1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
/*
* Copyright (C) 2008 Nicolai Haehnle.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/**
* @file
*
* Shareable transformations that transform "special" ALU instructions
* into ALU instructions that are supported by hardware.
*
*/
#include "radeon_program_alu.h"
#include "radeon_compiler.h"
static struct rc_instruction *emit1(
struct radeon_compiler * c, struct rc_instruction * after,
rc_opcode Opcode, rc_saturate_mode Saturate, struct rc_dst_register DstReg,
struct rc_src_register SrcReg)
{
struct rc_instruction *fpi = rc_insert_new_instruction(c, after);
fpi->U.I.Opcode = Opcode;
fpi->U.I.SaturateMode = Saturate;
fpi->U.I.DstReg = DstReg;
fpi->U.I.SrcReg[0] = SrcReg;
return fpi;
}
static struct rc_instruction *emit2(
struct radeon_compiler * c, struct rc_instruction * after,
rc_opcode Opcode, rc_saturate_mode Saturate, struct rc_dst_register DstReg,
struct rc_src_register SrcReg0, struct rc_src_register SrcReg1)
{
struct rc_instruction *fpi = rc_insert_new_instruction(c, after);
fpi->U.I.Opcode = Opcode;
fpi->U.I.SaturateMode = Saturate;
fpi->U.I.DstReg = DstReg;
fpi->U.I.SrcReg[0] = SrcReg0;
fpi->U.I.SrcReg[1] = SrcReg1;
return fpi;
}
static struct rc_instruction *emit3(
struct radeon_compiler * c, struct rc_instruction * after,
rc_opcode Opcode, rc_saturate_mode Saturate, struct rc_dst_register DstReg,
struct rc_src_register SrcReg0, struct rc_src_register SrcReg1,
struct rc_src_register SrcReg2)
{
struct rc_instruction *fpi = rc_insert_new_instruction(c, after);
fpi->U.I.Opcode = Opcode;
fpi->U.I.SaturateMode = Saturate;
fpi->U.I.DstReg = DstReg;
fpi->U.I.SrcReg[0] = SrcReg0;
fpi->U.I.SrcReg[1] = SrcReg1;
fpi->U.I.SrcReg[2] = SrcReg2;
return fpi;
}
static struct rc_dst_register dstreg(int file, int index)
{
struct rc_dst_register dst;
dst.File = file;
dst.Index = index;
dst.WriteMask = RC_MASK_XYZW;
dst.RelAddr = 0;
return dst;
}
static struct rc_dst_register dstregtmpmask(int index, int mask)
{
struct rc_dst_register dst = {0};
dst.File = RC_FILE_TEMPORARY;
dst.Index = index;
dst.WriteMask = mask;
dst.RelAddr = 0;
return dst;
}
static const struct rc_src_register builtin_zero = {
.File = RC_FILE_NONE,
.Index = 0,
.Swizzle = RC_SWIZZLE_0000
};
static const struct rc_src_register builtin_one = {
.File = RC_FILE_NONE,
.Index = 0,
.Swizzle = RC_SWIZZLE_1111
};
static const struct rc_src_register srcreg_undefined = {
.File = RC_FILE_NONE,
.Index = 0,
.Swizzle = RC_SWIZZLE_XYZW
};
static struct rc_src_register srcreg(int file, int index)
{
struct rc_src_register src = srcreg_undefined;
src.File = file;
src.Index = index;
return src;
}
static struct rc_src_register srcregswz(int file, int index, int swz)
{
struct rc_src_register src = srcreg_undefined;
src.File = file;
src.Index = index;
src.Swizzle = swz;
return src;
}
static struct rc_src_register absolute(struct rc_src_register reg)
{
struct rc_src_register newreg = reg;
newreg.Abs = 1;
newreg.Negate = RC_MASK_NONE;
return newreg;
}
static struct rc_src_register negate(struct rc_src_register reg)
{
