1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
|
/*
* Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
* Copyright (C) 2008 VMware, Inc. All Rights Reserved.
* Copyright © 2010 Intel Corporation
* Copyright © 2011 Bryan Cain
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file glsl_to_tgsi.cpp
*
* Translate GLSL IR to TGSI.
*/
#include <stdio.h>
#include "main/compiler.h"
#include "ir.h"
#include "ir_visitor.h"
#include "ir_print_visitor.h"
#include "ir_expression_flattening.h"
#include "glsl_types.h"
#include "glsl_parser_extras.h"
#include "../glsl/program.h"
#include "ir_optimization.h"
#include "ast.h"
#include "main/mtypes.h"
#include "main/shaderobj.h"
#include "program/hash_table.h"
extern "C" {
#include "main/shaderapi.h"
#include "main/uniforms.h"
#include "program/prog_instruction.h"
#include "program/prog_optimize.h"
#include "program/prog_print.h"
#include "program/program.h"
#include "program/prog_parameter.h"
#include "program/sampler.h"
#include "pipe/p_compiler.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "pipe/p_shader_tokens.h"
#include "pipe/p_state.h"
#include "util/u_math.h"
#include "tgsi/tgsi_ureg.h"
#include "tgsi/tgsi_info.h"
#include "st_context.h"
#include "st_program.h"
#include "st_glsl_to_tgsi.h"
#include "st_mesa_to_tgsi.h"
}
#define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
(1 << PROGRAM_ENV_PARAM) | \
(1 << PROGRAM_STATE_VAR) | \
(1 << PROGRAM_NAMED_PARAM) | \
(1 << PROGRAM_CONSTANT) | \
(1 << PROGRAM_UNIFORM))
/**
* Maximum number of temporary registers.
*
* It is too big for stack allocated arrays -- it will cause stack overflow on
* Windows and likely Mac OS X.
*/
#define MAX_TEMPS 4096
/* will be 4 for GLSL 4.00 */
#define MAX_GLSL_TEXTURE_OFFSET 1
class st_src_reg;
class st_dst_reg;
static int swizzle_for_size(int size);
/**
* This struct is a corresponding struct to TGSI ureg_src.
*/
class st_src_reg {
public:
st_src_reg(gl_register_file file, int index, const glsl_type *type)
{
this->file = file;
this->index = index;
if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
this->swizzle = swizzle_for_size(type->vector_elements);
else
this->swizzle = SWIZZLE_XYZW;
this->negate = 0;
this->type = type ? type->base_type : GLSL_TYPE_ERROR;
this->reladdr = NULL;
}
st_src_reg(gl_register_file file, int index, int type)
{
this->type = type;
this->file = file;
this->index = index;
this->swizzle = SWIZZLE_XYZW;
this->negate = 0;
this->reladdr = NULL;
}
st_src_reg()
{
this->type = GLSL_TYPE_ERROR;
this->file = PROGRAM_UNDEFINED;
this->index = 0;
this->swizzle = 0;
this->negate = 0;
this->reladdr = NULL;
}
explicit st_src_reg(st_dst_reg reg);
gl_register_file file; /**< PROGRAM_* from Mesa */
int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
int negate; /**< NEGATE_XYZW mask from mesa */
int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
/** Register index should be offset by the integer in this reg. */
st_src_reg *reladdr;
};
class st_dst_reg {
public:
st_dst_reg(gl_register_file file, int writemask, int type)
{
this->file = file;
this->index = 0;
this->writemask = writemask;
this->cond_mask = COND_TR;
this->reladdr = NULL;
this->type = type;
}
st_dst_reg()
{
this->type = GLSL_TYPE_ERROR;
this->file = PROGRAM_UNDEFINED;
this->index = 0;
this->writemask = 0;
this->cond_mask = COND_TR;
this->reladdr = NULL;
}
explicit st_dst_reg(st_src_reg reg);
gl_register_file file; /**< PROGRAM_* from Mesa */
int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
GLuint cond_mask:4;
int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
/** Register index should be offset by the integer in this reg. */
st_src_reg *reladdr;
};
st_src_reg::st_src_reg(st_dst_reg reg)
{
this->type = reg.type;
this->file = reg.file;
this->index = reg.index;
this->swizzle = SWIZZLE_XYZW;
this->negate = 0;
this->reladdr = reg.reladdr;
}
st_dst_reg::st_dst_reg(st_src_reg reg)
{
this->type = reg.type;
this->file = reg.file;
this->index = reg.index;
this->writemask = WRITEMASK_XYZW;
this->cond_mask = COND_TR;
this->reladdr = reg.reladdr;
}
class glsl_to_tgsi_instruction : public exec_node {
public:
/* Callers of this ralloc-based new need not call delete. It's
* easier to just ralloc_free 'ctx' (or any of its ancestors). */
static void* operator new(size_t size, void *ctx)
{
void *node;
node = rzalloc_size(ctx, size);
assert(node != NULL);
return node;
}
unsigned op;
st_dst_reg dst;
st_src_reg src[3];
/** Pointer to the ir source this tree came from for debugging */
ir_instruction *ir;
GLboolean cond_update;
bool saturate;
int sampler; /**< sampler index */
int tex_target; /**< One of TEXTURE_*_INDEX */
GLboolean tex_shadow;
struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
unsigned tex_offset_num_offset;
int dead_mask; /**< Used in dead code elimination */
class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
};
class variable_storage : public exec_node {
public:
variable_storage(ir_variable *var, gl_register_file file, int index)
: file(file), index(index), var(var)
{
/* empty */
}
gl_register_file file;
int index;
ir_variable *var; /* variable that maps to this, if any */
};
class immediate_storage : public exec_node {
public:
immediate_storage(gl_constant_value *values, int size, int type)
{
memcpy(this->values, values, size * sizeof(gl_constant_value));
this->size = size;
this->type = type;
}
gl_constant_value values[4];
int size; /**< Number of components (1-4) */
int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
};
class function_entry : public exec_node {
public:
ir_function_signature *sig;
/**
* identifier of this function signature used by the program.
*
* At the point that TGSI instructions for function calls are
* generated, we don't know the address of the first instruction of
* the function body. So we make the BranchTarget that is called a
* small integer and rewrite them during set_branchtargets().
*/
int sig_id;
/**
* Pointer to first instruction of the function body.
*
* Set during function body emits after main() is processed.
*/
glsl_to_tgsi_instruction *bgn_inst;
/**
* Index of the first instruction of the function body in actual TGSI.
*
* Set after conversion from glsl_to_tgsi_instruction to TGSI.
*/
int inst;
/** Storage for the return value. */
st_src_reg return_reg;
};
class glsl_to_tgsi_visitor : public ir_visitor {
public:
glsl_to_tgsi_visitor();
~glsl_to_tgsi_visitor();
function_entry *current_function;
struct gl_context *ctx;
struct gl_program *prog;
struct gl_shader_program *shader_program;
struct gl_shader_compiler_options *options;
int next_temp;
int num_address_regs;
int samplers_used;
bool indirect_addr_temps;
bool indirect_addr_consts;
int num_clip_distances;
int glsl_version;
bool native_integers;
variable_storage *find_variable_storage(ir_variable *var);
int add_constant(gl_register_file file, gl_constant_value values[4],
int size, int datatype, GLuint *swizzle_out);
function_entry *get_function_signature(ir_function_signature *sig);
st_src_reg get_temp(const glsl_type *type);
void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
st_src_reg st_src_reg_for_float(float val);
st_src_reg st_src_reg_for_int(int val);
st_src_reg st_src_reg_for_type(int type, int val);
/**
* \name Visit methods
*
* As typical for the visitor pattern, there must be one \c visit method for
* each concrete subclass of \c ir_instruction. Virtual base classes within
* the hierarchy should not have \c visit methods.
*/
/*@{*/
virtual void visit(ir_variable *);
virtual void visit(ir_loop *);
virtual void visit(ir_loop_jump *);
virtual void visit(ir_function_signature *);
virtual void visit(ir_function *);
virtual void visit(ir_expression *);
virtual void visit(ir_swizzle *);
virtual void visit(ir_dereference_variable *);
virtual void visit(ir_dereference_array *);
virtual void visit(ir_dereference_record *);
virtual void visit(ir_assignment *);
virtual void visit(ir_constant *);
virtual void visit(ir_call *);
virtual void visit(ir_return *);
virtual void visit(ir_discard *);
virtual void visit(ir_texture *);
virtual void visit(ir_if *);
/*@}*/
st_src_reg result;
/** List of variable_storage */
exec_list variables;
/** List of immediate_storage */
exec_list immediates;
unsigned num_immediates;
/** List of function_entry */
exec_list function_signatures;
int next_signature_id;
/** List of glsl_to_tgsi_instruction */
exec_list instructions;
glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0);
glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0, st_src_reg src1);
glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1, st_src_reg src2);
unsigned get_opcode(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1);
/**
* Emit the correct dot-product instruction for the type of arguments
*/
glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
st_dst_reg dst,
st_src_reg src0,
st_src_reg src1,
unsigned elements);
void emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0);
void emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0, st_src_reg src1);
void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
void emit_scs(ir_instruction *ir, unsigned op,
st_dst_reg dst, const st_src_reg &src);
bool try_emit_mad(ir_expression *ir,
int mul_operand);
bool try_emit_mad_for_and_not(ir_expression *ir,
int mul_operand);
bool try_emit_sat(ir_expression *ir);
void emit_swz(ir_expression *ir);
bool process_move_condition(ir_rvalue *ir);
void simplify_cmp(void);
void rename_temp_register(int index, int new_index);
int get_first_temp_read(int index);
int get_first_temp_write(int index);
int get_last_temp_read(int index);
int get_last_temp_write(int index);
void copy_propagate(void);
void eliminate_dead_code(void);
int eliminate_dead_code_advanced(void);
void merge_registers(void);
void renumber_registers(void);
void *mem_ctx;
};
static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
static void
fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
static void
fail_link(struct gl_shader_program *prog, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
va_end(args);
prog->LinkStatus = GL_FALSE;
}
static int
swizzle_for_size(int size)
{
int size_swizzles[4] = {
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
};
assert((size >= 1) && (size <= 4));
return size_swizzles[size - 1];
}
static bool
is_tex_instruction(unsigned opcode)
{
const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
return info->is_tex;
}
static unsigned
num_inst_dst_regs(unsigned opcode)
{
const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
return info->num_dst;
}
static unsigned
num_inst_src_regs(unsigned opcode)
{
const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
return info->is_tex ? info->num_src - 1 : info->num_src;
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1, st_src_reg src2)
{
glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
int num_reladdr = 0, i;
op = get_opcode(ir, op, dst, src0, src1);
/* If we have to do relative addressing, we want to load the ARL
* reg directly for one of the regs, and preload the other reladdr
* sources into temps.
*/
num_reladdr += dst.reladdr != NULL;
num_reladdr += src0.reladdr != NULL;
num_reladdr += src1.reladdr != NULL;
num_reladdr += src2.reladdr != NULL;
reladdr_to_temp(ir, &src2, &num_reladdr);
reladdr_to_temp(ir, &src1, &num_reladdr);
reladdr_to_temp(ir, &src0, &num_reladdr);
if (dst.reladdr) {
emit_arl(ir, address_reg, *dst.reladdr);
num_reladdr--;
}
assert(num_reladdr == 0);
inst->op = op;
inst->dst = dst;
inst->src[0] = src0;
inst->src[1] = src1;
inst->src[2] = src2;
inst->ir = ir;
inst->dead_mask = 0;
inst->function = NULL;
if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
this->num_address_regs = 1;
/* Update indirect addressing status used by TGSI */
if (dst.reladdr) {
switch(dst.file) {
case PROGRAM_TEMPORARY:
this->indirect_addr_temps = true;
break;
case PROGRAM_LOCAL_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_STATE_VAR:
case PROGRAM_NAMED_PARAM:
case PROGRAM_CONSTANT:
case PROGRAM_UNIFORM:
this->indirect_addr_consts = true;
break;
case PROGRAM_IMMEDIATE:
assert(!"immediates should not have indirect addressing");
break;
default:
break;
}
}
else {
for (i=0; i<3; i++) {
if(inst->src[i].reladdr) {
switch(inst->src[i].file) {
case PROGRAM_TEMPORARY:
this->indirect_addr_temps = true;
break;
case PROGRAM_LOCAL_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_STATE_VAR:
case PROGRAM_NAMED_PARAM:
case PROGRAM_CONSTANT:
case PROGRAM_UNIFORM:
this->indirect_addr_consts = true;
break;
case PROGRAM_IMMEDIATE:
assert(!"immediates should not have indirect addressing");
break;
default:
break;
}
}
}
}
this->instructions.push_tail(inst);
if (native_integers)
try_emit_float_set(ir, op, dst);
return inst;
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0, st_src_reg src1)
{
return emit(ir, op, dst, src0, src1, undef_src);
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0)
{
assert(dst.writemask != 0);
return emit(ir, op, dst, src0, undef_src, undef_src);
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
{
return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
}
/**
* Emits the code to convert the result of float SET instructions to integers.
*/
void
glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
st_dst_reg dst)
{
if ((op == TGSI_OPCODE_SEQ ||
op == TGSI_OPCODE_SNE ||
op == TGSI_OPCODE_SGE ||
op == TGSI_OPCODE_SLT))
{
st_src_reg src = st_src_reg(dst);
src.negate = ~src.negate;
dst.type = GLSL_TYPE_FLOAT;
emit(ir, TGSI_OPCODE_F2I, dst, src);
}
}
/**
* Determines whether to use an integer, unsigned integer, or float opcode
* based on the operands and input opcode, then emits the result.
*/
unsigned
glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg src0, st_src_reg src1)
{
int type = GLSL_TYPE_FLOAT;
if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
type = GLSL_TYPE_FLOAT;
else if (native_integers)
type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
#define case4(c, f, i, u) \
case TGSI_OPCODE_##c: \
if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
else op = TGSI_OPCODE_##f; \
break;
#define case3(f, i, u) case4(f, f, i, u)
#define case2fi(f, i) case4(f, f, i, i)
#define case2iu(i, u) case4(i, LAST, i, u)
switch(op) {
case2fi(ADD, UADD);
case2fi(MUL, UMUL);
case2fi(MAD, UMAD);
case3(DIV, IDIV, UDIV);
case3(MAX, IMAX, UMAX);
case3(MIN, IMIN, UMIN);
case2iu(MOD, UMOD);
case2fi(SEQ, USEQ);
case2fi(SNE, USNE);
case3(SGE, ISGE, USGE);
case3(SLT, ISLT, USLT);
case2iu(ISHR, USHR);
case2fi(SSG, ISSG);
case3(ABS, IABS, IABS);
default: break;
}
assert(op != TGSI_OPCODE_LAST);
return op;
}
glsl_to_tgsi_instruction *
glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
st_dst_reg dst, st_src_reg src0, st_src_reg src1,
unsigned elements)
{
static const unsigned dot_opcodes[] = {
TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
};
return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
}
/**
* Emits TGSI scalar opcodes to produce unique answers across channels.
