr_t *hdr = &node->btc_hdr; /* * If the node is the root node and rm_hdr is one of two children, @@ -1337,7 +1412,7 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, return; } - uint64_t idx; + uint32_t idx; for (idx = 0; idx <= hdr->bth_count; idx++) { if (node->btc_children[idx] == rm_hdr) break; @@ -1357,7 +1432,7 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, BSS_PARALLELOGRAM); hdr->bth_count--; - zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); + zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1); return; } @@ -1378,13 +1453,13 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, * implementing in the future for completeness' sake. */ zfs_btree_core_t *parent = hdr->bth_parent; - uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); + uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : parent->btc_children[parent_idx - 1]); if (l_hdr != NULL && l_hdr->bth_count > min_count) { /* We can take a node from the left neighbor. */ - ASSERT(l_hdr->bth_core); + ASSERT(zfs_btree_is_core(l_hdr)); zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr; /* @@ -1399,20 +1474,19 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, */ uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; - bmov(separator, node->btc_elems, size); + bcpy(separator, node->btc_elems, size); /* Move the last child of neighbor to our first child slot. */ - zfs_btree_hdr_t **take_child = neighbor->btc_children + - l_hdr->bth_count; - bmov(take_child, node->btc_children, sizeof (*take_child)); + node->btc_children[0] = + neighbor->btc_children[l_hdr->bth_count]; node->btc_children[0]->bth_parent = node; /* Move the last element of neighbor to the separator spot. */ uint8_t *take_elem = neighbor->btc_elems + (l_hdr->bth_count - 1) * size; - bmov(take_elem, separator, size); + bcpy(take_elem, separator, size); l_hdr->bth_count--; - zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); + zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1); return; } @@ -1420,7 +1494,7 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, NULL : parent->btc_children[parent_idx + 1]); if (r_hdr != NULL && r_hdr->bth_count > min_count) { /* We can take a node from the right neighbor. */ - ASSERT(r_hdr->bth_core); + ASSERT(zfs_btree_is_core(r_hdr)); zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr; /* @@ -1435,21 +1509,19 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, * element spot in node. */ uint8_t *separator = parent->btc_elems + parent_idx * size; - bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size, + bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size, size); /* * Move the first child of neighbor to the last child spot in * node. */ - zfs_btree_hdr_t **take_child = neighbor->btc_children; - bmov(take_child, node->btc_children + hdr->bth_count, - sizeof (*take_child)); + node->btc_children[hdr->bth_count] = neighbor->btc_children[0]; node->btc_children[hdr->bth_count]->bth_parent = node; /* Move the first element of neighbor to the separator spot. */ uint8_t *take_elem = neighbor->btc_elems; - bmov(take_elem, separator, size); + bcpy(take_elem, separator, size); r_hdr->bth_count--; /* @@ -1458,7 +1530,7 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, */ bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count, BSS_TRAPEZOID); - zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); + zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1); return; } @@ -1473,7 +1545,7 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, * merging. */ zfs_btree_hdr_t *new_rm_hdr, *keep_hdr; - uint64_t new_idx = idx; + uint32_t new_idx = idx; if (l_hdr != NULL) { keep_hdr = l_hdr; new_rm_hdr = hdr; @@ -1485,14 +1557,14 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, parent_idx++; } - ASSERT(keep_hdr->bth_core); - ASSERT(new_rm_hdr->bth_core); + ASSERT(zfs_btree_is_core(keep_hdr)); + ASSERT(zfs_btree_is_core(new_rm_hdr)); zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr; zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr; if (zfs_btree_verify_intensity >= 5) { - for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) { + for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) { zfs_btree_verify_poison_at(tree, keep_hdr, keep_hdr->bth_count + i); } @@ -1502,14 +1574,14 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size; uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; - bmov(separator, e_out, size); + bcpy(separator, e_out, size); keep_hdr->bth_count++; /* Move all our elements and children into the left node. */ bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep, keep_hdr->bth_count, BSS_TRAPEZOID); - uint64_t old_count = keep_hdr->bth_count; + uint32_t old_count = keep_hdr->bth_count; /* Update bookkeeping */ keep_hdr->bth_count += new_rm_hdr->bth_count; @@ -1527,13 +1599,13 @@ zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, /* Reparent all our children to point to the left node. */ zfs_btree_hdr_t **new_start = keep->btc_children + old_count - 1; - for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) + for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) new_start[i]->bth_parent = keep; - for (int i = 0; i <= keep_hdr->bth_count; i++) { + for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) { ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep); ASSERT3P(keep->btc_children[i], !=, rm_hdr); } - zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); + zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1); new_rm_hdr->bth_count = 0; zfs_btree_node_destroy(tree, new_rm_hdr); @@ -1546,9 +1618,7 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) { size_t size = tree->bt_elem_size; zfs_btree_hdr_t *hdr = where->bti_node; - uint64_t idx = where->bti_offset; - uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - - sizeof (zfs_btree_hdr_t)) / size, 2); + uint32_t idx = where->bti_offset; ASSERT(!where->bti_before); if (tree->bt_bulk != NULL) { @@ -1560,7 +1630,7 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) */ uint8_t *value = zfs_btree_get(tree, where); uint8_t *tmp = kmem_alloc(size, KM_SLEEP); - bmov(value, tmp, size); + bcpy(value, tmp, size); zfs_btree_bulk_finish(tree); VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL); kmem_free(tmp, size); @@ -1575,14 +1645,14 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) * makes the rebalance logic not need to be recursive both upwards and * downwards. */ - if (hdr->bth_core) { + if (zfs_btree_is_core(hdr)) { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; zfs_btree_hdr_t *left_subtree = node->btc_children[idx]; void *new_value = zfs_btree_last_helper(tree, left_subtree, where); ASSERT3P(new_value, !=, NULL); - bmov(new_value, node->btc_elems + idx * size, size); + bcpy(new_value, node->btc_elems + idx * size, size); hdr = where->bti_node; idx = where->bti_offset; @@ -1594,19 +1664,18 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) * elements after the idx to the left. After that, we rebalance if * needed. */ - ASSERT(!hdr->bth_core); + ASSERT(!zfs_btree_is_core(hdr)); zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; ASSERT3U(hdr->bth_count, >, 0); - uint64_t min_count = (capacity / 2) - 1; + uint32_t min_count = (tree->bt_leaf_cap / 2) - 1; /* * If we're over the minimum size or this is the root, just overwrite * the value and return. */ if (hdr->bth_count > min_count || hdr->bth_parent == NULL) { - hdr->bth_count--; - bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx); + bt_shrink_leaf(tree, leaf, idx, 1); if (hdr->bth_parent == NULL) { ASSERT0(tree->bt_height); if (hdr->bth_count == 0) { @@ -1615,8 +1684,6 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) zfs_btree_node_destroy(tree, &leaf->btl_hdr); } } - if (tree->bt_root != NULL) - zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); zfs_btree_verify(tree); return; } @@ -1636,33 +1703,33 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) * worth implementing in the future for completeness' sake. */ zfs_btree_core_t *parent = hdr->bth_parent; - uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); + uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : parent->btc_children[parent_idx - 1]); if (l_hdr != NULL && l_hdr->bth_count > min_count) { /* We can take a node from the left neighbor. */ - ASSERT(!l_hdr->bth_core); + ASSERT(!zfs_btree_is_core(l_hdr)); + zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr; /* * Move our elements back by one spot to make room for the * stolen element