struct rc_src_register newreg = reg;
newreg.Negate = newreg.Negate ^ RC_MASK_XYZW;
return newreg;
}
static struct rc_src_register swizzle(struct rc_src_register reg,
rc_swizzle x, rc_swizzle y, rc_swizzle z, rc_swizzle w)
{
struct rc_src_register swizzled = reg;
swizzled.Swizzle = combine_swizzles4(reg.Swizzle, x, y, z, w);
return swizzled;
}
static struct rc_src_register scalar(struct rc_src_register reg)
{
return swizzle(reg, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X);
}
static void transform_ABS(struct radeon_compiler* c,
struct rc_instruction* inst)
{
struct rc_src_register src = inst->U.I.SrcReg[0];
src.Abs = 1;
src.Negate = RC_MASK_NONE;
emit1(c, inst->Prev, RC_OPCODE_MOV, inst->U.I.SaturateMode, inst->U.I.DstReg, src);
rc_remove_instruction(inst);
}
static void transform_DP3(struct radeon_compiler* c,
struct rc_instruction* inst)
{
struct rc_src_register src0 = inst->U.I.SrcReg[0];
struct rc_src_register src1 = inst->U.I.SrcReg[1];
src0.Negate &= ~RC_MASK_W;
src0.Swizzle &= ~(7 << (3 * 3));
src0.Swizzle |= RC_SWIZZLE_ZERO << (3 * 3);
src1.Negate &= ~RC_MASK_W;
src1.Swizzle &= ~(7 << (3 * 3));
src1.Swizzle |= RC_SWIZZLE_ZERO << (3 * 3);
emit2(c, inst->Prev, RC_OPCODE_DP4, inst->U.I.SaturateMode, inst->U.I.DstReg, src0, src1);
rc_remove_instruction(inst);
}
static void transform_DPH(struct radeon_compiler* c,
struct rc_instruction* inst)
{
struct rc_src_register src0 = inst->U.I.SrcReg[0];
src0.Negate &= ~RC_MASK_W;
src0.Swizzle &= ~(7 << (3 * 3));
src0.Swizzle |= RC_SWIZZLE_ONE << (3 * 3);
emit2(c, inst->Prev, RC_OPCODE_DP4, inst->U.I.SaturateMode, inst->U.I.DstReg, src0, inst->U.I.SrcReg[1]);
rc_remove_instruction(inst);
}
/**
* [1, src0.y*src1.y, src0.z, src1.w]
* So basically MUL with lotsa swizzling.
*/
static void transform_DST(struct radeon_compiler* c,
struct rc_instruction* inst)
{
emit2(c, inst->Prev, RC_OPCODE_MUL, inst->U.I.SaturateMode, inst->U.I.DstReg,
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_ONE, RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_ONE),
swizzle(inst->U.I.SrcReg[1], RC_SWIZZLE_ONE, RC_SWIZZLE_Y, RC_SWIZZLE_ONE, RC_SWIZZLE_W));
rc_remove_instruction(inst);
}
static void transform_FLR(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstreg(RC_FILE_TEMPORARY, tempreg), inst->U.I.SrcReg[0]);
emit2(c, inst->Prev, RC_OPCODE_ADD, inst->U.I.SaturateMode, inst->U.I.DstReg,
inst->U.I.SrcReg[0], negate(srcreg(RC_FILE_TEMPORARY, tempreg)));
rc_remove_instruction(inst);
}
/**
* Definition of LIT (from ARB_fragment_program):
*
* tmp = VectorLoad(op0);
* if (tmp.x < 0) tmp.x = 0;
* if (tmp.y < 0) tmp.y = 0;
* if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
* else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
* result.x = 1.0;
* result.y = tmp.x;
* result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
* result.w = 1.0;
*
* The longest path of computation is the one leading to result.z,
* consisting of 5 operations. This implementation of LIT takes
* 5 slots, if the subsequent optimization passes are clever enough
* to pair instructions correctly.