*
* Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
* channel determines the result across all channels. So to do a vec4
* of this operation, we want to emit a scalar per source channel used
* to produce dest channels.
*/
void
glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst,
st_src_reg orig_src0, st_src_reg orig_src1)
{
int i, j;
int done_mask = ~dst.writemask;
/* TGSI RCP is a scalar operation splatting results to all channels,
* like ARB_fp/vp. So emit as many RCPs as necessary to cover our
* dst channels.
*/
for (i = 0; i < 4; i++) {
GLuint this_mask = (1 << i);
glsl_to_tgsi_instruction *inst;
st_src_reg src0 = orig_src0;
st_src_reg src1 = orig_src1;
if (done_mask & this_mask)
continue;
GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
for (j = i + 1; j < 4; j++) {
/* If there is another enabled component in the destination that is
* derived from the same inputs, generate its value on this pass as
* well.
*/
if (!(done_mask & (1 << j)) &&
GET_SWZ(src0.swizzle, j) == src0_swiz &&
GET_SWZ(src1.swizzle, j) == src1_swiz) {
this_mask |= (1 << j);
}
}
src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
src0_swiz, src0_swiz);
src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
src1_swiz, src1_swiz);
inst = emit(ir, op, dst, src0, src1);
inst->dst.writemask = this_mask;
done_mask |= this_mask;
}
}
void
glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
st_dst_reg dst, st_src_reg src0)
{
st_src_reg undef = undef_src;
undef.swizzle = SWIZZLE_XXXX;
emit_scalar(ir, op, dst, src0, undef);
}
void
glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
st_dst_reg dst, st_src_reg src0)
{
int op = TGSI_OPCODE_ARL;
if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
op = TGSI_OPCODE_UARL;
emit(NULL, op, dst, src0);
}
/**
* Emit an TGSI_OPCODE_SCS instruction
*
* The \c SCS opcode functions a bit differently than the other TGSI opcodes.
* Instead of splatting its result across all four components of the
* destination, it writes one value to the \c x component and another value to
* the \c y component.
*
* \param ir IR instruction being processed
* \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
* on which value is desired.
* \param dst Destination register
* \param src Source register
*/
void
glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
st_dst_reg dst,
const st_src_reg &src)
{
/* Vertex programs cannot use the SCS opcode.
*/
if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
emit_scalar(ir, op, dst, src);
return;
}
const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
const unsigned scs_mask = (1U << component);
int done_mask = ~dst.writemask;
st_src_reg tmp;
assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
/* If there are compnents in the destination that differ from the component
* that will be written by the SCS instrution, we'll need a temporary.
*/
if (scs_mask != unsigned(dst.writemask)) {
tmp = get_temp(glsl_type::vec4_type);
}
for (unsigned i = 0; i < 4; i++) {
unsigned this_mask = (1U << i);
st_src_reg src0 = src;
if ((done_mask & this_mask) != 0)
continue;
/* The source swizzle specified which component of the source generates
* sine / cosine for the current component in the destination. The SCS
* instruction requires that this value be swizzle to the X component.
* Replace the current swizzle with a swizzle that puts the source in
* the X component.
*/
unsigned src0_swiz = GET_SWZ(src.swizzle, i);
src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
src0_swiz, src0_swiz);
for (unsigned j = i + 1; j < 4; j++) {
/* If there is another enabled component in the destination that is
* derived from the same inputs, generate its value on this pass as
* well.
*/
if (!(done_mask & (1 << j)) &&
GET_SWZ(src0.swizzle, j) == src0_swiz) {
this_mask |= (1 << j);
}
}
if (this_mask != scs_mask) {
glsl_to_tgsi_instruction *inst;
st_dst_reg tmp_dst = st_dst_reg(tmp);
/* Emit the SCS instruction.
*/
inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
inst->dst.writemask = scs_mask;
/* Move the result of the SCS instruction to the desired location in
* the destination.
*/
tmp.swizzle = MAKE_SWIZZLE4(component, component,
component, component);
inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
inst->dst.writemask = this_mask;
} else {
/* Emit the SCS instruction to write directly to the destination.
*/
glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
inst->dst.writemask = scs_mask;
}
done_mask |= this_mask;
}
}
int
glsl_to_tgsi_visitor::add_constant(gl_register_file file,
gl_constant_value values[4], int size, int datatype,
GLuint *swizzle_out)
{
if (file == PROGRAM_CONSTANT) {
return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
size, datatype, swizzle_out);
} else {
int index = 0;
immediate_storage *entry;
assert(file == PROGRAM_IMMEDIATE);
/* Search immediate storage to see if we already have an identical
* immediate that we can use instead of adding a duplicate entry.
*/
foreach_iter(exec_list_iterator, iter, this->immediates) {
entry = (immediate_storage *)iter.get();
if (entry->size == size &&
entry->type == datatype &&
!memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
return index;
}
index++;
}
/* Add this immediate to the list. */
entry = new(mem_ctx) immediate_storage(values, size, datatype);
this->immediates.push_tail(entry);
this->num_immediates++;
return index;
}
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
{
st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
union gl_constant_value uval;
uval.f = val;
src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
return src;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
{
st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
union gl_constant_value uval;
assert(native_integers);
uval.i = val;
src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
return src;
}
st_src_reg
glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
{
if (native_integers)
return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
st_src_reg_for_int(val);
else
return st_src_reg_for_float(val);
}
static int
type_size(const struct glsl_type *type)
{
unsigned int i;
int size;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
if (type->is_matrix()) {
return type->matrix_columns;
} else {
/* Regardless of size of vector, it gets a vec4. This is bad
* packing for things like floats, but otherwise arrays become a
* mess. Hopefully a later pass over the code can pack scalars
* down if appropriate.
*/
return 1;
}
case GLSL_TYPE_ARRAY:
assert(type->length > 0);
return type_size(type->fields.array) * type->length;
case GLSL_TYPE_STRUCT:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size(type->fields.structure[i].type);
}
return size;
case GLSL_TYPE_SAMPLER:
/* Samplers take up one slot in UNIFORMS[], but they're baked in
* at link time.
*/
return 1;
default:
assert(0);
return 0;
}
}
/**
* In the initial pass of codegen, we assign temporary numbers to
* intermediate results. (not SSA -- variable assignments will reuse
* storage).
*/
st_src_reg
glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
{
st_src_reg src;
src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
src.file = PROGRAM_TEMPORARY;
src.index = next_temp;
src.reladdr = NULL;
next_temp += type_size(type);
if (type->is_array() || type->is_record()) {
src.swizzle = SWIZZLE_NOOP;
} else {
src.swizzle = swizzle_for_size(type->vector_elements);
}
src.negate = 0;
return src;
}
variable_storage *
glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
{
variable_storage *entry;
foreach_iter(exec_list_iterator, iter, this->variables) {
entry = (variable_storage *)iter.get();
if (entry->var == var)
return entry;
}
return NULL;
}
void
glsl_to_tgsi_visitor::visit(ir_variable *ir)
{
if (strcmp(ir->name, "gl_FragCoord") == 0) {
struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
fp->OriginUpperLeft = ir->origin_upper_left;
fp->PixelCenterInteger = ir->pixel_center_integer;
}
if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
unsigned int i;
const ir_state_slot *const slots = ir->state_slots;
assert(ir->state_slots != NULL);
/* Check if this statevar's setup in the STATE file exactly
* matches how we'll want to reference it as a
* struct/array/whatever. If not, then we need to move it into
* temporary storage and hope that it'll get copy-propagated
* out.
*/
for (i = 0; i < ir->num_state_slots; i++) {
if (slots[i].swizzle != SWIZZLE_XYZW) {
break;
}
}
variable_storage *storage;
st_dst_reg dst;
if (i == ir->num_state_slots) {
/* We'll set the index later. */
storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
this->variables.push_tail(storage);
dst = undef_dst;
} else {
/* The variable_storage constructor allocates slots based on the size
* of the type. However, this had better match the number of state
* elements that we're going to copy into the new temporary.
*/
assert((int) ir->num_state_slots == type_size(ir->type));
storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
this->next_temp);
this->variables.push_tail(storage);
this->next_temp += type_size(ir->type);
dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
}
for (unsigned int i = 0; i < ir->num_state_slots; i++) {
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
if (storage->file == PROGRAM_STATE_VAR) {
if (storage->index == -1) {
storage->index = index;
} else {
assert(index == storage->index + (int)i);
}
} else {
st_src_reg src(PROGRAM_STATE_VAR, index,
native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
src.swizzle = slots[i].swizzle;
emit(ir, TGSI_OPCODE_MOV, dst, src);
/* even a float takes up a whole vec4 reg in a struct/array. */
dst.index++;
}
}
if (storage->file == PROGRAM_TEMPORARY &&
dst.index != storage->index + (int) ir->num_state_slots) {
fail_link(this->shader_program,
"failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
ir->name, dst.index - storage->index,
type_size(ir->type));
}
}
}
void
glsl_to_tgsi_visitor::visit(ir_loop *ir)
{
ir_dereference_variable *counter = NULL;
if (ir->counter != NULL)
counter = new(ir) ir_dereference_variable(ir->counter);
if (ir->from != NULL) {
assert(ir->counter != NULL);
ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
a->accept(this);
delete a;
}
emit(NULL, TGSI_OPCODE_BGNLOOP);
if (ir->to) {
ir_expression *e =
new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
counter, ir->to);
ir_if *if_stmt = new(ir) ir_if(e);
ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
if_stmt->then_instructions.push_tail(brk);
if_stmt->accept(this);
delete if_stmt;
delete e;
delete brk;
}
visit_exec_list(&ir->body_instructions, this);
if (ir->increment) {
ir_expression *e =
new(ir) ir_expression(ir_binop_add, counter->type,
counter, ir->increment);
ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
a->accept(this);
delete a;
delete e;
}
emit(NULL, TGSI_OPCODE_ENDLOOP);
}
void
glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(NULL, TGSI_OPCODE_BRK);
break;
case ir_loop_jump::jump_continue:
emit(NULL, TGSI_OPCODE_CONT);
break;
}
}
void
glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
{
assert(0);
(void)ir;
}
void
glsl_to_tgsi_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to glsl_to_tgsi.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(&empty);
assert(sig);
foreach_iter(exec_list_iterator, iter, sig->body) {
ir_instruction *ir = (ir_instruction *)iter.get();
ir->accept(this);
}
}
}
bool
glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
{
int nonmul_operand = 1 - mul_operand;
st_src_reg a, b, c;
st_dst_reg result_dst;
ir_expression *expr = ir->operands[mul_operand]->as_expression();
if (!expr || expr->operation != ir_binop_mul)
return false;
expr->operands[0]->accept(this);
a = this->result;
expr->operands[1]->accept(this);
b = this->result;
ir->operands[nonmul_operand]->accept(this);
c = this->result;
this->result = get_temp(ir->type);
result_dst = st_dst_reg(this->result);
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
return true;
}
/**
* Emit MAD(a, -b, a) instead of AND(a, NOT(b))
*
* The logic values are 1.0 for true and 0.0 for false. Logical-and is
* implemented using multiplication, and logical-or is implemented using
* addition. Logical-not can be implemented as (true - x), or (1.0 - x).
* As result, the logical expression (a & !b) can be rewritten as:
*
* - a * !b
* - a * (1 - b)
* - (a * 1) - (a * b)
* - a + -(a * b)
* - a + (a * -b)
*
* This final expression can be implemented as a single MAD(a, -b, a)
* instruction.
*/
bool
glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
{
const int other_operand = 1 - try_operand;
st_src_reg a, b;
ir_expression *expr = ir->operands[try_operand]->as_expression();
if (!expr || expr->operation != ir_unop_logic_not)
return false;
ir->operands[other_operand]->accept(this);
a = this->result;
expr->operands[0]->accept(this);
b = this->result;
b.negate = ~b.negate;
this->result = get_temp(ir->type);
emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
return true;
}
bool
glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
{
/* Saturates were only introduced to vertex programs in
* NV_vertex_program3, so don't give them to drivers in the VP.
*/
if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
return false;
ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
if (!sat_src)
return false;
sat_src->accept(this);
st_src_reg src = this->result;
/* If we generated an expression instruction into a temporary in
* processing the saturate's operand, apply the saturate to that
* instruction. Otherwise, generate a MOV to do the saturate.
*
* Note that we have to be careful to only do this optimization if
* the instruction in question was what generated src->result. For
* example, ir_dereference_array might generate a MUL instruction
* to create the reladdr, and return us a src reg using that
* reladdr. That MUL result is not the value we're trying to
* saturate.
*/
ir_expression *sat_src_expr = sat_src->as_expression();
if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
sat_src_expr->operation == ir_binop_add ||
sat_src_expr->operation == ir_binop_dot)) {
glsl_to_tgsi_instruction *new_inst;
new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
new_inst->saturate = true;
} else {
this->result = get_temp(ir->type);
st_dst_reg result_dst = st_dst_reg(this->result);
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
glsl_to_tgsi_instruction *inst;
inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
inst->saturate = true;
}
return true;
}
void
glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
st_src_reg *reg, int *num_reladdr)
{
if (!reg->reladdr)
return;
emit_arl(ir, address_reg, *reg->reladdr);
if (*num_reladdr != 1) {
st_src_reg temp = get_temp(glsl_type::vec4_type);
emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
*reg = temp;
}
(*num_reladdr)--;
}
void
glsl_to_tgsi_visitor::visit(ir_expression *ir)
{
unsigned int operand;
st_src_reg op[Elements(ir->operands)];
st_src_reg result_src;
st_dst_reg result_dst;
/* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
*/
if (ir->operation == ir_binop_add) {
if (try_emit_mad(ir, 1))
return;
if (try_emit_mad(ir, 0))
return;
}
/* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
*/
if (ir->operation == ir_binop_logic_and) {
if (try_emit_mad_for_and_not(ir, 1))
return;
if (try_emit_mad_for_and_not(ir, 0))
return;
}
if (try_emit_sat(ir))
return;
if (ir->operation == ir_quadop_vector)
assert(!"ir_quadop_vector should have been lowered");
for (operand = 0; operand < ir->get_num_operands(); operand++) {
this->result.file = PROGRAM_UNDEFINED;
ir->operands[operand]->accept(this);
if (this->result.file == PROGRAM_UNDEFINED) {
ir_print_visitor v;
printf("Failed to get tree for expression operand:\n");
ir->operands[operand]->accept(&v);
exit(1);
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
}
int vector_elements = ir->operands[0]->type->vector_elements;
if (ir->operands[1]) {
vector_elements = MAX2(vector_elements,
ir->operands[1]->type->vector_elements);
}
this->result.file = PROGRAM_UNDEFINED;
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
result_src = get_temp(ir->type);
/* convenience for the emit functions below. */
result_dst = st_dst_reg(result_src);
/* Limit writes to the channels that will be used by result_src later.
