1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "sparse_array.h"
#include "os_memory.h"
/* Aligning our allocations to 64 has two advantages:
*
* 1. On x86 platforms, it means that they are cache-line aligned so we
* reduce the likelihood that one of our allocations shares a cache line
* with some other allocation.
*
* 2. It lets us use the bottom 6 bits of the pointer to store the tree level
* of the node so we can avoid some pointer indirections.
*/
#define NODE_ALLOC_ALIGN 64
void
util_sparse_array_init(struct util_sparse_array *arr,
size_t elem_size, size_t node_size)
{
memset(arr, 0, sizeof(*arr));
arr->elem_size = elem_size;
arr->node_size_log2 = util_logbase2_64(node_size);
assert(node_size >= 2 && node_size == (1ull << arr->node_size_log2));
}
#define NODE_PTR_MASK (~((uintptr_t)NODE_ALLOC_ALIGN - 1))
#define NODE_LEVEL_MASK ((uintptr_t)NODE_ALLOC_ALIGN - 1)
#define NULL_NODE 0
static inline uintptr_t
_util_sparse_array_node(void *data, unsigned level)
{
assert(data != NULL);
assert(((uintptr_t)data & NODE_LEVEL_MASK) == 0);
assert((level & NODE_PTR_MASK) == 0);
return (uintptr_t)data | level;
}
static inline void *
_util_sparse_array_node_data(uintptr_t handle)
{
return (void *)(handle & NODE_PTR_MASK);
}
static inline unsigned
_util_sparse_array_node_level(uintptr_t handle)
{
return handle & NODE_LEVEL_MASK;
}
static inline void
_util_sparse_array_node_finish(struct util_sparse_array *arr,
uintptr_t node)
{
if (_util_sparse_array_node_level(node) > 0) {
uintptr_t *children = _util_sparse_array_node_data(node);
size_t node_size = 1ull << arr->node_size_log2;
for (size_t i = 0; i < node_size; i++) {
if (children[i])
_util_sparse_array_node_finish(arr, children[i]);
}
}
os_free_aligned(_util_sparse_array_node_data(node));
}
void
util_sparse_array_finish(struct util_sparse_array *arr)
{
if (arr->root)
_util_sparse_array_node_finish(arr, arr->root);
}
static inline uintptr_t
_util_sparse_array_node_alloc(struct util_sparse_array *arr,
unsigned level)
{
size_t size;
if (level == 0) {
size = arr->elem_size << arr->node_size_log2;
} else {
size = sizeof(uintptr_t) << arr->node_size_log2;
}
void *data = os_malloc_aligned(size, NODE_ALLOC_ALIGN);
memset(data, 0, size);
return _util_sparse_array_node(data, level);
}
static inline uintptr_t
_util_sparse_array_set_or_free_node(uintptr_t *node_ptr,
uintptr_t cmp_node,
uintptr_t node)
{
uintptr_t prev_node = p_atomic_cmpxchg(node_ptr, cmp_node, node);
if (prev_node != cmp_node) {
/* We lost the race. Free this one and return the one that was already
* allocated.
*/
os_free_aligned(_util_sparse_array_node_data(node));
return prev_node;
} else {
return node;
}
}
void *
util_sparse_array_get(struct util_sparse_array *arr, uint64_t idx)
{
const unsigned node_size_log2 = arr->node_size_log2;
uintptr_t root = p_atomic_read(&arr->root);
if (unlikely(!root)) {
unsigned root_level = 0;
uint64_t idx_iter = idx >> node_size_log2;
while (idx_iter) {
idx_iter >>= node_size_log2;
root_level++;
}
uintptr_t new_root = _util_sparse_array_node_alloc(arr, root_level);
root = _util_sparse_array_set_or_free_node(&arr->root,
NULL_NODE, new_root);
}
while (1) {
unsigned root_level = _util_sparse_array_node_level(root);
uint64_t root_idx = idx >> (root_level * node_size_log2);
if (likely(root_idx < (1ull << node_size_log2)))
break;
/* In this case, we have a root but its level is low enough that the
* requested index is out-of-bounds.
*/
uintptr_t new_root = _util_sparse_array_node_alloc(arr, root_level + 1);
uintptr_t *new_root_children = _util_sparse_array_node_data(new_root);
new_root_children[0] = root;
/* We only add one at a time instead of the whole tree because it's
* easier to ensure correctness of both the tree building and the
* clean-up path. Because we're only adding one node we never have to
* worry about trying to free multiple things without freeing the old
* things.