and overwrite the element being removed. */ - bt_shift_leaf_right(tree, leaf, 0, idx); + bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT); + + /* Move the separator to our first spot. */ uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; - uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems + - (l_hdr->bth_count - 1) * size; - /* Move the separator to our first spot. */ - bmov(separator, leaf->btl_elems, size); + bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size); /* Move our neighbor's last element to the separator. */ - bmov(take_elem, separator, size); - - /* Update the bookkeeping. */ - l_hdr->bth_count--; - zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); + uint8_t *take_elem = neighbor->btl_elems + + (l_hdr->bth_first + l_hdr->bth_count - 1) * size; + bcpy(take_elem, separator, size); + /* Delete our neighbor's last element. */ + bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1); zfs_btree_verify(tree); return; } @@ -1671,7 +1738,7 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) NULL : parent->btc_children[parent_idx + 1]); if (r_hdr != NULL && r_hdr->bth_count > min_count) { /* We can take a node from the right neighbor. */ - ASSERT(!r_hdr->bth_core); + ASSERT(!zfs_btree_is_core(r_hdr)); zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr; /* @@ -1679,94 +1746,79 @@ zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) * by one spot to make room for the stolen element and * overwrite the element being removed. */ - bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx - - 1); + bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1, + 1, BSD_LEFT); - uint8_t *separator = parent->btc_elems + parent_idx * size; - uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems; /* Move the separator between us to our last spot. */ - bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size, - size); + uint8_t *separator = parent->btc_elems + parent_idx * size; + bcpy(separator, leaf->btl_elems + (hdr->bth_first + + hdr->bth_count - 1) * size, size); /* Move our neighbor's first element to the separator. */ - bmov(take_elem, separator, size); - - /* Update the bookkeeping. */ - r_hdr->bth_count--; + uint8_t *take_elem = neighbor->btl_elems + + r_hdr->bth_first * size; + bcpy(take_elem, separator, size); - /* - * Move our neighbors elements forwards to overwrite the - * stolen element. - */ - bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count); - zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); + /* Delete our neighbor's first element. */ + bt_shrink_leaf(tree, neighbor, 0, 1); zfs_btree_verify(tree); return; } /* * In this case, neither of our neighbors can spare an element, so we - * need to merge with one of them. We prefer the left one, - * arbitrarily. Move the separator into the leftmost merging node + * need to merge with one of them. We prefer the left one, arbitrarily. + * After remove we move the separator into the leftmost merging node * (which may be us or the left neighbor), and then move the right * merging node's elements. Once that's done, we go back and delete * the element we're removing. Finally, go into the parent and delete * the right merging node and the separator. This may cause further * merging. */ - zfs_btree_hdr_t *rm_hdr, *keep_hdr; - uint64_t new_idx = idx; + zfs_btree_hdr_t *rm_hdr, *k_hdr; if (l_hdr != NULL) { - keep_hdr = l_hdr; + k_hdr = l_hdr; rm_hdr = hdr; - new_idx += keep_hdr->bth_count + 1; // 449 } else { ASSERT3P(r_hdr, !=, NULL); - keep_hdr = hdr; + k_hdr = hdr; rm_hdr = r_hdr; parent_idx++; } - - ASSERT(!keep_hdr->bth_core); - ASSERT(!rm_hdr->bth_core); - ASSERT3U(keep_hdr->bth_count, ==, min_count); + ASSERT(!zfs_btree_is_core(k_hdr)); + ASSERT(!zfs_btree_is_core(rm_hdr)); + ASSERT3U(k_hdr->bth_count, ==, min_count); ASSERT3U(rm_hdr->bth_count, ==, min_count); - - zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr; + zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr; zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr; if (zfs_btree_verify_intensity >= 5) { - for (int i = 0; i < rm_hdr->bth_count + 1; i++) { - zfs_btree_verify_poison_at(tree, keep_hdr, - keep_hdr->bth_count + i); + for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) { + zfs_btree_verify_poison_at(tree, k_hdr, + k_hdr->bth_count + i); } } + /* - * Move the separator into the first open spot in the left - * neighbor. + * Remove the value from the node. It will go below the minimum, + * but we'll fix it in no time. */ - uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size; - uint8_t *separator = parent->btc_elems + (parent_idx - 1) * - size; - bmov(separator, out, size); - keep_hdr->bth_count++; + bt_shrink_leaf(tree, leaf, idx, 1); - /* Move our elements to the left neighbor. */ - bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, - keep_hdr->bth_count); - - /* Update the bookkeeping. */ - keep_hdr->bth_count += rm_hdr->bth_count; - ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1); + /* Prepare space for elements to be moved from the right. */ + uint32_t k_count = k_hdr->bth_count; + bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count); + ASSERT3U(k_hdr->bth_count, ==, min_count * 2); - /* Remove the value from the node */ - keep_hdr->bth_count--; - bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count - - new_idx); - zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); + /* Move the separator into the first open spot. */ + uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size; + uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; + bcpy(separator, out, size); - rm_hdr->bth_count = 0; + /* Move our elements to the left neighbor. */ + bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1); zfs_btree_node_destroy(tree, rm_hdr); + /* Remove the emptied node from the parent. */ zfs_btree_remove_from_node(tree, parent, rm_hdr); zfs_btree_verify(tree); @@ -1831,11 +1883,10 @@ zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie) static void zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { - if (hdr->bth_core) { + if (zfs_btree_is_core(hdr)) { zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr; - for (int i = 0; i <= hdr->bth_count; i++) { + for (uint32_t i = 0; i <= hdr->bth_count; i++) zfs_btree_clear_helper(tree, btc->btc_children[i]); - } } zfs_btree_node_destroy(tree, hdr); @@ -1868,11 +1919,11 @@ zfs_btree_destroy(zfs_btree_t *tree) static void zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { - if (!hdr->bth_core) + if (!zfs_btree_is_core(hdr)) return; zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; - for (int i = 0; i <= hdr->bth_count; i++) { + for (uint32_t i = 0; i <= hdr->bth_count; i++) { VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr); zfs_btree_verify_pointers_helper(tree, node->btc_children[i]); } @@ -1897,12 +1948,10 @@ zfs_btree_verify_pointers(zfs_btree_t *tree) static uint64_t zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { - if (!hdr->bth_core) { + if (!zfs_btree_is_core(hdr)) { if (tree->bt_root != hdr && tree->bt_bulk && hdr != &tree->bt_bulk->btl_hdr) { - uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - - sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2); - VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1); + VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1); } return (hdr->bth_count); @@ -1912,7 +1961,7 @@ zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) uint64_t ret = hdr->bth_count; if (tree->bt_root != hdr && tree->bt_bulk == NULL) VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1); - for (int i = 0; i <= hdr->bth_count; i++) { + for (uint32_t i = 0; i <= hdr->bth_count; i++) { ret += zfs_btree_verify_counts_helper(tree, node->btc_children[i]); } @@ -1944,15 +1993,14 @@ static uint64_t zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, int64_t height) { - if (!hdr->bth_core) { + if (!zfs_btree_is_core(hdr)) { VERIFY0(height); return (1); } - VERIFY(hdr->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; uint64_t ret = 1; - for (int i = 0; i <= hdr->bth_count; i++) { + for (uint32_t i = 0; i <= hdr->bth_count; i++) { ret += zfs_btree_verify_height_helper(tree, node->btc_children[i], height - 1); } @@ -1984,24 +2032,26 @@ static void zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { size_t size = tree->bt_elem_size; - if (!hdr->bth_core) { + if (!zfs_btree_is_core(hdr)) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; - for (int i = 1; i < hdr->bth_count; i++) { - VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) * - size, leaf->btl_elems + i * size), ==, -1); + for (uint32_t i = 1; i < hdr->bth_count; i++) { + VERIFY3S(tree->bt_compar(leaf->btl_elems + + (hdr->bth_first + i - 1) * size, + leaf->btl_elems + + (hdr->bth_first + i) * size), ==, -1); } return; } zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; - for (int i = 1; i < hdr->bth_count; i++) { + for (uint32_t i = 1; i < hdr->bth_count; i++) { VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size, node->btc_elems + i * size), ==, -1); } - for (int i = 0; i < hdr->bth_count; i++) { + for (uint32_t i = 0; i < hdr->bth_count; i++) { uint8_t *left_child_last = NULL; zfs_btree_hdr_t *left_child_hdr = node->btc_children[i]; - if (left_child_hdr->bth_core) { + if (zfs_btree_is_core(left_child_hdr)) { zfs_btree_core_t *left_child = (zfs_btree_core_t *)left_child_hdr; left_child_last = left_child->btc_elems + @@ -2010,40 +2060,39 @@ zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) zfs_btree_leaf_t *left_child = (zfs_btree_leaf_t *)left_child_hdr; left_child_last = left_child->btl_elems + - (left_child_hdr->bth_count - 1) * size; + (left_child_hdr->bth_first + + left_child_hdr->bth_count - 1) * size; } - if (tree->bt_compar(node->btc_elems + i * size, - left_child_last) != 1) { + int comp = tree->bt_compar(node->btc_elems + i * size, + left_child_last); + if (comp <= 0) { panic("btree: compar returned %d (expected 1) at " - "%px %d: compar(%px, %px)", tree->bt_compar( - node->btc_elems + i * size, left_child_last), - (void *)node, i, (void *)(node->btc_elems + i * - size), (void *)left_child_last); + "%px %d: compar(%px, %px)", comp, node, i, + node->btc_elems + i * size, left_child_last); } uint8_t *right_child_first = NULL; zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1]; - if (right_child_hdr->bth_core) { + if (zfs_btree_is_core(right_child_hdr)) { zfs_btree_core_t *right_child = (zfs_btree_core_t *)right_child_hdr; right_child_first = right_child->btc_elems; } else { zfs_btree_leaf_t *right_child = (zfs_btree_leaf_t *)right_child_hdr; - right_child_first = right_child->btl_elems; + right_child_first = right_child->btl_elems + + right_child_hdr->bth_first * size; } - if (tree->bt_compar(node->btc_elems + i * size, - right_child_first) != -1) { + comp = tree->bt_compar(node->btc_elems + i * size, + right_child_first); + if (comp >= 0) { panic("btree: compar returned %d (expected -1) at " - "%px %d: compar(%px, %px)", tree->bt_compar( - node->btc_elems + i * size, right_child_first), - (void *)node, i, (void *)(node->btc_elems + i * - size), (void *)right_child_first); + "%px %d: compar(%px, %px)", comp, node, i, + node->btc_elems + i * size, right_child_first); } } - for (int i = 0; i <= hdr->bth_count; i++) { + for (uint32_t i = 0; i <= hdr->bth_count; i++) zfs_btree_verify_order_helper(tree, node->btc_children[i]); - } } /* Check that all elements in the tree are in sorted order. */ @@ -2064,27 +2113,26 @@ static void zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { size_t size = tree->bt_elem_size; - if (!hdr->bth_core) { + if (!zfs_btree_is_core(hdr)) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; - uint8_t val = 0x0f; - for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE - - sizeof (zfs_btree_hdr_t); i++) { - VERIFY3U(leaf->btl_elems[i], ==, val); - } + for (size_t i = 0; i < hdr->bth_first * size; i++) + VERIFY3U(leaf->btl_elems[i], ==, 0x0f); + for (size_t i = (hdr->bth_first + hdr->bth_count) * size; + i < BTREE_LEAF_ESIZE; i++) + VERIFY3U(leaf->btl_elems[i], ==, 0x0f); } else { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; - uint8_t val = 0x0f; - for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size; - i++) { - VERIFY3U(node->btc_elems[i], ==, val); - } + for (size_t i = hdr->bth_count * size; + i < BTREE_CORE_ELEMS * size; i++) + VERIFY3U(node->btc_elems[i], ==, 0x0f); - for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { + for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; + i++) { VERIFY3P(node->btc_children[i], ==, (zfs_btree_hdr_t *)BTREE_POISON); } - for (int i = 0; i <= hdr->bth_count; i++) { + for (uint32_t i = 0; i <= hdr->bth_count; i++) { zfs_btree_verify_poison_helper(tree, node->btc_children[i]); } |