* This does limit this temp's use as a temporary for multi-instruction
* sequences.
*/
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
switch (ir->operation) {
case ir_unop_logic_not:
if (result_dst.type != GLSL_TYPE_FLOAT)
emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
else {
/* Previously 'SEQ dst, src, 0.0' was used for this. However, many
* older GPUs implement SEQ using multiple instructions (i915 uses two
* SGE instructions and a MUL instruction). Since our logic values are
* 0.0 and 1.0, 1-x also implements !x.
*/
op[0].negate = ~op[0].negate;
emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
}
break;
case ir_unop_neg:
if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
else {
op[0].negate = ~op[0].negate;
result_src = op[0];
}
break;
case ir_unop_abs:
emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
break;
case ir_unop_sign:
emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
break;
case ir_unop_rcp:
emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
break;
case ir_unop_exp2:
emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
break;
case ir_unop_exp:
case ir_unop_log:
assert(!"not reached: should be handled by ir_explog_to_explog2");
break;
case ir_unop_log2:
emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
break;
case ir_unop_sin:
emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
break;
case ir_unop_cos:
emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
break;
case ir_unop_sin_reduced:
emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
break;
case ir_unop_cos_reduced:
emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
break;
case ir_unop_dFdx:
emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
break;
case ir_unop_dFdy:
op[0].negate = ~op[0].negate;
emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
break;
case ir_unop_noise: {
/* At some point, a motivated person could add a better
* implementation of noise. Currently not even the nvidia
* binary drivers do anything more than this. In any case, the
* place to do this is in the GL state tracker, not the poor
* driver.
*/
emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
break;
}
case ir_binop_add:
emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
break;
case ir_binop_sub:
emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
break;
case ir_binop_mul:
emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_div:
if (result_dst.type == GLSL_TYPE_FLOAT)
assert(!"not reached: should be handled by ir_div_to_mul_rcp");
else
emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
break;
case ir_binop_mod:
if (result_dst.type == GLSL_TYPE_FLOAT)
assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
else
emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
break;
case ir_binop_less:
emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
break;
case ir_binop_greater:
emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
break;
case ir_binop_lequal:
emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
break;
case ir_binop_gequal:
emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
break;
case ir_binop_equal:
emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
break;
case ir_binop_nequal:
emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
break;
case ir_binop_all_equal:
/* "==" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
st_src_reg temp = get_temp(native_integers ?
glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
glsl_type::vec4_type);
if (native_integers) {
st_dst_reg temp_dst = st_dst_reg(temp);
st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
/* Emit 1-3 AND operations to combine the SEQ results. */
switch (ir->operands[0]->type->vector_elements) {
case 2:
break;
case 3:
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_YYYY;
temp2.swizzle = SWIZZLE_ZZZZ;
emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
break;
case 4:
temp_dst.writemask = WRITEMASK_X;
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_ZZZZ;
temp2.swizzle = SWIZZLE_WWWW;
emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
}
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
} else {
emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero becomes 1.0, and positive values become zero.
*/
emit_dp(ir, result_dst, temp, temp, vector_elements);
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero becomes 1.0, and negative values become zero.
* This is achieved using SGE.
*/
st_src_reg sge_src = result_src;
sge_src.negate = ~sge_src.negate;
emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
}
} else {
emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
}
break;
case ir_binop_any_nequal:
/* "!=" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
st_src_reg temp = get_temp(native_integers ?
glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
glsl_type::vec4_type);
emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
if (native_integers) {
st_dst_reg temp_dst = st_dst_reg(temp);
st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
/* Emit 1-3 OR operations to combine the SNE results. */
switch (ir->operands[0]->type->vector_elements) {
case 2:
break;
case 3:
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_YYYY;
temp2.swizzle = SWIZZLE_ZZZZ;
emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
break;
case 4:
temp_dst.writemask = WRITEMASK_X;
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
temp_dst.writemask = WRITEMASK_Y;
temp1.swizzle = SWIZZLE_ZZZZ;
temp2.swizzle = SWIZZLE_WWWW;
emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
}
temp1.swizzle = SWIZZLE_XXXX;
temp2.swizzle = SWIZZLE_YYYY;
emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
} else {
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero stays zero, and positive values become 1.0.
*/
glsl_to_tgsi_instruction *const dp =
emit_dp(ir, result_dst, temp, temp, vector_elements);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate.
*/
dp->saturate = true;
} else {
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero stays zero, and negative values become 1.0. This
* achieved using SLT.
*/
st_src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
}
}
} else {
emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
}
break;
case ir_unop_any: {
assert(ir->operands[0]->type->is_vector());
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero stays zero, and positive values become 1.0.
*/
glsl_to_tgsi_instruction *const dp =
emit_dp(ir, result_dst, op[0], op[0],
ir->operands[0]->type->vector_elements);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
result_dst.type == GLSL_TYPE_FLOAT) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate.
*/
dp->saturate = true;
} else if (result_dst.type == GLSL_TYPE_FLOAT) {
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero stays zero, and negative values become 1.0. This
* is achieved using SLT.
*/
st_src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
}
else {
/* Use SNE 0 if integers are being used as boolean values. */
emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
}
break;
}
case ir_binop_logic_xor:
if (native_integers)
emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
else
emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
break;
case ir_binop_logic_or: {
if (native_integers) {
/* If integers are used as booleans, we can use an actual "or"
* instruction.
*/
assert(native_integers);
emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
} else {
/* After the addition, the value will be an integer on the
* range [0,2]. Zero stays zero, and positive values become 1.0.
*/
glsl_to_tgsi_instruction *add =
emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate if floats are being used as boolean values.
*/
add->saturate = true;
} else {
/* Negating the result of the addition gives values on the range
* [-2, 0]. Zero stays zero, and negative values become 1.0. This
* is achieved using SLT.
*/
st_src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
}
}
break;
}
case ir_binop_logic_and:
/* If native integers are disabled, the bool args are stored as float 0.0
* or 1.0, so "mul" gives us "and". If they're enabled, just use the
* actual AND opcode.
*/
if (native_integers)
emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
else
emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_dot:
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[0]->type == ir->operands[1]->type);
emit_dp(ir, result_dst, op[0], op[1],
ir->operands[0]->type->vector_elements);
break;
case ir_unop_sqrt:
/* sqrt(x) = x * rsq(x). */
emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
/* For incoming channels <= 0, set the result to 0. */
op[0].negate = ~op[0].negate;
emit(ir, TGSI_OPCODE_CMP, result_dst,
op[0], result_src, st_src_reg_for_float(0.0));
break;
case ir_unop_rsq:
emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
break;
case ir_unop_i2f:
if (native_integers) {
emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
break;
}
/* fallthrough to next case otherwise */
case ir_unop_b2f:
if (native_integers) {
emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
break;
}
/* fallthrough to next case otherwise */
case ir_unop_i2u:
case ir_unop_u2i:
/* Converting between signed and unsigned integers is a no-op. */
result_src = op[0];
break;
case ir_unop_b2i:
if (native_integers) {
/* Booleans are stored as integers using ~0 for true and 0 for false.
* GLSL requires that int(bool) return 1 for true and 0 for false.
* This conversion is done with AND, but it could be done with NEG.
*/
emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
} else {
/* Booleans and integers are both stored as floats when native
* integers are disabled.
*/
result_src = op[0];
}
break;
case ir_unop_f2i:
if (native_integers)
emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
else
emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_f2b:
emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
break;
case ir_unop_i2b:
if (native_integers)
emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
else
emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
break;
case ir_unop_trunc:
emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_ceil:
op[0].negate = ~op[0].negate;
emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
result_src.negate = ~result_src.negate;
break;
case ir_unop_floor:
emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
break;
case ir_unop_round_even:
emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
break;
case ir_unop_fract:
emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
break;
case ir_binop_min:
emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
break;
case ir_binop_max:
emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
break;
case ir_binop_pow:
emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
break;
case ir_unop_bit_not:
if (native_integers) {
emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
break;
}
case ir_unop_u2f:
if (native_integers) {
emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
break;
}
case ir_binop_lshift:
if (native_integers) {
emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
break;
}
case ir_binop_rshift:
if (native_integers) {
emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
break;
}
case ir_binop_bit_and:
if (native_integers) {
emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
break;
}
case ir_binop_bit_xor:
if (native_integers) {
emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
break;
}
case ir_binop_bit_or:
if (native_integers) {
emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
break;
}
assert(!"GLSL 1.30 features unsupported");
break;
case ir_quadop_vector:
/* This operation should have already been handled.
*/
assert(!"Should not get here.");
break;
}
this->result = result_src;
}
void
glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
{
st_src_reg src;
int i;
int swizzle[4];
/* Note that this is only swizzles in expressions, not those on the left
* hand side of an assignment, which do write masking. See ir_assignment
* for that.
*/
ir->val->accept(this);
src = this->result;
assert(src.file != PROGRAM_UNDEFINED);
for (i = 0; i < 4; i++) {
if (i < ir->type->vector_elements) {
switch (i) {
case 0:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
break;
case 1:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
break;
case 2:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
break;
case 3:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
break;
}
} else {
/* If the type is smaller than a vec4, replicate the last
* channel out.
*/
swizzle[i] = swizzle[ir->type->vector_elements - 1];
}
}
src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
this->result = src;
}
void
glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
{
variable_storage *entry = find_variable_storage(ir->var);
ir_variable *var = ir->var;
if (!entry) {
switch (var->mode) {
case ir_var_uniform:
entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
var->location);
this->variables.push_tail(entry);
break;
case ir_var_in:
case ir_var_inout:
/* The linker assigns locations for varyings and attributes,
* including deprecated builtins (like gl_Color), user-assign
* generic attributes (glBindVertexLocation), and
* user-defined varyings.
*
* FINISHME: We would hit this path for function arguments. Fix!
*/
assert(var->location != -1);
entry = new(mem_ctx) variable_storage(var,
PROGRAM_INPUT,
var->location);
break;
case ir_var_out:
assert(var->location != -1);
entry = new(mem_ctx) variable_storage(var,
PROGRAM_OUTPUT,
var->location + var->index);
break;
case ir_var_system_value:
entry = new(mem_ctx) variable_storage(var,
PROGRAM_SYSTEM_VALUE,
var->location);
break;
case ir_var_auto:
case ir_var_temporary:
entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
this->next_temp);
this->variables.push_tail(entry);
next_temp += type_size(var->type);
break;
}
if (!entry) {
printf("Failed to make storage for %s\n", var->name);
exit(1);
}
}
this->result = st_src_reg(entry->file, entry->index, var->type);
if (!native_integers)
this->result.type = GLSL_TYPE_FLOAT;
}
void
glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
{
ir_constant *index;
st_src_reg src;
int element_size = type_size(ir->type);
index = ir->array_index->constant_expression_value();
ir->array->accept(this);
src = this->result;
if (index) {
src.index += index->value.i[0] * element_size;
} else {
/* Variable index array dereference. It eats the "vec4" of the
* base of the array and an index that offsets the TGSI register
* index.
*/
ir->array_index->accept(this);
st_src_reg index_reg;
if (element_size == 1) {
index_reg = this->result;
} else {
index_reg = get_temp(native_integers ?
glsl_type::int_type : glsl_type::float_type);
emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
this->result, st_src_reg_for_type(index_reg.type, element_size));
}
/* If there was already a relative address register involved, add the
* new and the old together to get the new offset.
*/
if (src.reladdr != NULL) {
st_src_reg accum_reg = get_temp(native_integers ?
glsl_type::int_type : glsl_type::float_type);
emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
index_reg, *src.reladdr);
index_reg = accum_reg;
}
src.reladdr = ralloc(mem_ctx, st_src_reg);
memcpy(src.reladdr, &index_reg, sizeof(index_reg));
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector())
src.swizzle = swizzle_for_size(ir->type->vector_elements);
else
src.swizzle = SWIZZLE_NOOP;
this->result = src;
}
void
glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
{
unsigned int i;
const glsl_type *struct_type = ir->record->type;
int offset = 0;
ir->record->accept(this);
for (i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
offset += type_size(struct_type->fields.structure[i].type);
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector())
this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
else
this->result.swizzle = SWIZZLE_NOOP;
this->result.index += offset;
}
/**
* We want to be careful in assignment setup to hit the actual storage
* instead of potentially using a temporary like we might with the
* ir_dereference handler.
*/
static st_dst_reg
get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
{
/* The LHS must be a dereference. If the LHS is a variable indexed array
* access of a vector, it must be separated into a series conditional moves
* before reaching this point (see ir_vec_index_to_cond_assign).
*/
assert(ir->as_dereference());
ir_dereference_array *deref_array = ir->as_dereference_array();
if (deref_array) {
assert(!deref_array->array->type->is_vector());
}
/* Use the rvalue deref handler for the most part. We'll ignore
* swizzles in it and write swizzles using writemask, though.
*/
ir->accept(v);
return st_dst_reg(v->result);
}
/**
* Process the condition of a conditional assignment
*
* Examines the condition of a conditional assignment to generate the optimal
* first operand of a \c CMP instruction. If the condition is a relational
* operator with 0 (e.g., \c ir_binop_less), the value being compared will be
* used as the source for the \c CMP instruction. Otherwise the comparison
* is processed to a boolean result, and the boolean result is used as the
* operand to the CMP instruction.
*/
bool
glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
{
ir_rvalue *src_ir = ir;
bool negate = true;
bool switch_order = false;
ir_expression *const expr = ir->as_expression();
if ((expr != NULL) && (expr->get_num_operands() == 2)) {
bool zero_on_left = false;
if (expr->operands[0]->is_zero()) {
src_ir = expr->operands[1];
zero_on_left = true;
} else if (expr->operands[1]->is_zero()) {
src_ir = expr->operands[0];
zero_on_left = false;
}
/* a is - 0 + - 0 +
* (a < 0) T F F ( a < 0) T F F
* (0 < a) F F T (-a < 0) F F T
* (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
* (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
* (a > 0) F F T (-a < 0) F F T
* (0 > a) T F F ( a < 0) T F F
* (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
* (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
*
* Note that exchanging the order of 0 and 'a' in the comparison simply
* means that the value of 'a' should be negated.
