1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
/*
* Copyright (C) 2020 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors (Collabora):
* Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
*/
/**
* Implements framebuffer format conversions in software for Midgard/Bifrost
* blend shaders. This pass is designed for a single render target; Midgard
* duplicates blend shaders for MRT to simplify everything. A particular
* framebuffer format may be categorized as 1) typed load available, 2) typed
* unpack available, or 3) software unpack only, and likewise for stores. The
* first two types are handled in the compiler backend directly, so this module
* is responsible for identifying type 3 formats (hardware dependent) and
* inserting appropriate ALU code to perform the conversion from the packed
* type to a designated unpacked type, and vice versa.
*
* The unpacked type depends on the format:
*
* - For 32-bit float formats, 32-bit floats.
* - For other floats, 16-bit floats.
* - For 32-bit ints, 32-bit ints.
* - For 8-bit ints, 8-bit ints.
* - For other ints, 16-bit ints.
*
* The rationale is to optimize blending and logic op instructions by using the
* smallest precision necessary to store the pixel losslessly.
*/
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir/nir_format_convert.h"
#include "util/format/u_format.h"
#include "pan_lower_framebuffer.h"
#include "panfrost-quirks.h"
/* Determines the unpacked type best suiting a given format, so the rest of the
* pipeline may be adjusted accordingly */
nir_alu_type
pan_unpacked_type_for_format(const struct util_format_description *desc)
{
int c = util_format_get_first_non_void_channel(desc->format);
if (c == -1)
unreachable("Void format not renderable");
bool large = (desc->channel[c].size > 16);
bool bit8 = (desc->channel[c].size == 8);
assert(desc->channel[c].size <= 32);
if (desc->channel[c].normalized)
return large ? nir_type_float32 : nir_type_float16;
switch (desc->channel[c].type) {
case UTIL_FORMAT_TYPE_UNSIGNED:
return bit8 ? nir_type_uint8 :
large ? nir_type_uint32 : nir_type_uint16;
case UTIL_FORMAT_TYPE_SIGNED:
return bit8 ? nir_type_int8 :
large ? nir_type_int32 : nir_type_int16;
case UTIL_FORMAT_TYPE_FLOAT:
return large ? nir_type_float32 : nir_type_float16;
default:
unreachable("Format not renderable");
}
}
enum pan_format_class
pan_format_class_load(const struct util_format_description *desc, unsigned quirks)
{
/* Check if we can do anything better than software architecturally */
if (quirks & MIDGARD_NO_TYPED_BLEND_LOADS) {
return (quirks & NO_BLEND_PACKS)
? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK;
}
/* Some formats are missing as typed on some GPUs but have unpacks */
if (quirks & MIDGARD_MISSING_LOADS) {
switch (desc->format) {
case PIPE_FORMAT_R11G11B10_FLOAT:
case PIPE_FORMAT_R10G10B10A2_UNORM:
case PIPE_FORMAT_B10G10R10A2_UNORM:
case PIPE_FORMAT_R10G10B10X2_UNORM:
case PIPE_FORMAT_B10G10R10X2_UNORM:
case PIPE_FORMAT_R10G10B10A2_UINT:
return PAN_FORMAT_PACK;
default:
return PAN_FORMAT_NATIVE;
}
}
/* Otherwise, we can do native */
return PAN_FORMAT_NATIVE;
}
enum pan_format_class
pan_format_class_store(const struct util_format_description *desc, unsigned quirks)
{
/* Check if we can do anything better than software architecturally */
if (quirks & MIDGARD_NO_TYPED_BLEND_STORES) {
return (quirks & NO_BLEND_PACKS)
? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK;
}
return PAN_FORMAT_NATIVE;
}
/* Software packs/unpacks, by format class. Packs take in the pixel value typed
* as `pan_unpacked_type_for_format` of the format and return an i32vec4
* suitable for storing (with components replicated to fill). Unpacks do the
* reverse but cannot rely on replication.