*/
root = _util_sparse_array_set_or_free_node(&arr->root, root, new_root);
}
void *node_data = _util_sparse_array_node_data(root);
unsigned node_level = _util_sparse_array_node_level(root);
while (node_level > 0) {
uint64_t child_idx = (idx >> (node_level * node_size_log2)) &
((1ull << node_size_log2) - 1);
uintptr_t *children = node_data;
uintptr_t child = p_atomic_read(&children[child_idx]);
if (unlikely(!child)) {
child = _util_sparse_array_node_alloc(arr, node_level - 1);
child = _util_sparse_array_set_or_free_node(&children[child_idx],
NULL_NODE, child);
}
node_data = _util_sparse_array_node_data(child);
node_level = _util_sparse_array_node_level(child);
}
uint64_t elem_idx = idx & ((1ull << node_size_log2) - 1);
return (void *)((char *)node_data + (elem_idx * arr->elem_size));
}
static void
validate_node_level(struct util_sparse_array *arr,
uintptr_t node, unsigned level)
{
assert(_util_sparse_array_node_level(node) == level);
if (_util_sparse_array_node_level(node) > 0) {
uintptr_t *children = _util_sparse_array_node_data(node);
size_t node_size = 1ull << arr->node_size_log2;
for (size_t i = 0; i < node_size; i++) {
if (children[i])
validate_node_level(arr, children[i], level - 1);
}
}
}
void
util_sparse_array_validate(struct util_sparse_array *arr)
{
uintptr_t root = p_atomic_read(&arr->root);
validate_node_level(arr, root, _util_sparse_array_node_level(root));
}
void
util_sparse_array_free_list_init(struct util_sparse_array_free_list *fl,
struct util_sparse_array *arr,
uint32_t sentinel,
uint32_t next_offset)
{
fl->head = sentinel;
fl->arr = arr;
fl->sentinel = sentinel;
fl->next_offset = next_offset;
}
static uint64_t
free_list_head(uint64_t old, uint32_t next)
{
return ((old & 0xffffffff00000000ull) + 0x100000000ull) | next;
}
void
util_sparse_array_free_list_push(struct util_sparse_array_free_list *fl,
uint32_t *items, unsigned num_items)
{
assert(num_items > 0);
assert(items[0] != fl->sentinel);
void *last_elem = util_sparse_array_get(fl->arr, items[0]);
uint32_t *last_next = (uint32_t *)((char *)last_elem + fl->next_offset);
for (unsigned i = 1; i < num_items; i++) {
p_atomic_set(last_next, items[i]);
assert(items[i] != fl->sentinel);
last_elem = util_sparse_array_get(fl->arr, items[i]);
last_next = (uint32_t *)((char *)last_elem + fl->next_offset);
}
uint64_t current_head, old_head;
old_head = p_atomic_read(&fl->head);
do {
current_head = old_head;
p_atomic_set(last_next, (uint32_t)current_head); /* Index is the bottom 32 bits */
uint64_t new_head = free_list_head(current_head, items[0]);
old_head = p_atomic_cmpxchg(&fl->head, current_head, new_head);
} while (old_head != current_head);
}
uint32_t
util_sparse_array_free_list_pop_idx(struct util_sparse_array_free_list *fl)
{
uint64_t current_head;
current_head = p_atomic_read(&fl->head);
while (1) {
if ((uint32_t)current_head == fl->sentinel)
return fl->sentinel;
uint32_t head_idx = current_head; /* Index is the bottom 32 bits */
void *head_elem = util_sparse_array_get(fl->arr, head_idx);
uint32_t *head_next = (uint32_t *)((char *)head_elem + fl->next_offset);
uint64_t new_head = free_list_head(current_head, p_atomic_read(head_next));
uint64_t old_head = p_atomic_cmpxchg(&fl->head, current_head, new_head);
if (old_head == current_head)
return head_idx;
current_head = old_head;
}
}
void *
util_sparse_array_free_list_pop_elem(struct util_sparse_array_free_list *fl)
{
uint64_t current_head;
current_head = p_atomic_read(&fl->head);
while (1) {
if ((uint32_t)current_head == fl->sentinel)
return NULL;
uint32_t head_idx = current_head; /* Index is the bottom 32 bits */
void *head_elem = util_sparse_array_get(fl->arr, head_idx);
uint32_t *head_next = (uint32_t *)((char *)head_elem + fl->next_offset);
uint64_t new_head = free_list_head(current_head, p_atomic_read(head_next));
uint64_t old_head = p_atomic_cmpxchg(&fl->head, current_head, new_head);
if (old_head == current_head)
return head_elem;
current_head = old_head;
}
}
|