*/
if (src_ir != ir) {
switch (expr->operation) {
case ir_binop_less:
switch_order = false;
negate = zero_on_left;
break;
case ir_binop_greater:
switch_order = false;
negate = !zero_on_left;
break;
case ir_binop_lequal:
switch_order = true;
negate = !zero_on_left;
break;
case ir_binop_gequal:
switch_order = true;
negate = zero_on_left;
break;
default:
/* This isn't the right kind of comparison afterall, so make sure
* the whole condition is visited.
*/
src_ir = ir;
break;
}
}
}
src_ir->accept(this);
/* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
* condition we produced is 0.0 or 1.0. By flipping the sign, we can
* choose which value TGSI_OPCODE_CMP produces without an extra instruction
* computing the condition.
*/
if (negate)
this->result.negate = ~this->result.negate;
return switch_order;
}
void
glsl_to_tgsi_visitor::visit(ir_assignment *ir)
{
st_dst_reg l;
st_src_reg r;
int i;
ir->rhs->accept(this);
r = this->result;
l = get_assignment_lhs(ir->lhs, this);
/* FINISHME: This should really set to the correct maximal writemask for each
* FINISHME: component written (in the loops below). This case can only
* FINISHME: occur for matrices, arrays, and structures.
*/
if (ir->write_mask == 0) {
assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
l.writemask = WRITEMASK_XYZW;
} else if (ir->lhs->type->is_scalar() &&
ir->lhs->variable_referenced()->mode == ir_var_out) {
/* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
* FINISHME: W component of fragment shader output zero, work correctly.
*/
l.writemask = WRITEMASK_XYZW;
} else {
int swizzles[4];
int first_enabled_chan = 0;
int rhs_chan = 0;
l.writemask = ir->write_mask;
for (int i = 0; i < 4; i++) {
if (l.writemask & (1 << i)) {
first_enabled_chan = GET_SWZ(r.swizzle, i);
break;
}
}
/* Swizzle a small RHS vector into the channels being written.
*
* glsl ir treats write_mask as dictating how many channels are
* present on the RHS while TGSI treats write_mask as just
* showing which channels of the vec4 RHS get written.
*/
for (int i = 0; i < 4; i++) {
if (l.writemask & (1 << i))
swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
else
swizzles[i] = first_enabled_chan;
}
r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
}
assert(l.file != PROGRAM_UNDEFINED);
assert(r.file != PROGRAM_UNDEFINED);
if (ir->condition) {
const bool switch_order = this->process_move_condition(ir->condition);
st_src_reg condition = this->result;
for (i = 0; i < type_size(ir->lhs->type); i++) {
st_src_reg l_src = st_src_reg(l);
st_src_reg condition_temp = condition;
l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
if (native_integers) {
/* This is necessary because TGSI's CMP instruction expects the
* condition to be a float, and we store booleans as integers.
* If TGSI had a UCMP instruction or similar, this extra
* instruction would not be necessary.
*/
condition_temp = get_temp(glsl_type::vec4_type);
condition.negate = 0;
emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
condition_temp.swizzle = condition.swizzle;
}
if (switch_order) {
emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
} else {
emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
}
l.index++;
r.index++;
}
} else if (ir->rhs->as_expression() &&
this->instructions.get_tail() &&
ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
type_size(ir->lhs->type) == 1 &&
l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
/* To avoid emitting an extra MOV when assigning an expression to a
* variable, emit the last instruction of the expression again, but
* replace the destination register with the target of the assignment.
* Dead code elimination will remove the original instruction.
*/
glsl_to_tgsi_instruction *inst, *new_inst;
inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
new_inst->saturate = inst->saturate;
inst->dead_mask = inst->dst.writemask;
} else {
for (i = 0; i < type_size(ir->lhs->type); i++) {
emit(ir, TGSI_OPCODE_MOV, l, r);
l.index++;
r.index++;
}
}
}
void
glsl_to_tgsi_visitor::visit(ir_constant *ir)
{
st_src_reg src;
GLfloat stack_vals[4] = { 0 };
gl_constant_value *values = (gl_constant_value *) stack_vals;
GLenum gl_type = GL_NONE;
unsigned int i;
static int in_array = 0;
gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
/* Unfortunately, 4 floats is all we can get into
* _mesa_add_typed_unnamed_constant. So, make a temp to store an
* aggregate constant and move each constant value into it. If we
* get lucky, copy propagation will eliminate the extra moves.
*/
if (ir->type->base_type == GLSL_TYPE_STRUCT) {
st_src_reg temp_base = get_temp(ir->type);
st_dst_reg temp = st_dst_reg(temp_base);
foreach_iter(exec_list_iterator, iter, ir->components) {
ir_constant *field_value = (ir_constant *)iter.get();
int size = type_size(field_value->type);
assert(size > 0);
field_value->accept(this);
src = this->result;
for (i = 0; i < (unsigned int)size; i++) {
emit(ir, TGSI_OPCODE_MOV, temp, src);
src.index++;
temp.index++;
}
}
this->result = temp_base;
return;
}
if (ir->type->is_array()) {
st_src_reg temp_base = get_temp(ir->type);
st_dst_reg temp = st_dst_reg(temp_base);
int size = type_size(ir->type->fields.array);
assert(size > 0);
in_array++;
for (i = 0; i < ir->type->length; i++) {
ir->array_elements[i]->accept(this);
src = this->result;
for (int j = 0; j < size; j++) {
emit(ir, TGSI_OPCODE_MOV, temp, src);
src.index++;
temp.index++;
}
}
this->result = temp_base;
in_array--;
return;
}
if (ir->type->is_matrix()) {
st_src_reg mat = get_temp(ir->type);
st_dst_reg mat_column = st_dst_reg(mat);
for (i = 0; i < ir->type->matrix_columns; i++) {
assert(ir->type->base_type == GLSL_TYPE_FLOAT);
values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
src = st_src_reg(file, -1, ir->type->base_type);
src.index = add_constant(file,
values,
ir->type->vector_elements,
GL_FLOAT,
&src.swizzle);
emit(ir, TGSI_OPCODE_MOV, mat_column, src);
mat_column.index++;
}
this->result = mat;
return;
}
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
gl_type = GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
values[i].f = ir->value.f[i];
}
break;
case GLSL_TYPE_UINT:
gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
if (native_integers)
values[i].u = ir->value.u[i];
else
values[i].f = ir->value.u[i];
}
break;
case GLSL_TYPE_INT:
gl_type = native_integers ? GL_INT : GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
if (native_integers)
values[i].i = ir->value.i[i];
else
values[i].f = ir->value.i[i];
}
break;
case GLSL_TYPE_BOOL:
gl_type = native_integers ? GL_BOOL : GL_FLOAT;
for (i = 0; i < ir->type->vector_elements; i++) {
if (native_integers)
values[i].u = ir->value.b[i] ? ~0 : 0;
else
values[i].f = ir->value.b[i];
}
break;
default:
assert(!"Non-float/uint/int/bool constant");
}
this->result = st_src_reg(file, -1, ir->type);
this->result.index = add_constant(file,
values,
ir->type->vector_elements,
gl_type,
&this->result.swizzle);
}
function_entry *
glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
{
function_entry *entry;
foreach_iter(exec_list_iterator, iter, this->function_signatures) {
entry = (function_entry *)iter.get();
if (entry->sig == sig)
return entry;
}
entry = ralloc(mem_ctx, function_entry);
entry->sig = sig;
entry->sig_id = this->next_signature_id++;
entry->bgn_inst = NULL;
/* Allocate storage for all the parameters. */
foreach_iter(exec_list_iterator, iter, sig->parameters) {
ir_variable *param = (ir_variable *)iter.get();
variable_storage *storage;
storage = find_variable_storage(param);
assert(!storage);
storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
this->next_temp);
this->variables.push_tail(storage);
this->next_temp += type_size(param->type);
}
if (!sig->return_type->is_void()) {
entry->return_reg = get_temp(sig->return_type);
} else {
entry->return_reg = undef_src;
}
this->function_signatures.push_tail(entry);
return entry;
}
void
glsl_to_tgsi_visitor::visit(ir_call *ir)
{
glsl_to_tgsi_instruction *call_inst;
ir_function_signature *sig = ir->callee;
function_entry *entry = get_function_signature(sig);
int i;
/* Process in parameters. */
exec_list_iterator sig_iter = sig->parameters.iterator();
foreach_iter(exec_list_iterator, iter, *ir) {
ir_rvalue *param_rval = (ir_rvalue *)iter.get();
ir_variable *param = (ir_variable *)sig_iter.get();
if (param->mode == ir_var_in ||
param->mode == ir_var_inout) {
variable_storage *storage = find_variable_storage(param);
assert(storage);
param_rval->accept(this);
st_src_reg r = this->result;
st_dst_reg l;
l.file = storage->file;
l.index = storage->index;
l.reladdr = NULL;
l.writemask = WRITEMASK_XYZW;
l.cond_mask = COND_TR;
for (i = 0; i < type_size(param->type); i++) {
emit(ir, TGSI_OPCODE_MOV, l, r);
l.index++;
r.index++;
}
}
sig_iter.next();
}
assert(!sig_iter.has_next());
/* Emit call instruction */
call_inst = emit(ir, TGSI_OPCODE_CAL);
call_inst->function = entry;
/* Process out parameters. */
sig_iter = sig->parameters.iterator();
foreach_iter(exec_list_iterator, iter, *ir) {
ir_rvalue *param_rval = (ir_rvalue *)iter.get();
ir_variable *param = (ir_variable *)sig_iter.get();
if (param->mode == ir_var_out ||
param->mode == ir_var_inout) {
variable_storage *storage = find_variable_storage(param);
assert(storage);
st_src_reg r;
r.file = storage->file;
r.index = storage->index;
r.reladdr = NULL;
r.swizzle = SWIZZLE_NOOP;
r.negate = 0;
param_rval->accept(this);
st_dst_reg l = st_dst_reg(this->result);
for (i = 0; i < type_size(param->type); i++) {
emit(ir, TGSI_OPCODE_MOV, l, r);
l.index++;
r.index++;
}
}
sig_iter.next();
}
assert(!sig_iter.has_next());
/* Process return value. */
this->result = entry->return_reg;
}
void
glsl_to_tgsi_visitor::visit(ir_texture *ir)
{
st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
st_dst_reg result_dst, coord_dst;
glsl_to_tgsi_instruction *inst = NULL;
unsigned opcode = TGSI_OPCODE_NOP;
if (ir->coordinate) {
ir->coordinate->accept(this);
/* Put our coords in a temp. We'll need to modify them for shadow,
* projection, or LOD, so the only case we'd use it as is is if
* we're doing plain old texturing. The optimization passes on
* glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
*/
coord = get_temp(glsl_type::vec4_type);
coord_dst = st_dst_reg(coord);
emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
}
if (ir->projector) {
ir->projector->accept(this);
projector = this->result;
}
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
result_src = get_temp(glsl_type::vec4_type);
result_dst = st_dst_reg(result_src);
switch (ir->op) {
case ir_tex:
opcode = TGSI_OPCODE_TEX;
break;
case ir_txb:
opcode = TGSI_OPCODE_TXB;
ir->lod_info.bias->accept(this);
lod_info = this->result;
break;
case ir_txl:
opcode = TGSI_OPCODE_TXL;
ir->lod_info.lod->accept(this);
lod_info = this->result;
break;
case ir_txd:
opcode = TGSI_OPCODE_TXD;
ir->lod_info.grad.dPdx->accept(this);
dx = this->result;
ir->lod_info.grad.dPdy->accept(this);
dy = this->result;
break;
case ir_txs:
opcode = TGSI_OPCODE_TXQ;
ir->lod_info.lod->accept(this);
lod_info = this->result;
break;
case ir_txf:
opcode = TGSI_OPCODE_TXF;
ir->lod_info.lod->accept(this);
lod_info = this->result;
if (ir->offset) {
ir->offset->accept(this);
offset = this->result;
}
break;
}
const glsl_type *sampler_type = ir->sampler->type;
if (ir->projector) {
if (opcode == TGSI_OPCODE_TEX) {
/* Slot the projector in as the last component of the coord. */
coord_dst.writemask = WRITEMASK_W;
emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
coord_dst.writemask = WRITEMASK_XYZW;
opcode = TGSI_OPCODE_TXP;
} else {
st_src_reg coord_w = coord;
coord_w.swizzle = SWIZZLE_WWWW;
/* For the other TEX opcodes there's no projective version
* since the last slot is taken up by LOD info. Do the
* projective divide now.
*/
coord_dst.writemask = WRITEMASK_W;
emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
/* In the case where we have to project the coordinates "by hand,"
* the shadow comparator value must also be projected.
*/
st_src_reg tmp_src = coord;
if (ir->shadow_comparitor) {
/* Slot the shadow value in as the second to last component of the
* coord.
*/
ir->shadow_comparitor->accept(this);
tmp_src = get_temp(glsl_type::vec4_type);
st_dst_reg tmp_dst = st_dst_reg(tmp_src);
/* Projective division not allowed for array samplers. */
assert(!sampler_type->sampler_array);
tmp_dst.writemask = WRITEMASK_Z;
emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
tmp_dst.writemask = WRITEMASK_XY;
emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
}
coord_dst.writemask = WRITEMASK_XYZ;
emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
coord_dst.writemask = WRITEMASK_XYZW;
coord.swizzle = SWIZZLE_XYZW;
}
}
/* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
* comparator was put in the correct place (and projected) by the code,
* above, that handles by-hand projection.
*/
if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
/* Slot the shadow value in as the second to last component of the
* coord.