*
* Pure 32 formats (R32F ... RGBA32F) are 32 unpacked, so just need to
* replicate to fill */
static nir_ssa_def *
pan_pack_pure_32(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *replicated[4];
for (unsigned i = 0; i < 4; ++i)
replicated[i] = nir_channel(b, v, i % v->num_components);
return nir_vec(b, replicated, 4);
}
static nir_ssa_def *
pan_unpack_pure_32(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
{
return nir_channels(b, pack, (1 << num_components) - 1);
}
/* Pure x16 formats are x16 unpacked, so it's similar, but we need to pack
* upper/lower halves of course */
static nir_ssa_def *
pan_pack_pure_16(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *replicated[4];
for (unsigned i = 0; i < 4; ++i) {
unsigned c = 2 * i;
nir_ssa_def *parts[2] = {
nir_channel(b, v, (c + 0) % v->num_components),
nir_channel(b, v, (c + 1) % v->num_components)
};
replicated[i] = nir_pack_32_2x16(b, nir_vec(b, parts, 2));
}
return nir_vec(b, replicated, 4);
}
static nir_ssa_def *
pan_unpack_pure_16(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
{
nir_ssa_def *unpacked[4];
assert(num_components <= 4);
for (unsigned i = 0; i < num_components; i += 2) {
nir_ssa_def *halves =
nir_unpack_32_2x16(b, nir_channel(b, pack, i >> 1));
unpacked[i + 0] = nir_channel(b, halves, 0);
unpacked[i + 1] = nir_channel(b, halves, 1);
}
for (unsigned i = num_components; i < 4; ++i)
unpacked[i] = nir_imm_intN_t(b, 0, 16);
return nir_vec(b, unpacked, 4);
}
/* And likewise for x8. pan_fill_4 fills a 4-channel vector with a n-channel
* vector (n <= 4), replicating as needed. pan_replicate_4 constructs a
* 4-channel vector from a scalar via replication */
static nir_ssa_def *
pan_fill_4(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *q[4];
assert(v->num_components <= 4);
for (unsigned j = 0; j < 4; ++j)
q[j] = nir_channel(b, v, j % v->num_components);
return nir_vec(b, q, 4);
}
static nir_ssa_def *
pan_replicate_4(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *replicated[4] = { v, v, v, v };
return nir_vec(b, replicated, 4);
}
static nir_ssa_def *
pan_pack_pure_8(nir_builder *b, nir_ssa_def *v)
{
return pan_replicate_4(b, nir_pack_32_4x8(b, pan_fill_4(b, v)));
}
static nir_ssa_def *
pan_unpack_pure_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
{
assert(num_components <= 4);
nir_ssa_def *unpacked = nir_unpack_32_4x8(b, nir_channel(b, pack, 0));
return nir_channels(b, unpacked, (1 << num_components) - 1);
}
/* UNORM 8 is unpacked to f16 vec4. We could directly use the un/pack_unorm_4x8
* ops provided we replicate appropriately, but for packing we'd rather stay in
* 8/16-bit whereas the NIR op forces 32-bit, so we do it manually */
static nir_ssa_def *
pan_pack_unorm_8(nir_builder *b, nir_ssa_def *v)
{
return pan_replicate_4(b, nir_pack_32_4x8(b,
nir_f2u8(b, nir_fround_even(b, nir_fmul(b, nir_fsat(b,
pan_fill_4(b, v)), nir_imm_float16(b, 255.0))))));
}
static nir_ssa_def *
pan_unpack_unorm_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
