aboutsummaryrefslogtreecommitdiffstats
path: root/src/panfrost/bifrost/bifrost_sched.c
blob: f9629f8f957816642e3f89124e7d227d0f6e4a78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*
 * Copyright (C) 2019 Ryan Houdek <Sonicadvance1@gmail.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "util/register_allocate.h"
#include "compiler_defines.h"
#include "bifrost_sched.h"
#include "bifrost_compile.h"
#include "bifrost_print.h"

#define BI_DEBUG
const unsigned max_primary_reg = 64; /* Overestimate because of special regs */
const unsigned max_vec2_reg = 32;
const unsigned max_vec3_reg = 16; // XXX: Do we need to align vec3 to vec4 boundary?
const unsigned max_vec4_reg = 16;
const unsigned max_registers = 128; /* Sum of classes */
const unsigned primary_base = 0;
const unsigned vec2_base = 64;
const unsigned vec3_base = 96; /* above base + max_class_reg */
const unsigned vec4_base = 112;
const unsigned vec4_end = 128;

static unsigned
find_or_allocate_temp(compiler_context *ctx, unsigned hash)
{
        if (hash >= SSA_FIXED_MINIMUM)
                return hash;

        unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);

        if (temp)
                return temp - 1;

        /* If no temp is find, allocate one */
        temp = ctx->num_temps++;
        ctx->max_hash = MAX2(ctx->max_hash, hash);

        _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));

        return temp;
}

static bool
is_live_in_instr(bifrost_instruction *instr, unsigned temp)
{
        if (instr->ssa_args.src0 == temp) return true;
        if (instr->ssa_args.src1 == temp) return true;
        if (instr->ssa_args.src2 == temp) return true;
        if (instr->ssa_args.src3 == temp) return true;

        return false;
}

static bool
is_live_after_instr(compiler_context *ctx, bifrost_block *blk, bifrost_instruction *instr, unsigned temp)
{
        // Scan forward in the block from this location to see if we are still live.

        mir_foreach_instr_in_block_from(blk, ins, mir_next_instr(instr)) {
                if (is_live_in_instr(ins, temp))
                        return true;
        }

        // XXX: Walk all successor blocks and ensure the value isn't used there

        return false;
}

static uint32_t
ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
{
        for (int i = primary_base; i < vec4_end; ++i) {
                if (BITSET_TEST(regs, i)) {
                        return i;
                }
        }

        assert(0);
        return 0;
}

static uint32_t
ra_get_phys_reg(compiler_context *ctx, struct ra_graph *g, unsigned temp, unsigned max_reg)
{
        if (temp == SSA_INVALID_VALUE ||
            temp >= SSA_FIXED_UREG_MINIMUM ||
            temp == SSA_FIXED_CONST_0)
                return temp;

        if (temp >= SSA_FIXED_MINIMUM)
                return SSA_REG_FROM_FIXED(temp);

        assert(temp < max_reg);
        uint32_t r = ra_get_node_reg(g, temp);
        if (r >= vec4_base)
                return (r - vec4_base) * 4;
        else if (r >= vec3_base)
                return (r - vec3_base) * 4;
        else if (r >= vec2_base)
                return (r - vec2_base) * 2;

        return r;
}

static void
allocate_registers(compiler_context *ctx)
{
        struct ra_regs *regs = ra_alloc_reg_set(NULL, max_registers, true);

        int primary_class = ra_alloc_reg_class(regs);
        int vec2_class = ra_alloc_reg_class(regs);
        int vec3_class = ra_alloc_reg_class(regs);
        int vec4_class = ra_alloc_reg_class(regs);

        // Allocate our register classes and conflicts
        {
                unsigned reg = 0;
                unsigned primary_base = 0;

                // Add all of our primary scalar registers
                for (unsigned i = 0; i < max_primary_reg; ++i) {
                        ra_class_add_reg(regs, primary_class, reg);
                        reg++;
                }

                // Add all of our vec2 class registers
                // These alias with the scalar registers
                for (unsigned i = 0; i < max_vec2_reg; ++i) {
                        ra_class_add_reg(regs, vec2_class, reg);

                        // Tell RA that this conflicts with primary class registers
                        // Make sure to tell the RA utility all conflict slots
                        ra_add_reg_conflict(regs, reg, primary_base + i*2 + 0);
                        ra_add_reg_conflict(regs, reg, primary_base + i*2 + 1);