*/
ir->shadow_comparitor->accept(this);
/* XXX This will need to be updated for cubemap array samplers. */
if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
sampler_type->sampler_array) ||
sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
coord_dst.writemask = WRITEMASK_W;
} else {
coord_dst.writemask = WRITEMASK_Z;
}
emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
coord_dst.writemask = WRITEMASK_XYZW;
}
if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
opcode == TGSI_OPCODE_TXF) {
/* TGSI stores LOD or LOD bias in the last channel of the coords. */
coord_dst.writemask = WRITEMASK_W;
emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
coord_dst.writemask = WRITEMASK_XYZW;
}
if (opcode == TGSI_OPCODE_TXD)
inst = emit(ir, opcode, result_dst, coord, dx, dy);
else if (opcode == TGSI_OPCODE_TXQ)
inst = emit(ir, opcode, result_dst, lod_info);
else if (opcode == TGSI_OPCODE_TXF) {
inst = emit(ir, opcode, result_dst, coord);
} else
inst = emit(ir, opcode, result_dst, coord);
if (ir->shadow_comparitor)
inst->tex_shadow = GL_TRUE;
inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
this->shader_program,
this->prog);
if (ir->offset) {
inst->tex_offset_num_offset = 1;
inst->tex_offsets[0].Index = offset.index;
inst->tex_offsets[0].File = offset.file;
inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
}
switch (sampler_type->sampler_dimensionality) {
case GLSL_SAMPLER_DIM_1D:
inst->tex_target = (sampler_type->sampler_array)
? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
break;
case GLSL_SAMPLER_DIM_2D:
inst->tex_target = (sampler_type->sampler_array)
? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
break;
case GLSL_SAMPLER_DIM_3D:
inst->tex_target = TEXTURE_3D_INDEX;
break;
case GLSL_SAMPLER_DIM_CUBE:
inst->tex_target = TEXTURE_CUBE_INDEX;
break;
case GLSL_SAMPLER_DIM_RECT:
inst->tex_target = TEXTURE_RECT_INDEX;
break;
case GLSL_SAMPLER_DIM_BUF:
assert(!"FINISHME: Implement ARB_texture_buffer_object");
break;
case GLSL_SAMPLER_DIM_EXTERNAL:
inst->tex_target = TEXTURE_EXTERNAL_INDEX;
break;
default:
assert(!"Should not get here.");
}
this->result = result_src;
}
void
glsl_to_tgsi_visitor::visit(ir_return *ir)
{
if (ir->get_value()) {
st_dst_reg l;
int i;
assert(current_function);
ir->get_value()->accept(this);
st_src_reg r = this->result;
l = st_dst_reg(current_function->return_reg);
for (i = 0; i < type_size(current_function->sig->return_type); i++) {
emit(ir, TGSI_OPCODE_MOV, l, r);
l.index++;
r.index++;
}
}
emit(ir, TGSI_OPCODE_RET);
}
void
glsl_to_tgsi_visitor::visit(ir_discard *ir)
{
struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
if (ir->condition) {
ir->condition->accept(this);
this->result.negate = ~this->result.negate;
emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
} else {
emit(ir, TGSI_OPCODE_KILP);
}
fp->UsesKill = GL_TRUE;
}
void
glsl_to_tgsi_visitor::visit(ir_if *ir)
{
glsl_to_tgsi_instruction *cond_inst, *if_inst;
glsl_to_tgsi_instruction *prev_inst;
prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
ir->condition->accept(this);
assert(this->result.file != PROGRAM_UNDEFINED);
if (this->options->EmitCondCodes) {
cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
/* See if we actually generated any instruction for generating
* the condition. If not, then cook up a move to a temp so we
* have something to set cond_update on.
*/
if (cond_inst == prev_inst) {
st_src_reg temp = get_temp(glsl_type::bool_type);
cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
}
cond_inst->cond_update = GL_TRUE;
if_inst = emit(ir->condition, TGSI_OPCODE_IF);
if_inst->dst.cond_mask = COND_NE;
} else {
if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
}
this->instructions.push_tail(if_inst);
visit_exec_list(&ir->then_instructions, this);
if (!ir->else_instructions.is_empty()) {
emit(ir->condition, TGSI_OPCODE_ELSE);
visit_exec_list(&ir->else_instructions, this);
}
if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
}
glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
{
result.file = PROGRAM_UNDEFINED;
next_temp = 1;
next_signature_id = 1;
num_immediates = 0;
current_function = NULL;
num_address_regs = 0;
indirect_addr_temps = false;
indirect_addr_consts = false;
mem_ctx = ralloc_context(NULL);
ctx = NULL;
prog = NULL;
shader_program = NULL;
options = NULL;
}
glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
{
ralloc_free(mem_ctx);
}
extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
{
delete v;
}
/**
* Count resources used by the given gpu program (number of texture
* samplers, etc).
*/
static void
count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
{
v->samplers_used = 0;
foreach_iter(exec_list_iterator, iter, v->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
if (is_tex_instruction(inst->op)) {
v->samplers_used |= 1 << inst->sampler;
if (inst->tex_shadow) {
prog->ShadowSamplers |= 1 << inst->sampler;
}
}
}
prog->SamplersUsed = v->samplers_used;
if (v->shader_program != NULL)
_mesa_update_shader_textures_used(v->shader_program, prog);
}
static void
set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
struct gl_shader_program *shader_program,
const char *name, const glsl_type *type,
ir_constant *val)
{
if (type->is_record()) {
ir_constant *field_constant;
field_constant = (ir_constant *)val->components.get_head();
for (unsigned int i = 0; i < type->length; i++) {
const glsl_type *field_type = type->fields.structure[i].type;
const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
type->fields.structure[i].name);
set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
field_type, field_constant);
field_constant = (ir_constant *)field_constant->next;
}
return;
}
int loc = _mesa_get_uniform_location(ctx, shader_program, name);
if (loc == -1) {
fail_link(shader_program,
"Couldn't find uniform for initializer %s\n", name);
return;
}
for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
ir_constant *element;
const glsl_type *element_type;
if (type->is_array()) {
element = val->array_elements[i];
element_type = type->fields.array;
} else {
element = val;
element_type = type;
}
void *values;
if (element_type->base_type == GLSL_TYPE_BOOL) {
int *conv = ralloc_array(mem_ctx, int, element_type->components());
for (unsigned int j = 0; j < element_type->components(); j++) {
conv[j] = element->value.b[j];
}
values = (void *)conv;
element_type = glsl_type::get_instance(GLSL_TYPE_INT,
element_type->vector_elements,
1);
} else {
values = &element->value;
}
if (element_type->is_matrix()) {
_mesa_uniform_matrix(ctx, shader_program,
element_type->matrix_columns,
element_type->vector_elements,
loc, 1, GL_FALSE, (GLfloat *)values);
} else {
_mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
values, element_type->gl_type);
}
loc++;
}
}
/**
* Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
* are read from the given src in this instruction
*/
static int
get_src_arg_mask(st_dst_reg dst, st_src_reg src)
{
int read_mask = 0, comp;
/* Now, given the src swizzle and the written channels, find which
* components are actually read
*/
for (comp = 0; comp < 4; ++comp) {
const unsigned coord = GET_SWZ(src.swizzle, comp);
ASSERT(coord < 4);
if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
read_mask |= 1 << coord;
}
return read_mask;
}
/**
* This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
* instruction is the first instruction to write to register T0. There are
* several lowering passes done in GLSL IR (e.g. branches and
* relative addressing) that create a large number of conditional assignments
* that ir_to_mesa converts to CMP instructions like the one mentioned above.
*
* Here is why this conversion is safe:
* CMP T0, T1 T2 T0 can be expanded to:
* if (T1 < 0.0)
* MOV T0, T2;
* else
* MOV T0, T0;
*
* If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
* as the original program. If (T1 < 0.0) evaluates to false, executing
* MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
* Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
* because any instruction that was going to read from T0 after this was going
* to read a garbage value anyway.
*/
void
glsl_to_tgsi_visitor::simplify_cmp(void)
{
unsigned *tempWrites;
unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
tempWrites = new unsigned[MAX_TEMPS];
if (!tempWrites) {
return;
}
memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
memset(outputWrites, 0, sizeof(outputWrites));
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
unsigned prevWriteMask = 0;
/* Give up if we encounter relative addressing or flow control. */
if (inst->dst.reladdr ||
tgsi_get_opcode_info(inst->op)->is_branch ||
inst->op == TGSI_OPCODE_BGNSUB ||
inst->op == TGSI_OPCODE_CONT ||
inst->op == TGSI_OPCODE_END ||
inst->op == TGSI_OPCODE_ENDSUB ||
inst->op == TGSI_OPCODE_RET) {
break;
}
if (inst->dst.file == PROGRAM_OUTPUT) {
assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
prevWriteMask = outputWrites[inst->dst.index];
outputWrites[inst->dst.index] |= inst->dst.writemask;
} else if (inst->dst.file == PROGRAM_TEMPORARY) {
assert(inst->dst.index < MAX_TEMPS);
prevWriteMask = tempWrites[inst->dst.index];
tempWrites[inst->dst.index] |= inst->dst.writemask;
}
/* For a CMP to be considered a conditional write, the destination
* register and source register two must be the same. */
if (inst->op == TGSI_OPCODE_CMP
&& !(inst->dst.writemask & prevWriteMask)
&& inst->src[2].file == inst->dst.file
&& inst->src[2].index == inst->dst.index
&& inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
inst->op = TGSI_OPCODE_MOV;
inst->src[0] = inst->src[1];
}
}
delete [] tempWrites;
}
/* Replaces all references to a temporary register index with another index. */
void
glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
{
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
unsigned j;
for (j=0; j < num_inst_src_regs(inst->op); j++) {
if (inst->src[j].file == PROGRAM_TEMPORARY &&
inst->src[j].index == index) {
inst->src[j].index = new_index;
}
}
if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
inst->dst.index = new_index;
}
}
}
int
glsl_to_tgsi_visitor::get_first_temp_read(int index)
{
int depth = 0; /* loop depth */
int loop_start = -1; /* index of the first active BGNLOOP (if any) */
unsigned i = 0, j;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
for (j=0; j < num_inst_src_regs(inst->op); j++) {
if (inst->src[j].file == PROGRAM_TEMPORARY &&
inst->src[j].index == index) {
return (depth == 0) ? i : loop_start;
}
}
if (inst->op == TGSI_OPCODE_BGNLOOP) {
if(depth++ == 0)
loop_start = i;
} else if (inst->op == TGSI_OPCODE_ENDLOOP) {
if (--depth == 0)
loop_start = -1;
}
assert(depth >= 0);
i++;
}
return -1;
}
int
glsl_to_tgsi_visitor::get_first_temp_write(int index)
{
int depth = 0; /* loop depth */
int loop_start = -1; /* index of the first active BGNLOOP (if any) */
int i = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
return (depth == 0) ? i : loop_start;
}
if (inst->op == TGSI_OPCODE_BGNLOOP) {
if(depth++ == 0)
loop_start = i;
} else if (inst->op == TGSI_OPCODE_ENDLOOP) {
if (--depth == 0)
loop_start = -1;
}
assert(depth >= 0);
i++;
}
return -1;
}
int
glsl_to_tgsi_visitor::get_last_temp_read(int index)
{
int depth = 0; /* loop depth */
int last = -1; /* index of last instruction that reads the temporary */
unsigned i = 0, j;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
for (j=0; j < num_inst_src_regs(inst->op); j++) {
if (inst->src[j].file == PROGRAM_TEMPORARY &&
inst->src[j].index == index) {
last = (depth == 0) ? i : -2;
}
}
if (inst->op == TGSI_OPCODE_BGNLOOP)
depth++;
else if (inst->op == TGSI_OPCODE_ENDLOOP)
if (--depth == 0 && last == -2)
last = i;
assert(depth >= 0);
i++;
}
assert(last >= -1);
return last;
}
int
glsl_to_tgsi_visitor::get_last_temp_write(int index)
{
int depth = 0; /* loop depth */
int last = -1; /* index of last instruction that writes to the temporary */
int i = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
last = (depth == 0) ? i : -2;
if (inst->op == TGSI_OPCODE_BGNLOOP)
depth++;
else if (inst->op == TGSI_OPCODE_ENDLOOP)
if (--depth == 0 && last == -2)
last = i;
assert(depth >= 0);
i++;
}
assert(last >= -1);
return last;
}
/*
* On a basic block basis, tracks available PROGRAM_TEMPORARY register
* channels for copy propagation and updates following instructions to
* use the original versions.
*
* The glsl_to_tgsi_visitor lazily produces code assuming that this pass
* will occur. As an example, a TXP production before this pass:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
*
* and after:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*
* which allows for dead code elimination on TEMP[1]'s writes.
*/
void
glsl_to_tgsi_visitor::copy_propagate(void)
{
glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
glsl_to_tgsi_instruction *,
this->next_temp * 4);
int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
int level = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
assert(inst->dst.file != PROGRAM_TEMPORARY
|| inst->dst.index < this->next_temp);
/* First, do any copy propagation possible into the src regs. */
for (int r = 0; r < 3; r++) {
glsl_to_tgsi_instruction *first = NULL;
bool good = true;
int acp_base = inst->src[r].index * 4;
if (inst->src[r].file != PROGRAM_TEMPORARY ||
inst->src[r].reladdr)
continue;
/* See if we can find entries in the ACP consisting of MOVs
* from the same src register for all the swizzled channels
* of this src register reference.
*/
for (int i = 0; i < 4; i++) {
int src_chan = GET_SWZ(inst->src[r].swizzle, i);
glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
if (!copy_chan) {
good = false;
break;
}
assert(acp_level[acp_base + src_chan] <= level);
if (!first) {
first = copy_chan;
} else {
if (first->src[0].file != copy_chan->src[0].file ||
first->src[0].index != copy_chan->src[0].index) {
good = false;
break;
}
}
}
if (good) {
/* We've now validated that we can copy-propagate to
* replace this src register reference. Do it.
*/
inst->src[r].file = first->src[0].file;
inst->src[r].index = first->src[0].index;
int swizzle = 0;
for (int i = 0; i < 4; i++) {
int src_chan = GET_SWZ(inst->src[r].swizzle, i);
glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
(3 * i));
}
inst->src[r].swizzle = swizzle;
}
}
switch (inst->op) {
case TGSI_OPCODE_BGNLOOP:
case TGSI_OPCODE_ENDLOOP:
/* End of a basic block, clear the ACP entirely. */
memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
break;
case TGSI_OPCODE_IF:
++level;
break;
case TGSI_OPCODE_ENDIF:
case TGSI_OPCODE_ELSE:
/* Clear all channels written inside the block from the ACP, but
* leaving those that were not touched.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
if (acp_level[4 * r + c] >= level)
acp[4 * r + c] = NULL;
}
}
if (inst->op == TGSI_OPCODE_ENDIF)
--level;
break;
default:
/* Continuing the block, clear any written channels from
* the ACP.
*/
if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
/* Any temporary might be written, so no copy propagation
* across this instruction.