{
assert(num_components <= 4);
nir_ssa_def *unpacked = nir_unpack_unorm_4x8(b, nir_channel(b, pack, 0));
return nir_f2f16(b, unpacked);
}
/* UNORM 4 is also unpacked to f16, which prevents us from using the shared
* unpack which strongly assumes fp32. However, on the tilebuffer it is actually packed as:
*
* [AAAA] [0000] [BBBB] [0000] [GGGG] [0000] [RRRR] [0000]
*
* In other words, spacing it out so we're aligned to bytes and on top. So
* pack as:
*
* pack_32_4x8(f2u8_rte(v * 15.0) << 4)
*/
static nir_ssa_def *
pan_pack_unorm_small(nir_builder *b, nir_ssa_def *v,
nir_ssa_def *scales, nir_ssa_def *shifts)
{
nir_ssa_def *f = nir_fmul(b, nir_fsat(b, pan_fill_4(b, v)), scales);
nir_ssa_def *u8 = nir_f2u8(b, nir_fround_even(b, f));
nir_ssa_def *s = nir_ishl(b, u8, shifts);
nir_ssa_def *repl = nir_pack_32_4x8(b, s);
return pan_replicate_4(b, repl);
}
static nir_ssa_def *
pan_unpack_unorm_small(nir_builder *b, nir_ssa_def *pack,
nir_ssa_def *scales, nir_ssa_def *shifts)
{
nir_ssa_def *channels = nir_unpack_32_4x8(b, nir_channel(b, pack, 0));
nir_ssa_def *raw = nir_ushr(b, nir_u2u16(b, channels), shifts);
return nir_fmul(b, nir_u2f16(b, raw), scales);
}
static nir_ssa_def *
pan_pack_unorm_4(nir_builder *b, nir_ssa_def *v)
{
return pan_pack_unorm_small(b, v,
nir_imm_vec4_16(b, 15.0, 15.0, 15.0, 15.0),
nir_imm_ivec4(b, 4, 4, 4, 4));
}
static nir_ssa_def *
pan_unpack_unorm_4(nir_builder *b, nir_ssa_def *v)
{
return pan_unpack_unorm_small(b, v,
nir_imm_vec4_16(b, 1.0 / 15.0, 1.0 / 15.0, 1.0 / 15.0, 1.0 / 15.0),
nir_imm_ivec4(b, 4, 4, 4, 4));
}
/* UNORM RGB5_A1 and RGB565 are similar */
static nir_ssa_def *
pan_pack_unorm_5551(nir_builder *b, nir_ssa_def *v)
{
return pan_pack_unorm_small(b, v,
nir_imm_vec4_16(b, 31.0, 31.0, 31.0, 1.0),
nir_imm_ivec4(b, 3, 3, 3, 7));
}
static nir_ssa_def *
pan_unpack_unorm_5551(nir_builder *b, nir_ssa_def *v)
{
return pan_unpack_unorm_small(b, v,
nir_imm_vec4_16(b, 1.0 / 31.0, 1.0 / 31.0, 1.0 / 31.0, 1.0),
nir_imm_ivec4(b, 3, 3, 3, 7));
}
static nir_ssa_def *
pan_pack_unorm_565(nir_builder *b, nir_ssa_def *v)
{
return pan_pack_unorm_small(b, v,
nir_imm_vec4_16(b, 31.0, 63.0, 31.0, 0.0),
nir_imm_ivec4(b, 3, 2, 3, 0));
}
static nir_ssa_def *
pan_unpack_unorm_565(nir_builder *b, nir_ssa_def *v)
{
return pan_unpack_unorm_small(b, v,
nir_imm_vec4_16(b, 1.0 / 31.0, 1.0 / 63.0, 1.0 / 31.0, 0.0),
nir_imm_ivec4(b, 3, 2, 3, 0));
}
/* RGB10_A2 is packed in the tilebuffer as the bottom 3 bytes being the top
* 8-bits of RGB and the top byte being RGBA as 2-bits packed. As imirkin
* pointed out, this means free conversion to RGBX8 */
static nir_ssa_def *
pan_pack_unorm_1010102(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *scale = nir_imm_vec4_16(b, 1023.0, 1023.0, 1023.0, 3.0);
nir_ssa_def *s = nir_f2u32(b, nir_fround_even(b, nir_f2f32(b, nir_fmul(b, nir_fsat(b, v), scale))));
nir_ssa_def *top8 = nir_ushr(b, s, nir_imm_ivec4(b, 0x2, 0x2, 0x2, 0x2));