*/
static void transform_LIT(struct radeon_compiler* c,
struct rc_instruction* inst)
{
unsigned int constant;
unsigned int constant_swizzle;
unsigned int temp;
struct rc_src_register srctemp;
constant = rc_constants_add_immediate_scalar(&c->Program.Constants, -127.999999, &constant_swizzle);
if (inst->U.I.DstReg.WriteMask != RC_MASK_XYZW || inst->U.I.DstReg.File != RC_FILE_TEMPORARY) {
struct rc_instruction * inst_mov;
inst_mov = emit1(c, inst,
RC_OPCODE_MOV, 0, inst->U.I.DstReg,
srcreg(RC_FILE_TEMPORARY, rc_find_free_temporary(c)));
inst->U.I.DstReg.File = RC_FILE_TEMPORARY;
inst->U.I.DstReg.Index = inst_mov->U.I.SrcReg[0].Index;
inst->U.I.DstReg.WriteMask = RC_MASK_XYZW;
}
temp = inst->U.I.DstReg.Index;
srctemp = srcreg(RC_FILE_TEMPORARY, temp);
// tmp.x = max(0.0, Src.x);
// tmp.y = max(0.0, Src.y);
// tmp.w = clamp(Src.z, -128+eps, 128-eps);
emit2(c, inst->Prev, RC_OPCODE_MAX, 0,
dstregtmpmask(temp, RC_MASK_XYW),
inst->U.I.SrcReg[0],
swizzle(srcreg(RC_FILE_CONSTANT, constant),
RC_SWIZZLE_ZERO, RC_SWIZZLE_ZERO, RC_SWIZZLE_ZERO, constant_swizzle&3));
emit2(c, inst->Prev, RC_OPCODE_MIN, 0,
dstregtmpmask(temp, RC_MASK_Z),
swizzle(srctemp, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
negate(srcregswz(RC_FILE_CONSTANT, constant, constant_swizzle)));
// tmp.w = Pow(tmp.y, tmp.w)
emit1(c, inst->Prev, RC_OPCODE_LG2, 0,
dstregtmpmask(temp, RC_MASK_W),
swizzle(srctemp, RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y));
emit2(c, inst->Prev, RC_OPCODE_MUL, 0,
dstregtmpmask(temp, RC_MASK_W),
swizzle(srctemp, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
swizzle(srctemp, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z));
emit1(c, inst->Prev, RC_OPCODE_EX2, 0,
dstregtmpmask(temp, RC_MASK_W),
swizzle(srctemp, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W));
// tmp.z = (tmp.x > 0) ? tmp.w : 0.0
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode,
dstregtmpmask(temp, RC_MASK_Z),
negate(swizzle(srctemp, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X)),
swizzle(srctemp, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
builtin_zero);
// tmp.x, tmp.y, tmp.w = 1.0, tmp.x, 1.0
emit1(c, inst->Prev, RC_OPCODE_MOV, inst->U.I.SaturateMode,
dstregtmpmask(temp, RC_MASK_XYW),
swizzle(srctemp, RC_SWIZZLE_ONE, RC_SWIZZLE_X, RC_SWIZZLE_ONE, RC_SWIZZLE_ONE));
rc_remove_instruction(inst);
}
static void transform_LRP(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0,
dstreg(RC_FILE_TEMPORARY, tempreg),
inst->U.I.SrcReg[1], negate(inst->U.I.SrcReg[2]));
emit3(c, inst->Prev, RC_OPCODE_MAD, inst->U.I.SaturateMode,
inst->U.I.DstReg,
inst->U.I.SrcReg[0], srcreg(RC_FILE_TEMPORARY, tempreg), inst->U.I.SrcReg[2]);
rc_remove_instruction(inst);
}
static void transform_POW(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
struct rc_dst_register tempdst = dstreg(RC_FILE_TEMPORARY, tempreg);
struct rc_src_register tempsrc = srcreg(RC_FILE_TEMPORARY, tempreg);
tempdst.WriteMask = RC_MASK_W;
tempsrc.Swizzle = RC_SWIZZLE_WWWW;
emit1(c, inst->Prev, RC_OPCODE_LG2, 0, tempdst, scalar(inst->U.I.SrcReg[0]));
emit2(c, inst->Prev, RC_OPCODE_MUL, 0, tempdst, tempsrc, scalar(inst->U.I.SrcReg[1]));
emit1(c, inst->Prev, RC_OPCODE_EX2, inst->U.I.SaturateMode, inst->U.I.DstReg, tempsrc);
rc_remove_instruction(inst);
}
static void transform_RSQ(struct radeon_compiler* c,
struct rc_instruction* inst)
{
inst->U.I.SrcReg[0] = absolute(inst->U.I.SrcReg[0]);
}
static void transform_SEQ(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dstreg(RC_FILE_TEMPORARY, tempreg), inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1]));
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg,
negate(absolute(srcreg(RC_FILE_TEMPORARY, tempreg))), builtin_zero, builtin_one);