*/
memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
} else if (inst->dst.file == PROGRAM_OUTPUT &&
inst->dst.reladdr) {
/* Any output might be written, so no copy propagation
* from outputs across this instruction.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
acp[4 * r + c] = NULL;
}
}
} else if (inst->dst.file == PROGRAM_TEMPORARY ||
inst->dst.file == PROGRAM_OUTPUT) {
/* Clear where it's used as dst. */
if (inst->dst.file == PROGRAM_TEMPORARY) {
for (int c = 0; c < 4; c++) {
if (inst->dst.writemask & (1 << c)) {
acp[4 * inst->dst.index + c] = NULL;
}
}
}
/* Clear where it's used as src. */
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
if (acp[4 * r + c]->src[0].file == inst->dst.file &&
acp[4 * r + c]->src[0].index == inst->dst.index &&
inst->dst.writemask & (1 << src_chan))
{
acp[4 * r + c] = NULL;
}
}
}
}
break;
}
/* If this is a copy, add it to the ACP. */
if (inst->op == TGSI_OPCODE_MOV &&
inst->dst.file == PROGRAM_TEMPORARY &&
!inst->dst.reladdr &&
!inst->saturate &&
!inst->src[0].reladdr &&
!inst->src[0].negate) {
for (int i = 0; i < 4; i++) {
if (inst->dst.writemask & (1 << i)) {
acp[4 * inst->dst.index + i] = inst;
acp_level[4 * inst->dst.index + i] = level;
}
}
}
}
ralloc_free(acp_level);
ralloc_free(acp);
}
/*
* Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
*
* The glsl_to_tgsi_visitor lazily produces code assuming that this pass
* will occur. As an example, a TXP production after copy propagation but
* before this pass:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*
* and after this pass:
*
* 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*
* FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
* FIXME: doesn't eliminate all dead code inside of loops; it steps around them
*/
void
glsl_to_tgsi_visitor::eliminate_dead_code(void)
{
int i;
for (i=0; i < this->next_temp; i++) {
int last_read = get_last_temp_read(i);
int j = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
j > last_read)
{
iter.remove();
delete inst;
}
j++;
}
}
}
/*
* On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
* code elimination. This is less primitive than eliminate_dead_code(), as it
* is per-channel and can detect consecutive writes without a read between them
* as dead code. However, there is some dead code that can be eliminated by
* eliminate_dead_code() but not this function - for example, this function
* cannot eliminate an instruction writing to a register that is never read and
* is the only instruction writing to that register.
*
* The glsl_to_tgsi_visitor lazily produces code assuming that this pass
* will occur.
*/
int
glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
{
glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
glsl_to_tgsi_instruction *,
this->next_temp * 4);
int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
int level = 0;
int removed = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
assert(inst->dst.file != PROGRAM_TEMPORARY
|| inst->dst.index < this->next_temp);
switch (inst->op) {
case TGSI_OPCODE_BGNLOOP:
case TGSI_OPCODE_ENDLOOP:
case TGSI_OPCODE_CONT:
case TGSI_OPCODE_BRK:
/* End of a basic block, clear the write array entirely.
*
* This keeps us from killing dead code when the writes are
* on either side of a loop, even when the register isn't touched
* inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
* dead code of this type, so it shouldn't make a difference as long as
* the dead code elimination pass in the GLSL compiler does its job.
*/
memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
break;
case TGSI_OPCODE_ENDIF:
case TGSI_OPCODE_ELSE:
/* Promote the recorded level of all channels written inside the
* preceding if or else block to the level above the if/else block.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!writes[4 * r + c])
continue;
if (write_level[4 * r + c] == level)
write_level[4 * r + c] = level-1;
}
}
if(inst->op == TGSI_OPCODE_ENDIF)
--level;
break;
case TGSI_OPCODE_IF:
++level;
/* fallthrough to default case to mark the condition as read */
default:
/* Continuing the block, clear any channels from the write array that
* are read by this instruction.
*/
for (unsigned i = 0; i < Elements(inst->src); i++) {
if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
/* Any temporary might be read, so no dead code elimination
* across this instruction.
*/
memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
} else if (inst->src[i].file == PROGRAM_TEMPORARY) {
/* Clear where it's used as src. */
int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
for (int c = 0; c < 4; c++) {
if (src_chans & (1 << c)) {
writes[4 * inst->src[i].index + c] = NULL;
}
}
}
}
break;
}
/* If this instruction writes to a temporary, add it to the write array.
* If there is already an instruction in the write array for one or more
* of the channels, flag that channel write as dead.
*/
if (inst->dst.file == PROGRAM_TEMPORARY &&
!inst->dst.reladdr &&
!inst->saturate) {
for (int c = 0; c < 4; c++) {
if (inst->dst.writemask & (1 << c)) {
if (writes[4 * inst->dst.index + c]) {
if (write_level[4 * inst->dst.index + c] < level)
continue;
else
writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
}
writes[4 * inst->dst.index + c] = inst;
write_level[4 * inst->dst.index + c] = level;
}
}
}
}
/* Anything still in the write array at this point is dead code. */
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
glsl_to_tgsi_instruction *inst = writes[4 * r + c];
if (inst)
inst->dead_mask |= (1 << c);
}
}
/* Now actually remove the instructions that are completely dead and update
* the writemask of other instructions with dead channels.
*/
foreach_iter(exec_list_iterator, iter, this->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
if (!inst->dead_mask || !inst->dst.writemask)
continue;
else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
iter.remove();
delete inst;
removed++;
} else
inst->dst.writemask &= ~(inst->dead_mask);
}
ralloc_free(write_level);
ralloc_free(writes);
return removed;
}
/* Merges temporary registers together where possible to reduce the number of
* registers needed to run a program.
*
* Produces optimal code only after copy propagation and dead code elimination
* have been run. */
void
glsl_to_tgsi_visitor::merge_registers(void)
{
int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
int i, j;
/* Read the indices of the last read and first write to each temp register
* into an array so that we don't have to traverse the instruction list as
* much. */
for (i=0; i < this->next_temp; i++) {
last_reads[i] = get_last_temp_read(i);
first_writes[i] = get_first_temp_write(i);
}
/* Start looking for registers with non-overlapping usages that can be
* merged together. */
for (i=0; i < this->next_temp; i++) {
/* Don't touch unused registers. */
if (last_reads[i] < 0 || first_writes[i] < 0) continue;
for (j=0; j < this->next_temp; j++) {
/* Don't touch unused registers. */
if (last_reads[j] < 0 || first_writes[j] < 0) continue;
/* We can merge the two registers if the first write to j is after or
* in the same instruction as the last read from i. Note that the
* register at index i will always be used earlier or at the same time
* as the register at index j. */
if (first_writes[i] <= first_writes[j] &&
last_reads[i] <= first_writes[j])
{
rename_temp_register(j, i); /* Replace all references to j with i.*/
/* Update the first_writes and last_reads arrays with the new
* values for the merged register index, and mark the newly unused
* register index as such. */
last_reads[i] = last_reads[j];
first_writes[j] = -1;
last_reads[j] = -1;
}
}
}
ralloc_free(last_reads);
ralloc_free(first_writes);
}
/* Reassign indices to temporary registers by reusing unused indices created
* by optimization passes. */
void
glsl_to_tgsi_visitor::renumber_registers(void)
{
int i = 0;
int new_index = 0;
for (i=0; i < this->next_temp; i++) {
if (get_first_temp_read(i) < 0) continue;
if (i != new_index)
rename_temp_register(i, new_index);
new_index++;
}
this->next_temp = new_index;
}
/**
* Returns a fragment program which implements the current pixel transfer ops.
* Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
*/
extern "C" void
get_pixel_transfer_visitor(struct st_fragment_program *fp,
glsl_to_tgsi_visitor *original,
int scale_and_bias, int pixel_maps)
{
glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
struct st_context *st = st_context(original->ctx);
struct gl_program *prog = &fp->Base.Base;
struct gl_program_parameter_list *params = _mesa_new_parameter_list();
st_src_reg coord, src0;
st_dst_reg dst0;
glsl_to_tgsi_instruction *inst;
/* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
v->ctx = original->ctx;
v->prog = prog;
v->shader_program = NULL;
v->glsl_version = original->glsl_version;
v->native_integers = original->native_integers;
v->options = original->options;
v->next_temp = original->next_temp;
v->num_address_regs = original->num_address_regs;
v->samplers_used = prog->SamplersUsed = original->samplers_used;
v->indirect_addr_temps = original->indirect_addr_temps;
v->indirect_addr_consts = original->indirect_addr_consts;
memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
v->num_immediates = original->num_immediates;
/*
* Get initial pixel color from the texture.
* TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
*/
coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
src0 = v->get_temp(glsl_type::vec4_type);
dst0 = st_dst_reg(src0);
inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
inst->sampler = 0;
inst->tex_target = TEXTURE_2D_INDEX;
prog->InputsRead |= FRAG_BIT_TEX0;
prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
v->samplers_used |= (1 << 0);
if (scale_and_bias) {
static const gl_state_index scale_state[STATE_LENGTH] =
{ STATE_INTERNAL, STATE_PT_SCALE,
(gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
static const gl_state_index bias_state[STATE_LENGTH] =
{ STATE_INTERNAL, STATE_PT_BIAS,
(gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
GLint scale_p, bias_p;
st_src_reg scale, bias;
scale_p = _mesa_add_state_reference(params, scale_state);
bias_p = _mesa_add_state_reference(params, bias_state);
/* MAD colorTemp, colorTemp, scale, bias; */
scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
}
if (pixel_maps) {
st_src_reg temp = v->get_temp(glsl_type::vec4_type);
st_dst_reg temp_dst = st_dst_reg(temp);
assert(st->pixel_xfer.pixelmap_texture);
/* With a little effort, we can do four pixel map look-ups with
* two TEX instructions:
*/
/* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
temp_dst.writemask = WRITEMASK_XY; /* write R,G */
inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
inst->sampler = 1;
inst->tex_target = TEXTURE_2D_INDEX;
/* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
inst->sampler = 1;
inst->tex_target = TEXTURE_2D_INDEX;
prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
v->samplers_used |= (1 << 1);
/* MOV colorTemp, temp; */
inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
}
/* Now copy the instructions from the original glsl_to_tgsi_visitor into the
* new visitor. */
foreach_iter(exec_list_iterator, iter, original->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
glsl_to_tgsi_instruction *newinst;
st_src_reg src_regs[3];
if (inst->dst.file == PROGRAM_OUTPUT)
prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
for (int i=0; i<3; i++) {
src_regs[i] = inst->src[i];
if (src_regs[i].file == PROGRAM_INPUT &&
src_regs[i].index == FRAG_ATTRIB_COL0)
{
src_regs[i].file = PROGRAM_TEMPORARY;
src_regs[i].index = src0.index;
}
else if (src_regs[i].file == PROGRAM_INPUT)
prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
}
newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
newinst->tex_target = inst->tex_target;
}
/* Make modifications to fragment program info. */
prog->Parameters = _mesa_combine_parameter_lists(params,
original->prog->Parameters);
_mesa_free_parameter_list(params);
count_resources(v, prog);
fp->glsl_to_tgsi = v;
}
/**
* Make fragment program for glBitmap:
* Sample the texture and kill the fragment if the bit is 0.
* This program will be combined with the user's fragment program.
*
* Based on make_bitmap_fragment_program in st_cb_bitmap.c.
*/
extern "C" void
get_bitmap_visitor(struct st_fragment_program *fp,
glsl_to_tgsi_visitor *original, int samplerIndex)
{
glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
struct st_context *st = st_context(original->ctx);
struct gl_program *prog = &fp->Base.Base;
st_src_reg coord, src0;
st_dst_reg dst0;
glsl_to_tgsi_instruction *inst;
/* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
v->ctx = original->ctx;
v->prog = prog;
v->shader_program = NULL;
v->glsl_version = original->glsl_version;
v->native_integers = original->native_integers;
v->options = original->options;
v->next_temp = original->next_temp;
v->num_address_regs = original->num_address_regs;
v->samplers_used = prog->SamplersUsed = original->samplers_used;
v->indirect_addr_temps = original->indirect_addr_temps;
v->indirect_addr_consts = original->indirect_addr_consts;
memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
v->num_immediates = original->num_immediates;
/* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
src0 = v->get_temp(glsl_type::vec4_type);
dst0 = st_dst_reg(src0);
inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
inst->sampler = samplerIndex;
inst->tex_target = TEXTURE_2D_INDEX;
prog->InputsRead |= FRAG_BIT_TEX0;
prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
v->samplers_used |= (1 << samplerIndex);
/* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
src0.negate = NEGATE_XYZW;
if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
src0.swizzle = SWIZZLE_XXXX;
inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
/* Now copy the instructions from the original glsl_to_tgsi_visitor into the
* new visitor. */
foreach_iter(exec_list_iterator, iter, original->instructions) {
glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
glsl_to_tgsi_instruction *newinst;
st_src_reg src_regs[3];
if (inst->dst.file == PROGRAM_OUTPUT)
prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
for (int i=0; i<3; i++) {
src_regs[i] = inst->src[i];
if (src_regs[i].file == PROGRAM_INPUT)
prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
}
newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
newinst->tex_target = inst->tex_target;
}
/* Make modifications to fragment program info. */
prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
count_resources(v, prog);
fp->glsl_to_tgsi = v;
}
/* ------------------------- TGSI conversion stuff -------------------------- */
struct label {
unsigned branch_target;
unsigned token;
};
/**
* Intermediate state used during shader translation.
*/
struct st_translate {
struct ureg_program *ureg;
struct ureg_dst temps[MAX_TEMPS];
struct ureg_src *constants;
struct ureg_src *immediates;
struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
struct ureg_dst address[1];
struct ureg_src samplers[PIPE_MAX_SAMPLERS];
struct ureg_src systemValues[SYSTEM_VALUE_MAX];
const GLuint *inputMapping;
const GLuint *outputMapping;
/* For every instruction that contains a label (eg CALL), keep
* details so that we can go back afterwards and emit the correct
* tgsi instruction number for each label.
*/
struct label *labels;
unsigned labels_size;
unsigned labels_count;
/* Keep a record of the tgsi instruction number that each mesa
* instruction starts at, will be used to fix up labels after
* translation.
*/
unsigned *insn;
unsigned insn_size;
unsigned insn_count;
unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
boolean error;
};
/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
TGSI_SEMANTIC_FACE,
TGSI_SEMANTIC_VERTEXID,
TGSI_SEMANTIC_INSTANCEID
};
/**
* Make note of a branch to a label in the TGSI code.
* After we've emitted all instructions, we'll go over the list
* of labels built here and patch the TGSI code with the actual
* location of each label.
*/
static unsigned *get_label(struct st_translate *t, unsigned branch_target)
{
unsigned i;
if (t->labels_count + 1 >= t->labels_size) {
t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
t->labels = (struct label *)realloc(t->labels,
t->labels_size * sizeof(struct label));
if (t->labels == NULL) {
static unsigned dummy;
t->error = TRUE;
return &dummy;
}
}
i = t->labels_count++;
t->labels[i].branch_target = branch_target;
return &t->labels[i].token;
}
/**
* Called prior to emitting the TGSI code for each instruction.
* Allocate additional space for instructions if needed.
* Update the insn[] array so the next glsl_to_tgsi_instruction points to
* the next TGSI instruction.