nir_ssa_def *top8_rgb = nir_pack_32_4x8(b, nir_u2u8(b, top8));
nir_ssa_def *bottom2 = nir_iand(b, s, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3));
nir_ssa_def *top =
nir_ior(b,
nir_ior(b,
nir_ishl(b, nir_channel(b, bottom2, 0), nir_imm_int(b, 24 + 0)),
nir_ishl(b, nir_channel(b, bottom2, 1), nir_imm_int(b, 24 + 2))),
nir_ior(b,
nir_ishl(b, nir_channel(b, bottom2, 2), nir_imm_int(b, 24 + 4)),
nir_ishl(b, nir_channel(b, bottom2, 3), nir_imm_int(b, 24 + 6))));
nir_ssa_def *p = nir_ior(b, top, top8_rgb);
return pan_replicate_4(b, p);
}
static nir_ssa_def *
pan_unpack_unorm_1010102(nir_builder *b, nir_ssa_def *packed)
{
nir_ssa_def *p = nir_channel(b, packed, 0);
nir_ssa_def *bytes = nir_unpack_32_4x8(b, p);
nir_ssa_def *ubytes = nir_u2u16(b, bytes);
nir_ssa_def *shifts = nir_ushr(b, pan_replicate_4(b, nir_channel(b, ubytes, 3)),
nir_imm_ivec4(b, 0, 2, 4, 6));
nir_ssa_def *precision = nir_iand(b, shifts,
nir_i2i16(b, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3)));
nir_ssa_def *top_rgb = nir_ishl(b, nir_channels(b, ubytes, 0x7), nir_imm_int(b, 2));
top_rgb = nir_ior(b, nir_channels(b, precision, 0x7), top_rgb);
nir_ssa_def *chans [4] = {
nir_channel(b, top_rgb, 0),
nir_channel(b, top_rgb, 1),
nir_channel(b, top_rgb, 2),
nir_channel(b, precision, 3)
};
nir_ssa_def *scale = nir_imm_vec4(b, 1.0 / 1023.0, 1.0 / 1023.0, 1.0 / 1023.0, 1.0 / 3.0);
return nir_f2f16(b, nir_fmul(b, nir_u2f32(b, nir_vec(b, chans, 4)), scale));
}
/* On the other hand, the pure int RGB10_A2 is identical to the spec */
static nir_ssa_def *
pan_pack_uint_1010102(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *shift = nir_ishl(b, nir_u2u32(b, v),
nir_imm_ivec4(b, 0, 10, 20, 30));
nir_ssa_def *p = nir_ior(b,
nir_ior(b, nir_channel(b, shift, 0), nir_channel(b, shift, 1)),
nir_ior(b, nir_channel(b, shift, 2), nir_channel(b, shift, 3)));
return pan_replicate_4(b, p);
}
static nir_ssa_def *
pan_unpack_uint_1010102(nir_builder *b, nir_ssa_def *packed)
{
nir_ssa_def *chan = nir_channel(b, packed, 0);
nir_ssa_def *shift = nir_ushr(b, pan_replicate_4(b, chan),
nir_imm_ivec4(b, 0, 10, 20, 30));
nir_ssa_def *mask = nir_iand(b, shift,
nir_imm_ivec4(b, 0x3ff, 0x3ff, 0x3ff, 0x3));
return nir_u2u16(b, mask);
}
/* NIR means we can *finally* catch a break */
static nir_ssa_def *
pan_pack_r11g11b10(nir_builder *b, nir_ssa_def *v)
{
return pan_replicate_4(b, nir_format_pack_11f11f10f(b,
nir_f2f32(b, v)));
}
static nir_ssa_def *
pan_unpack_r11g11b10(nir_builder *b, nir_ssa_def *v)
{
nir_ssa_def *f32 = nir_format_unpack_11f11f10f(b, nir_channel(b, v, 0));
nir_ssa_def *f16 = nir_f2f16(b, f32);
/* Extend to vec4 with alpha */
nir_ssa_def *components[4] = {
nir_channel(b, f16, 0),
nir_channel(b, f16, 1),
nir_channel(b, f16, 2),
nir_imm_float16(b, 1.0)
};
return nir_vec(b, components, 4);
}
/* Wrapper around sRGB conversion */
static nir_ssa_def *
pan_linear_to_srgb(nir_builder *b, nir_ssa_def *linear)
{
nir_ssa_def *rgb = nir_channels(b, linear, 0x7);