                        reg++;
                }

                // Add all of our vec3 class registers
                // These alias with the scalar registers
                for (unsigned i = 0; i < max_vec3_reg; ++i) {
                        ra_class_add_reg(regs, vec3_class, reg);

                        // Tell RA that this conflicts with primary class registers
                        // Make sure to tell the RA utility all conflict slots
                        // These are aligned to vec4 even though they only conflict with a vec3 wide slot
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 0);
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 1);
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 2);

                        // State that this class conflicts with the vec2 class
                        ra_add_reg_conflict(regs, reg, vec2_base + i*2 + 0);
                        ra_add_reg_conflict(regs, reg, vec2_base + i*2 + 1);

                        reg++;
                }

                // Add all of our vec4 class registers
                // These alias with the scalar registers
                for (unsigned i = 0; i < max_vec4_reg; ++i) {
                        ra_class_add_reg(regs, vec4_class, reg);

                        // Tell RA that this conflicts with primary class registers
                        // Make sure to tell the RA utility all conflict slots
                        // These are aligned to vec4 even though they only conflict with a vec3 wide slot
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 0);
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 1);
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 2);
                        ra_add_reg_conflict(regs, reg, primary_base + i*4 + 3);

                        // State that this class conflicts with the vec2 class
                        ra_add_reg_conflict(regs, reg, vec2_base + i*2 + 0);
                        ra_add_reg_conflict(regs, reg, vec2_base + i*2 + 1);

                        // State that this class conflicts with the vec3 class
                        // They conflict on the exact same location due to alignments
                        ra_add_reg_conflict(regs, reg, vec3_base + i);

                        reg++;
                }
        }

        ra_set_finalize(regs, NULL);
        mir_foreach_block(ctx, block) {
                mir_foreach_instr_in_block(block, instr) {
                        instr->ssa_args.src0 = find_or_allocate_temp(ctx, instr->ssa_args.src0);
                        instr->ssa_args.src1 = find_or_allocate_temp(ctx, instr->ssa_args.src1);
                        instr->ssa_args.src2 = find_or_allocate_temp(ctx, instr->ssa_args.src2);
                        instr->ssa_args.src3 = find_or_allocate_temp(ctx, instr->ssa_args.src3);
                        instr->ssa_args.dest = find_or_allocate_temp(ctx, instr->ssa_args.dest);
                }
        }

        uint32_t nodes = ctx->num_temps;
        struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);

        mir_foreach_block(ctx, block) {
                mir_foreach_instr_in_block(block, instr) {
                        if (instr->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
                        if (instr->dest_components == 4)
                                ra_set_node_class(g, instr->ssa_args.dest, vec4_class);
                        else if (instr->dest_components == 3)
                                ra_set_node_class(g, instr->ssa_args.dest, vec3_class);
                        else if (instr->dest_components == 2)
                                ra_set_node_class(g, instr->ssa_args.dest, vec2_class);
                        else
                                ra_set_node_class(g, instr->ssa_args.dest, primary_class);
                }
        }

        uint32_t *live_start = malloc(nodes * sizeof(uint32_t));
        uint32_t *live_end = malloc(nodes * sizeof(uint32_t));

        memset(live_start, 0xFF, nodes * sizeof(uint32_t));
        memset(live_end, 0xFF, nodes * sizeof(uint32_t));

        uint32_t location = 0;
        mir_foreach_block(ctx, block) {
                mir_foreach_instr_in_block(block, instr) {
                        if (instr->ssa_args.dest < SSA_FIXED_MINIMUM) {
                                // If the destination isn't yet live before this point
                                // then this is the point it becomes live since we wrote to it
                                if (live_start[instr->ssa_args.dest] == ~0U) {
                                        live_start[instr->ssa_args.dest] = location;
                                }
                        }

                        uint32_t sources[4] = {
                                instr->ssa_args.src0,
                                instr->ssa_args.src1,
                                instr->ssa_args.src2,
                                instr->ssa_args.src3,
                        };

                        for (unsigned i = 0; i < 4; ++i) {
                                if (sources[i] >= SSA_FIXED_MINIMUM)
                                        continue;

                                // If the source is no longer live after this instruction then we can end its liveness
                                if (!is_live_after_instr(ctx, block, instr, sources[i])) {
                                        live_end[sources[i]] = location;
                                }
                        }
                        ++location;
                }
        }