*/
static void set_insn_start(struct st_translate *t, unsigned start)
{
if (t->insn_count + 1 >= t->insn_size) {
t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
if (t->insn == NULL) {
t->error = TRUE;
return;
}
}
t->insn[t->insn_count++] = start;
}
/**
* Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
*/
static struct ureg_src
emit_immediate(struct st_translate *t,
gl_constant_value values[4],
int type, int size)
{
struct ureg_program *ureg = t->ureg;
switch(type)
{
case GL_FLOAT:
return ureg_DECL_immediate(ureg, &values[0].f, size);
case GL_INT:
return ureg_DECL_immediate_int(ureg, &values[0].i, size);
case GL_UNSIGNED_INT:
case GL_BOOL:
return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
default:
assert(!"should not get here - type must be float, int, uint, or bool");
return ureg_src_undef();
}
}
/**
* Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
*/
static struct ureg_dst
dst_register(struct st_translate *t,
gl_register_file file,
GLuint index)
{
switch(file) {
case PROGRAM_UNDEFINED:
return ureg_dst_undef();
case PROGRAM_TEMPORARY:
if (ureg_dst_is_undef(t->temps[index]))
t->temps[index] = ureg_DECL_temporary(t->ureg);
return t->temps[index];
case PROGRAM_OUTPUT:
if (t->procType == TGSI_PROCESSOR_VERTEX)
assert(index < VERT_RESULT_MAX);
else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
assert(index < FRAG_RESULT_MAX);
else
assert(index < GEOM_RESULT_MAX);
assert(t->outputMapping[index] < Elements(t->outputs));
return t->outputs[t->outputMapping[index]];
case PROGRAM_ADDRESS:
return t->address[index];
default:
assert(!"unknown dst register file");
return ureg_dst_undef();
}
}
/**
* Map a glsl_to_tgsi src register to a TGSI ureg_src register.
*/
static struct ureg_src
src_register(struct st_translate *t,
gl_register_file file,
GLuint index)
{
switch(file) {
case PROGRAM_UNDEFINED:
return ureg_src_undef();
case PROGRAM_TEMPORARY:
assert(index >= 0);
assert(index < Elements(t->temps));
if (ureg_dst_is_undef(t->temps[index]))
t->temps[index] = ureg_DECL_temporary(t->ureg);
return ureg_src(t->temps[index]);
case PROGRAM_NAMED_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_LOCAL_PARAM:
case PROGRAM_UNIFORM:
assert(index >= 0);
return t->constants[index];
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT: /* ie, immediate */
if (index < 0)
return ureg_DECL_constant(t->ureg, 0);
else
return t->constants[index];
case PROGRAM_IMMEDIATE:
return t->immediates[index];
case PROGRAM_INPUT:
assert(t->inputMapping[index] < Elements(t->inputs));
return t->inputs[t->inputMapping[index]];
case PROGRAM_OUTPUT:
assert(t->outputMapping[index] < Elements(t->outputs));
return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
case PROGRAM_ADDRESS:
return ureg_src(t->address[index]);
case PROGRAM_SYSTEM_VALUE:
assert(index < Elements(t->systemValues));
return t->systemValues[index];
default:
assert(!"unknown src register file");
return ureg_src_undef();
}
}
/**
* Create a TGSI ureg_dst register from an st_dst_reg.
*/
static struct ureg_dst
translate_dst(struct st_translate *t,
const st_dst_reg *dst_reg,
bool saturate, bool clamp_color)
{
struct ureg_dst dst = dst_register(t,
dst_reg->file,
dst_reg->index);
dst = ureg_writemask(dst, dst_reg->writemask);
if (saturate)
dst = ureg_saturate(dst);
else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
/* Clamp colors for ARB_color_buffer_float. */
switch (t->procType) {
case TGSI_PROCESSOR_VERTEX:
/* XXX if the geometry shader is present, this must be done there
* instead of here. */
if (dst_reg->index == VERT_RESULT_COL0 ||
dst_reg->index == VERT_RESULT_COL1 ||
dst_reg->index == VERT_RESULT_BFC0 ||
dst_reg->index == VERT_RESULT_BFC1) {
dst = ureg_saturate(dst);
}
break;
case TGSI_PROCESSOR_FRAGMENT:
if (dst_reg->index >= FRAG_RESULT_COLOR) {
dst = ureg_saturate(dst);
}
break;
}
}
if (dst_reg->reladdr != NULL)
dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
return dst;
}
/**
* Create a TGSI ureg_src register from an st_src_reg.
*/
static struct ureg_src
translate_src(struct st_translate *t, const st_src_reg *src_reg)
{
struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
src = ureg_swizzle(src,
GET_SWZ(src_reg->swizzle, 0) & 0x3,
GET_SWZ(src_reg->swizzle, 1) & 0x3,
GET_SWZ(src_reg->swizzle, 2) & 0x3,
GET_SWZ(src_reg->swizzle, 3) & 0x3);
if ((src_reg->negate & 0xf) == NEGATE_XYZW)
src = ureg_negate(src);
if (src_reg->reladdr != NULL) {
/* Normally ureg_src_indirect() would be used here, but a stupid compiler
* bug in g++ makes ureg_src_indirect (an inline C function) erroneously
* set the bit for src.Negate. So we have to do the operation manually
* here to work around the compiler's problems. */
/*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
struct ureg_src addr = ureg_src(t->address[0]);
src.Indirect = 1;
src.IndirectFile = addr.File;
src.IndirectIndex = addr.Index;
src.IndirectSwizzle = addr.SwizzleX;
if (src_reg->file != PROGRAM_INPUT &&
src_reg->file != PROGRAM_OUTPUT) {
/* If src_reg->index was negative, it was set to zero in
* src_register(). Reassign it now. But don't do this
* for input/output regs since they get remapped while
* const buffers don't.
*/
src.Index = src_reg->index;
}
}
return src;
}
static struct tgsi_texture_offset
translate_tex_offset(struct st_translate *t,
const struct tgsi_texture_offset *in_offset)
{
struct tgsi_texture_offset offset;
assert(in_offset->File == PROGRAM_IMMEDIATE);
offset.File = TGSI_FILE_IMMEDIATE;
offset.Index = in_offset->Index;
offset.SwizzleX = in_offset->SwizzleX;
offset.SwizzleY = in_offset->SwizzleY;
offset.SwizzleZ = in_offset->SwizzleZ;
return offset;
}
static void
compile_tgsi_instruction(struct st_translate *t,
const glsl_to_tgsi_instruction *inst,
bool clamp_dst_color_output)
{
struct ureg_program *ureg = t->ureg;
GLuint i;
struct ureg_dst dst[1];
struct ureg_src src[4];
struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
unsigned num_dst;
unsigned num_src;
num_dst = num_inst_dst_regs(inst->op);
num_src = num_inst_src_regs(inst->op);
if (num_dst)
dst[0] = translate_dst(t,
&inst->dst,
inst->saturate,
clamp_dst_color_output);
for (i = 0; i < num_src; i++)
src[i] = translate_src(t, &inst->src[i]);
switch(inst->op) {
case TGSI_OPCODE_BGNLOOP:
case TGSI_OPCODE_CAL:
case TGSI_OPCODE_ELSE:
case TGSI_OPCODE_ENDLOOP:
case TGSI_OPCODE_IF:
assert(num_dst == 0);
ureg_label_insn(ureg,
inst->op,
src, num_src,
get_label(t,
inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
return;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXD:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_TXQ:
case TGSI_OPCODE_TXF:
src[num_src++] = t->samplers[inst->sampler];
for (i = 0; i < inst->tex_offset_num_offset; i++) {
texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
}
ureg_tex_insn(ureg,
inst->op,
dst, num_dst,
st_translate_texture_target(inst->tex_target, inst->tex_shadow),
texoffsets, inst->tex_offset_num_offset,
src, num_src);
return;
case TGSI_OPCODE_SCS:
dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
break;
default:
ureg_insn(ureg,
inst->op,
dst, num_dst,
src, num_src);
break;
}
}
/**
* Emit the TGSI instructions for inverting and adjusting WPOS.
* This code is unavoidable because it also depends on whether
* a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
*/
static void
emit_wpos_adjustment( struct st_translate *t,
const struct gl_program *program,
boolean invert,
GLfloat adjX, GLfloat adjY[2])
{
struct ureg_program *ureg = t->ureg;
/* Fragment program uses fragment position input.
* Need to replace instances of INPUT[WPOS] with temp T
* where T = INPUT[WPOS] by y is inverted.
*/
static const gl_state_index wposTransformState[STATE_LENGTH]
= { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
(gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
/* XXX: note we are modifying the incoming shader here! Need to
* do this before emitting the constant decls below, or this
* will be missed:
*/
unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
wposTransformState);
struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
/* First, apply the coordinate shift: */
if (adjX || adjY[0] || adjY[1]) {
if (adjY[0] != adjY[1]) {
/* Adjust the y coordinate by adjY[1] or adjY[0] respectively
* depending on whether inversion is actually going to be applied
* or not, which is determined by testing against the inversion
* state variable used below, which will be either +1 or -1.
*/
struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
ureg_CMP(ureg, adj_temp,
ureg_scalar(wpostrans, invert ? 2 : 0),
ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
} else {
ureg_ADD(ureg, wpos_temp, wpos_input,
ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
}
wpos_input = ureg_src(wpos_temp);
} else {
/* MOV wpos_temp, input[wpos]
*/
ureg_MOV( ureg, wpos_temp, wpos_input );
}
/* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
* inversion/identity, or the other way around if we're drawing to an FBO.
*/
if (invert) {
/* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
*/
ureg_MAD( ureg,
ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
wpos_input,
ureg_scalar(wpostrans, 0),
ureg_scalar(wpostrans, 1));
} else {
/* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
*/
ureg_MAD( ureg,
ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
wpos_input,
ureg_scalar(wpostrans, 2),
ureg_scalar(wpostrans, 3));
}
/* Use wpos_temp as position input from here on:
*/
t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
}
/**
* Emit fragment position/ooordinate code.
*/
static void
emit_wpos(struct st_context *st,
struct st_translate *t,
const struct gl_program *program,
struct ureg_program *ureg)
{
const struct gl_fragment_program *fp =
(const struct gl_fragment_program *) program;
struct pipe_screen *pscreen = st->pipe->screen;
GLfloat adjX = 0.0f;
GLfloat adjY[2] = { 0.0f, 0.0f };
boolean invert = FALSE;
/* Query the pixel center conventions supported by the pipe driver and set
* adjX, adjY to help out if it cannot handle the requested one internally.
*
* The bias of the y-coordinate depends on whether y-inversion takes place
* (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
* drawing to an FBO (causes additional inversion), and whether the the pipe
* driver origin and the requested origin differ (the latter condition is
* stored in the 'invert' variable).
*
* For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
*
* center shift only:
* i -> h: +0.5
* h -> i: -0.5
*
* inversion only:
* l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
* l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
* u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
* u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
*
* inversion and center shift:
* l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
* l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
* u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
* u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
*/
if (fp->OriginUpperLeft) {
/* Fragment shader wants origin in upper-left */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
/* the driver supports upper-left origin */
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
/* the driver supports lower-left origin, need to invert Y */
ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
invert = TRUE;
}
else
assert(0);
}
else {
/* Fragment shader wants origin in lower-left */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
/* the driver supports lower-left origin */
ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
/* the driver supports upper-left origin, need to invert Y */
invert = TRUE;
else
assert(0);
}
if (fp->PixelCenterInteger) {
/* Fragment shader wants pixel center integer */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
/* the driver supports pixel center integer */
adjY[1] = 1.0f;
ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
/* the driver supports pixel center half integer, need to bias X,Y */
adjX = -0.5f;
adjY[0] = -0.5f;
adjY[1] = 0.5f;
}
else
assert(0);
}
else {
/* Fragment shader wants pixel center half integer */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
/* the driver supports pixel center half integer */
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
/* the driver supports pixel center integer, need to bias X,Y */
adjX = adjY[0] = adjY[1] = 0.5f;
ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
}
else
assert(0);
}
/* we invert after adjustment so that we avoid the MOV to temporary,
* and reuse the adjustment ADD instead */
emit_wpos_adjustment(t, program, invert, adjX, adjY);
}
/**
* OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
* TGSI uses +1 for front, -1 for back.
* This function converts the TGSI value to the GL value. Simply clamping/
* saturating the value to [0,1] does the job.
*/
static void
emit_face_var(struct st_translate *t)
{
struct ureg_program *ureg = t->ureg;
struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
/* MOV_SAT face_temp, input[face] */
face_temp = ureg_saturate(face_temp);
ureg_MOV(ureg, face_temp, face_input);
/* Use face_temp as face input from here on: */
t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
}
static void
emit_edgeflags(struct st_translate *t)
{
struct ureg_program *ureg = t->ureg;
struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
ureg_MOV(ureg, edge_dst, edge_src);
}
/**
* Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
* \param program the program to translate
* \param numInputs number of input registers used
* \param inputMapping maps Mesa fragment program inputs to TGSI generic
* input indexes
* \param inputSemanticName the TGSI_SEMANTIC flag for each input
* \param inputSemanticIndex the semantic index (ex: which texcoord) for
* each input
* \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
* \param numOutputs number of output registers used
* \param outputMapping maps Mesa fragment program outputs to TGSI
* generic outputs
* \param outputSemanticName the TGSI_SEMANTIC flag for each output
* \param outputSemanticIndex the semantic index (ex: which texcoord) for
* each output
*
* \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
*/
extern "C" enum pipe_error
st_translate_program(
struct gl_context *ctx,
uint procType,
struct ureg_program *ureg,
glsl_to_tgsi_visitor *program,
const struct gl_program *proginfo,
GLuint numInputs,
const GLuint inputMapping[],
const ubyte inputSemanticName[],
const ubyte inputSemanticIndex[],
const GLuint interpMode[],
GLuint numOutputs,
const GLuint outputMapping[],
const ubyte outputSemanticName[],
const ubyte outputSemanticIndex[],
boolean passthrough_edgeflags,
boolean clamp_color)
{
struct st_translate *t;
unsigned i;
enum pipe_error ret = PIPE_OK;
assert(numInputs <= Elements(t->inputs));
assert(numOutputs <= Elements(t->outputs));
t = CALLOC_STRUCT(st_translate);
if (!t) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
memset(t, 0, sizeof *t);
t->procType = procType;
t->inputMapping = inputMapping;
t->outputMapping = outputMapping;
t->ureg = ureg;
if (program->shader_program) {
for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
struct gl_uniform_storage *const storage =
&program->shader_program->UniformStorage[i];
_mesa_uniform_detach_all_driver_storage(storage);
}
}
/*
* Declare input attributes.