/* TODO: fp16 native conversion */
nir_ssa_def *srgb = nir_f2f16(b,
nir_format_linear_to_srgb(b, nir_f2f32(b, rgb)));
nir_ssa_def *comp[4] = {
nir_channel(b, srgb, 0),
nir_channel(b, srgb, 1),
nir_channel(b, srgb, 2),
nir_channel(b, linear, 3),
};
return nir_vec(b, comp, 4);
}
static nir_ssa_def *
pan_srgb_to_linear(nir_builder *b, nir_ssa_def *srgb)
{
nir_ssa_def *rgb = nir_channels(b, srgb, 0x7);
/* TODO: fp16 native conversion */
nir_ssa_def *linear = nir_f2f16(b,
nir_format_srgb_to_linear(b, nir_f2f32(b, rgb)));
nir_ssa_def *comp[4] = {
nir_channel(b, linear, 0),
nir_channel(b, linear, 1),
nir_channel(b, linear, 2),
nir_channel(b, srgb, 3),
};
return nir_vec(b, comp, 4);
}
/* Generic dispatches for un/pack regardless of format */
static bool
pan_is_unorm4(const struct util_format_description *desc)
{
switch (desc->format) {
case PIPE_FORMAT_B4G4R4A4_UNORM:
case PIPE_FORMAT_B4G4R4X4_UNORM:
case PIPE_FORMAT_A4R4_UNORM:
case PIPE_FORMAT_R4A4_UNORM:
case PIPE_FORMAT_A4B4G4R4_UNORM:
return true;
default:
return false;
}
}
static nir_ssa_def *
pan_unpack(nir_builder *b,
const struct util_format_description *desc,
nir_ssa_def *packed)
{
if (util_format_is_unorm8(desc))
return pan_unpack_unorm_8(b, packed, desc->nr_channels);
if (pan_is_unorm4(desc))
return pan_unpack_unorm_4(b, packed);
if (desc->is_array) {
int c = util_format_get_first_non_void_channel(desc->format);
assert(c >= 0);
struct util_format_channel_description d = desc->channel[c];
if (d.size == 32 || d.size == 16) {
assert(!d.normalized);
assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer);
return d.size == 32 ? pan_unpack_pure_32(b, packed, desc->nr_channels) :
pan_unpack_pure_16(b, packed, desc->nr_channels);
} else if (d.size == 8) {
assert(d.pure_integer);
return pan_unpack_pure_8(b, packed, desc->nr_channels);
} else {
unreachable("Unrenderable size");
}
}
switch (desc->format) {
case PIPE_FORMAT_B5G5R5A1_UNORM:
return pan_unpack_unorm_5551(b, packed);
case PIPE_FORMAT_B5G6R5_UNORM:
return pan_unpack_unorm_565(b, packed);
case PIPE_FORMAT_R10G10B10A2_UNORM:
return pan_unpack_unorm_1010102(b, packed);
case PIPE_FORMAT_R10G10B10A2_UINT:
return pan_unpack_uint_1010102(b, packed);
case PIPE_FORMAT_R11G11B10_FLOAT:
return pan_unpack_r11g11b10(b, packed);
default:
break;
}
fprintf(stderr, "%s\n", desc->name);
unreachable("Unknown format");
}
static nir_ssa_def *
pan_pack(nir_builder *b,
const struct util_format_description *desc,
nir_ssa_def *unpacked)
{
if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB)
unpacked = pan_linear_to_srgb(b, unpacked);
if (util_format_is_unorm8(desc))
return pan_pack_unorm_8(b, unpacked);
if (pan_is_unorm4(desc))
return pan_pack_unorm_4(b, unpacked);
if (desc->is_array) {
int c = util_format_get_first_non_void_channel(desc->format);
assert(c >= 0);
struct util_format_channel_description d = desc->channel[c];
if (d.size == 32 || d.size == 16) {
assert(!d.normalized);
assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer);