        // Spin through the nodes quick and ensure they are all killed by the end of the program
        for (unsigned i = 0; i < nodes; ++i) {
                if (live_end[i] == ~0U)
                        live_end[i] = location;
        }

        for (int i = 0; i < nodes; ++i) {
                for (int j = i + 1; j < nodes; ++j) {
                        if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i])) {
                                ra_add_node_interference(g, i, j);
                        }
                }
        }

        ra_set_select_reg_callback(g, ra_select_callback, NULL);

        if (!ra_allocate(g)) {
                assert(0);
        }

        free(live_start);
        free(live_end);

        mir_foreach_block(ctx, block) {
                mir_foreach_instr_in_block(block, instr) {
                        instr->args.src0 = ra_get_phys_reg(ctx, g, instr->ssa_args.src0, nodes);
                        instr->args.src1 = ra_get_phys_reg(ctx, g, instr->ssa_args.src1, nodes);
                        instr->args.src2 = ra_get_phys_reg(ctx, g, instr->ssa_args.src2, nodes);
                        instr->args.src3 = ra_get_phys_reg(ctx, g, instr->ssa_args.src3, nodes);
                        instr->args.dest = ra_get_phys_reg(ctx, g, instr->ssa_args.dest, nodes);
                }
        }
}

static void
bundle_block(compiler_context *ctx, bifrost_block *block)
{
}

static void
remove_create_vectors(compiler_context *ctx, bifrost_block *block)
{
        mir_foreach_instr_in_block_safe(block, instr) {
                if (instr->op != op_create_vector) continue;

                uint32_t vector_ssa_sources[4] = {
                        instr->ssa_args.src0,
                        instr->ssa_args.src1,
                        instr->ssa_args.src2,
                        instr->ssa_args.src3,
                };

                mir_foreach_instr_in_block_from_rev(block, next_instr, instr) {
                        // Walk our block backwards and find the creators of this vector creation instruction
                        for (unsigned i = 0; i < instr->dest_components; ++i) {
                                // If this instruction is ther one that writes this register then forward it to the real register
                                if (vector_ssa_sources[i] == next_instr->ssa_args.dest) {
                                        next_instr->ssa_args.dest = vector_ssa_sources[i];
                                        // Source instruction destination is a vector register of size dest_components
                                        // So dest + i gets the components of it
                                        next_instr->args.dest = instr->args.dest + i;
                                }
                        }
                }

                // Remove the instruction now that we have copied over all the sources
                mir_remove_instr(instr);
        }
}

static void
remove_extract_elements(compiler_context *ctx, bifrost_block *block)
{
        mir_foreach_instr_in_block_safe(block, instr) {
                if (instr->op != op_extract_element) continue;

                mir_foreach_instr_in_block_from(block, next_instr, instr) {
                        // Walk our block forward to replace uses of this register with a real register
                        // src0 = vector
                        // src1 = index in to vector
                        uint32_t vector_ssa_sources[4] = {
                                next_instr->ssa_args.src0,
                                next_instr->ssa_args.src1,
                                next_instr->ssa_args.src2,
                                next_instr->ssa_args.src3,
                        };
                        uint32_t *vector_sources[4] = {
                                &next_instr->args.src0,
                                &next_instr->args.src1,
                                &next_instr->args.src2,
                                &next_instr->args.src3,
                        };

                        for (unsigned i = 0; i < 4; ++i) {
                                if (vector_ssa_sources[i] == instr->ssa_args.dest) {
                                        // This source uses this vector extraction
                                        // Replace its usage with the real register
                                        // src0 is a vector register and src1 is the constant element of the vector
                                        *vector_sources[i] = instr->args.src0 + instr->literal_args[0];
                                }
                        }

                }

                // Remove the instruction now that we have copied over all the sources
                mir_remove_instr(instr);
        }
}


void schedule_program(compiler_context *ctx)
{
        // XXX: we should move instructions together before RA that can feed in to each other and be scheduled in the same clause
        allocate_registers(ctx);

        mir_foreach_block(ctx, block) {
                remove_create_vectors(ctx, block);
                remove_extract_elements(ctx, block);
        }

        mir_foreach_block(ctx, block) {
#ifdef BI_DEBUG
                print_mir_block(block, true);
#endif

                bundle_block(ctx, block);
        }
}