*/
if (procType == TGSI_PROCESSOR_FRAGMENT) {
for (i = 0; i < numInputs; i++) {
t->inputs[i] = ureg_DECL_fs_input(ureg,
inputSemanticName[i],
inputSemanticIndex[i],
interpMode[i]);
}
if (proginfo->InputsRead & FRAG_BIT_WPOS) {
/* Must do this after setting up t->inputs, and before
* emitting constant references, below:
*/
emit_wpos(st_context(ctx), t, proginfo, ureg);
}
if (proginfo->InputsRead & FRAG_BIT_FACE)
emit_face_var(t);
/*
* Declare output attributes.
*/
for (i = 0; i < numOutputs; i++) {
switch (outputSemanticName[i]) {
case TGSI_SEMANTIC_POSITION:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_POSITION, /* Z/Depth */
outputSemanticIndex[i]);
t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
break;
case TGSI_SEMANTIC_STENCIL:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_STENCIL, /* Stencil */
outputSemanticIndex[i]);
t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
break;
case TGSI_SEMANTIC_COLOR:
t->outputs[i] = ureg_DECL_output(ureg,
TGSI_SEMANTIC_COLOR,
outputSemanticIndex[i]);
break;
default:
assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
ret = PIPE_ERROR_BAD_INPUT;
goto out;
}
}
}
else if (procType == TGSI_PROCESSOR_GEOMETRY) {
for (i = 0; i < numInputs; i++) {
t->inputs[i] = ureg_DECL_gs_input(ureg,
i,
inputSemanticName[i],
inputSemanticIndex[i]);
}
for (i = 0; i < numOutputs; i++) {
t->outputs[i] = ureg_DECL_output(ureg,
outputSemanticName[i],
outputSemanticIndex[i]);
}
}
else {
assert(procType == TGSI_PROCESSOR_VERTEX);
for (i = 0; i < numInputs; i++) {
t->inputs[i] = ureg_DECL_vs_input(ureg, i);
}
for (i = 0; i < numOutputs; i++) {
if (outputSemanticName[i] == TGSI_SEMANTIC_CLIPDIST) {
int mask = ((1 << (program->num_clip_distances - 4*outputSemanticIndex[i])) - 1) & TGSI_WRITEMASK_XYZW;
t->outputs[i] = ureg_DECL_output_masked(ureg,
outputSemanticName[i],
outputSemanticIndex[i],
mask);
} else {
t->outputs[i] = ureg_DECL_output(ureg,
outputSemanticName[i],
outputSemanticIndex[i]);
}
}
if (passthrough_edgeflags)
emit_edgeflags(t);
}
/* Declare address register.
*/
if (program->num_address_regs > 0) {
assert(program->num_address_regs == 1);
t->address[0] = ureg_DECL_address(ureg);
}
/* Declare misc input registers
*/
{
GLbitfield sysInputs = proginfo->SystemValuesRead;
unsigned numSys = 0;
for (i = 0; sysInputs; i++) {
if (sysInputs & (1 << i)) {
unsigned semName = mesa_sysval_to_semantic[i];
t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
numSys++;
sysInputs &= ~(1 << i);
}
}
}
if (program->indirect_addr_temps) {
/* If temps are accessed with indirect addressing, declare temporaries
* in sequential order. Else, we declare them on demand elsewhere.
* (Note: the number of temporaries is equal to program->next_temp)
*/
for (i = 0; i < (unsigned)program->next_temp; i++) {
/* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
t->temps[i] = ureg_DECL_temporary(t->ureg);
}
}
/* Emit constants and uniforms. TGSI uses a single index space for these,
* so we put all the translated regs in t->constants.
*/
if (proginfo->Parameters) {
t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
if (t->constants == NULL) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
switch (proginfo->Parameters->Parameters[i].Type) {
case PROGRAM_ENV_PARAM:
case PROGRAM_LOCAL_PARAM:
case PROGRAM_STATE_VAR:
case PROGRAM_NAMED_PARAM:
case PROGRAM_UNIFORM:
t->constants[i] = ureg_DECL_constant(ureg, i);
break;
/* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
* addressing of the const buffer.
* FIXME: Be smarter and recognize param arrays:
* indirect addressing is only valid within the referenced
* array.
*/
case PROGRAM_CONSTANT:
if (program->indirect_addr_consts)
t->constants[i] = ureg_DECL_constant(ureg, i);
else
t->constants[i] = emit_immediate(t,
proginfo->Parameters->ParameterValues[i],
proginfo->Parameters->Parameters[i].DataType,
4);
break;
default:
break;
}
}
}
/* Emit immediate values.
*/
t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
if (t->immediates == NULL) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
i = 0;
foreach_iter(exec_list_iterator, iter, program->immediates) {
immediate_storage *imm = (immediate_storage *)iter.get();
assert(i < program->num_immediates);
t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
}
assert(i == program->num_immediates);
/* texture samplers */
for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
if (program->samplers_used & (1 << i)) {
t->samplers[i] = ureg_DECL_sampler(ureg, i);
}
}
/* Emit each instruction in turn:
*/
foreach_iter(exec_list_iterator, iter, program->instructions) {
set_insn_start(t, ureg_get_instruction_number(ureg));
compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get(),
clamp_color);
}
/* Fix up all emitted labels:
*/
for (i = 0; i < t->labels_count; i++) {
ureg_fixup_label(ureg, t->labels[i].token,
t->insn[t->labels[i].branch_target]);
}
if (program->shader_program) {
/* This has to be done last. Any operation the can cause
* prog->ParameterValues to get reallocated (e.g., anything that adds a
* program constant) has to happen before creating this linkage.
*/
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (program->shader_program->_LinkedShaders[i] == NULL)
continue;
_mesa_associate_uniform_storage(ctx, program->shader_program,
program->shader_program->_LinkedShaders[i]->Program->Parameters);
}
}
out:
if (t) {
FREE(t->insn);
FREE(t->labels);
FREE(t->constants);
FREE(t->immediates);
if (t->error) {
debug_printf("%s: translate error flag set\n", __FUNCTION__);
}
FREE(t);
}
return ret;
}
/* ----------------------------- End TGSI code ------------------------------ */
/**
* Convert a shader's GLSL IR into a Mesa gl_program, although without
* generating Mesa IR.
*/
static struct gl_program *
get_mesa_program(struct gl_context *ctx,
struct gl_shader_program *shader_program,
struct gl_shader *shader,
int num_clip_distances)
{
glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
struct gl_program *prog;
GLenum target;
const char *target_string;
bool progress;
struct gl_shader_compiler_options *options =
&ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
switch (shader->Type) {
case GL_VERTEX_SHADER:
target = GL_VERTEX_PROGRAM_ARB;
target_string = "vertex";
break;
case GL_FRAGMENT_SHADER:
target = GL_FRAGMENT_PROGRAM_ARB;
target_string = "fragment";
break;
case GL_GEOMETRY_SHADER:
target = GL_GEOMETRY_PROGRAM_NV;
target_string = "geometry";
break;
default:
assert(!"should not be reached");
return NULL;
}
validate_ir_tree(shader->ir);
prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
if (!prog)
return NULL;
prog->Parameters = _mesa_new_parameter_list();
v->ctx = ctx;
v->prog = prog;
v->shader_program = shader_program;
v->options = options;
v->glsl_version = ctx->Const.GLSLVersion;
v->native_integers = ctx->Const.NativeIntegers;
v->num_clip_distances = num_clip_distances;
_mesa_generate_parameters_list_for_uniforms(shader_program, shader,
prog->Parameters);
/* Remove reads from output registers. */
lower_output_reads(shader->ir);
/* Emit intermediate IR for main(). */
visit_exec_list(shader->ir, v);
/* Now emit bodies for any functions that were used. */
do {
progress = GL_FALSE;
foreach_iter(exec_list_iterator, iter, v->function_signatures) {
function_entry *entry = (function_entry *)iter.get();
if (!entry->bgn_inst) {
v->current_function = entry;
entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
entry->bgn_inst->function = entry;
visit_exec_list(&entry->sig->body, v);
glsl_to_tgsi_instruction *last;
last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
if (last->op != TGSI_OPCODE_RET)
v->emit(NULL, TGSI_OPCODE_RET);
glsl_to_tgsi_instruction *end;
end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
end->function = entry;
progress = GL_TRUE;
}
}
} while (progress);
#if 0
/* Print out some information (for debugging purposes) used by the
* optimization passes. */
for (i=0; i < v->next_temp; i++) {
int fr = v->get_first_temp_read(i);
int fw = v->get_first_temp_write(i);
int lr = v->get_last_temp_read(i);
int lw = v->get_last_temp_write(i);
printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
assert(fw <= fr);
}
#endif
/* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
v->simplify_cmp();
v->copy_propagate();
while (v->eliminate_dead_code_advanced());
/* FIXME: These passes to optimize temporary registers don't work when there
* is indirect addressing of the temporary register space. We need proper
* array support so that we don't have to give up these passes in every
* shader that uses arrays.
*/
if (!v->indirect_addr_temps) {
v->eliminate_dead_code();
v->merge_registers();
v->renumber_registers();
}
/* Write the END instruction. */
v->emit(NULL, TGSI_OPCODE_END);
if (ctx->Shader.Flags & GLSL_DUMP) {
printf("\n");
printf("GLSL IR for linked %s program %d:\n", target_string,
shader_program->Name);
_mesa_print_ir(shader->ir, NULL);
printf("\n");
printf("\n");
fflush(stdout);
}
prog->Instructions = NULL;
prog->NumInstructions = 0;
do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
count_resources(v, prog);
_mesa_reference_program(ctx, &shader->Program, prog);
/* This has to be done last. Any operation the can cause
* prog->ParameterValues to get reallocated (e.g., anything that adds a
* program constant) has to happen before creating this linkage.
*/
_mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
if (!shader_program->LinkStatus) {
return NULL;
}
struct st_vertex_program *stvp;
struct st_fragment_program *stfp;
struct st_geometry_program *stgp;
switch (shader->Type) {
case GL_VERTEX_SHADER:
stvp = (struct st_vertex_program *)prog;
stvp->glsl_to_tgsi = v;
break;
case GL_FRAGMENT_SHADER:
stfp = (struct st_fragment_program *)prog;
stfp->glsl_to_tgsi = v;
break;
case GL_GEOMETRY_SHADER:
stgp = (struct st_geometry_program *)prog;
stgp->glsl_to_tgsi = v;
break;
default:
assert(!"should not be reached");
return NULL;
}
return prog;
}
/**
* Searches through the IR for a declaration of gl_ClipDistance and returns the
* declared size of the gl_ClipDistance array. Returns 0 if gl_ClipDistance is
* not declared in the IR.
*/
int get_clip_distance_size(exec_list *ir)
{
foreach_iter (exec_list_iterator, iter, *ir) {
ir_instruction *inst = (ir_instruction *)iter.get();
ir_variable *var = inst->as_variable();
if (var == NULL) continue;
if (!strcmp(var->name, "gl_ClipDistance")) {
return var->type->length;
}
}
return 0;
}
extern "C" {
struct gl_shader *
st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
{
struct gl_shader *shader;
assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
type == GL_GEOMETRY_SHADER_ARB);
shader = rzalloc(NULL, struct gl_shader);
if (shader) {
shader->Type = type;
shader->Name = name;
_mesa_init_shader(ctx, shader);
}
return shader;
}
struct gl_shader_program *
st_new_shader_program(struct gl_context *ctx, GLuint name)
{
struct gl_shader_program *shProg;
shProg = rzalloc(NULL, struct gl_shader_program);
if (shProg) {
shProg->Name = name;
_mesa_init_shader_program(ctx, shProg);
}
return shProg;
}
/**
* Link a shader.
* Called via ctx->Driver.LinkShader()
* This actually involves converting GLSL IR into an intermediate TGSI-like IR
* with code lowering and other optimizations.
*/
GLboolean
st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
{
int num_clip_distances[MESA_SHADER_TYPES];
assert(prog->LinkStatus);
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
bool progress;
exec_list *ir = prog->_LinkedShaders[i]->ir;
const struct gl_shader_compiler_options *options =
&ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
/* We have to determine the length of the gl_ClipDistance array before
* the array is lowered to two vec4s by lower_clip_distance().
*/
num_clip_distances[i] = get_clip_distance_size(ir);
do {
unsigned what_to_lower = MOD_TO_FRACT | DIV_TO_MUL_RCP |
EXP_TO_EXP2 | LOG_TO_LOG2;
if (options->EmitNoPow)
what_to_lower |= POW_TO_EXP2;
if (!ctx->Const.NativeIntegers)
what_to_lower |= INT_DIV_TO_MUL_RCP;
progress = false;
/* Lowering */
do_mat_op_to_vec(ir);
lower_instructions(ir, what_to_lower);
progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
progress = do_common_optimization(ir, true, true,
options->MaxUnrollIterations)
|| progress;
progress = lower_quadop_vector(ir, false) || progress;
progress = lower_clip_distance(ir) || progress;
if (options->MaxIfDepth == 0)
progress = lower_discard(ir) || progress;
progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
if (options->EmitNoNoise)
progress = lower_noise(ir) || progress;
/* If there are forms of indirect addressing that the driver
* cannot handle, perform the lowering pass.
*/
if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
|| options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
progress =
lower_variable_index_to_cond_assign(ir,
options->EmitNoIndirectInput,
options->EmitNoIndirectOutput,
options->EmitNoIndirectTemp,
options->EmitNoIndirectUniform)
|| progress;
progress = do_vec_index_to_cond_assign(ir) || progress;
} while (progress);
validate_ir_tree(ir);
}
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
struct gl_program *linked_prog;
if (prog->_LinkedShaders[i] == NULL)
continue;
linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i],
num_clip_distances[i]);
if (linked_prog) {
static const GLenum targets[] = {
GL_VERTEX_PROGRAM_ARB,
GL_FRAGMENT_PROGRAM_ARB,
GL_GEOMETRY_PROGRAM_NV
};
_mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
linked_prog);
if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
_mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
NULL);
_mesa_reference_program(ctx, &linked_prog, NULL);
return GL_FALSE;
}
}
_mesa_reference_program(ctx, &linked_prog, NULL);
}
return GL_TRUE;
}
void
st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
const GLuint outputMapping[],
struct pipe_stream_output_info *so)
{
unsigned i;
struct gl_transform_feedback_info *info =
&glsl_to_tgsi->shader_program->LinkedTransformFeedback;
for (i = 0; i < info->NumOutputs; i++) {
so->output[i].register_index =
outputMapping[info->Outputs[i].OutputRegister];
so->output[i].start_component = info->Outputs[i].ComponentOffset;
so->output[i].num_components = info->Outputs[i].NumComponents;
so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
so->output[i].dst_offset = info->Outputs[i].DstOffset;
}
for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
so->stride[i] = info->BufferStride[i];
}
so->num_outputs = info->NumOutputs;
}
} /* extern "C" */
|