return d.size == 32 ? pan_pack_pure_32(b, unpacked) :
pan_pack_pure_16(b, unpacked);
} else if (d.size == 8) {
assert(d.pure_integer);
return pan_pack_pure_8(b, unpacked);
} else {
unreachable("Unrenderable size");
}
}
switch (desc->format) {
case PIPE_FORMAT_B5G5R5A1_UNORM:
return pan_pack_unorm_5551(b, unpacked);
case PIPE_FORMAT_B5G6R5_UNORM:
return pan_pack_unorm_565(b, unpacked);
case PIPE_FORMAT_R10G10B10A2_UNORM:
return pan_pack_unorm_1010102(b, unpacked);
case PIPE_FORMAT_R10G10B10A2_UINT:
return pan_pack_uint_1010102(b, unpacked);
case PIPE_FORMAT_R11G11B10_FLOAT:
return pan_pack_r11g11b10(b, unpacked);
default:
break;
}
fprintf(stderr, "%s\n", desc->name);
unreachable("Unknown format");
}
static void
pan_lower_fb_store(nir_shader *shader,
nir_builder *b,
nir_intrinsic_instr *intr,
const struct util_format_description *desc,
unsigned quirks)
{
/* For stores, add conversion before */
nir_ssa_def *unpacked = nir_ssa_for_src(b, intr->src[1], 4);
nir_ssa_def *packed = pan_pack(b, desc, unpacked);
nir_intrinsic_instr *new =
nir_intrinsic_instr_create(shader, nir_intrinsic_store_raw_output_pan);
new->src[0] = nir_src_for_ssa(packed);
new->num_components = 4;
nir_builder_instr_insert(b, &new->instr);
}
static void
pan_lower_fb_load(nir_shader *shader,
nir_builder *b,
nir_intrinsic_instr *intr,
const struct util_format_description *desc,
unsigned quirks)
{
nir_intrinsic_instr *new = nir_intrinsic_instr_create(shader,
nir_intrinsic_load_raw_output_pan);
new->num_components = 4;
nir_ssa_dest_init(&new->instr, &new->dest, 4, 32, NULL);
nir_builder_instr_insert(b, &new->instr);
/* Convert the raw value */
nir_ssa_def *packed = &new->dest.ssa;
nir_ssa_def *unpacked = pan_unpack(b, desc, packed);
if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB)
unpacked = pan_srgb_to_linear(b, unpacked);
nir_src rewritten = nir_src_for_ssa(unpacked);
nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, rewritten, &intr->instr);
}
void
pan_lower_framebuffer(nir_shader *shader,
const struct util_format_description *desc,
unsigned quirks)
{
/* Blend shaders are represented as special fragment shaders */
assert(shader->info.stage == MESA_SHADER_FRAGMENT);
nir_foreach_function(func, shader) {
nir_foreach_block(block, func->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
bool is_load = intr->intrinsic == nir_intrinsic_load_deref;
bool is_store = intr->intrinsic == nir_intrinsic_store_deref;
if (!(is_load || is_store))
continue;
/* Don't worry about MRT */
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (var->data.location != FRAG_RESULT_COLOR)
continue;
nir_builder b;
nir_builder_init(&b, func->impl);
if (is_store) {
b.cursor = nir_before_instr(instr);
pan_lower_fb_store(shader, &b, intr, desc, quirks);
} else {
b.cursor = nir_after_instr(instr);
pan_lower_fb_load(shader, &b, intr, desc, quirks);
}
nir_instr_remove(instr);
}
}
nir_metadata_preserve(func->impl, nir_metadata_block_index |
nir_metadata_dominance);
}
}
|