rc_remove_instruction(inst);
}
static void transform_SFL(struct radeon_compiler* c,
struct rc_instruction* inst)
{
emit1(c, inst->Prev, RC_OPCODE_MOV, inst->U.I.SaturateMode, inst->U.I.DstReg, builtin_zero);
rc_remove_instruction(inst);
}
static void transform_SGE(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dstreg(RC_FILE_TEMPORARY, tempreg), inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1]));
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg,
srcreg(RC_FILE_TEMPORARY, tempreg), builtin_zero, builtin_one);
rc_remove_instruction(inst);
}
static void transform_SGT(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dstreg(RC_FILE_TEMPORARY, tempreg), negate(inst->U.I.SrcReg[0]), inst->U.I.SrcReg[1]);
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg,
srcreg(RC_FILE_TEMPORARY, tempreg), builtin_one, builtin_zero);
rc_remove_instruction(inst);
}
static void transform_SLE(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dstreg(RC_FILE_TEMPORARY, tempreg), negate(inst->U.I.SrcReg[0]), inst->U.I.SrcReg[1]);
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg,
srcreg(RC_FILE_TEMPORARY, tempreg), builtin_zero, builtin_one);
rc_remove_instruction(inst);
}
static void transform_SLT(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dstreg(RC_FILE_TEMPORARY, tempreg), inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1]));
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg,
srcreg(RC_FILE_TEMPORARY, tempreg), builtin_one, builtin_zero);
rc_remove_instruction(inst);
}
static void transform_SNE(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dstreg(RC_FILE_TEMPORARY, tempreg), inst->U.I.SrcReg[0], negate(inst->U.I.SrcReg[1]));
emit3(c, inst->Prev, RC_OPCODE_CMP, inst->U.I.SaturateMode, inst->U.I.DstReg,
negate(absolute(srcreg(RC_FILE_TEMPORARY, tempreg))), builtin_one, builtin_zero);
rc_remove_instruction(inst);
}
static void transform_SUB(struct radeon_compiler* c,
struct rc_instruction* inst)
{
inst->U.I.Opcode = RC_OPCODE_ADD;
inst->U.I.SrcReg[1] = negate(inst->U.I.SrcReg[1]);
}
static void transform_SWZ(struct radeon_compiler* c,
struct rc_instruction* inst)
{
inst->U.I.Opcode = RC_OPCODE_MOV;
}
static void transform_XPD(struct radeon_compiler* c,
struct rc_instruction* inst)
{
int tempreg = rc_find_free_temporary(c);
emit2(c, inst->Prev, RC_OPCODE_MUL, 0, dstreg(RC_FILE_TEMPORARY, tempreg),
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_W),
swizzle(inst->U.I.SrcReg[1], RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_W));
emit3(c, inst->Prev, RC_OPCODE_MAD, inst->U.I.SaturateMode, inst->U.I.DstReg,
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_W),
swizzle(inst->U.I.SrcReg[1], RC_SWIZZLE_Z, RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_W),
negate(srcreg(RC_FILE_TEMPORARY, tempreg)));
rc_remove_instruction(inst);
}
/**
* Can be used as a transformation for @ref radeonClauseLocalTransform,
* no userData necessary.
*
* Eliminates the following ALU instructions:
* ABS, DPH, DST, FLR, LIT, LRP, POW, SEQ, SFL, SGE, SGT, SLE, SLT, SNE, SUB, SWZ, XPD
* using:
* MOV, ADD, MUL, MAD, FRC, DP3, LG2, EX2, CMP
*
* Transforms RSQ to Radeon's native RSQ by explicitly setting
* absolute value.
*
* @note should be applicable to R300 and R500 fragment programs.
*/
int radeonTransformALU(
struct radeon_compiler * c,
struct rc_instruction* inst,
void* unused)
{
switch(inst->U.I.Opcode) {
case RC_OPCODE_ABS: transform_ABS(c, inst); return 1;
case RC_OPCODE_DPH: transform_DPH(c, inst); return 1;
case RC_OPCODE_DST: transform_DST(c, inst); return 1;
case RC_OPCODE_FLR: transform_FLR(c, inst); return 1;
case RC_OPCODE_LIT: transform_LIT(c, inst); return 1;
case RC_OPCODE_LRP: transform_LRP(c, inst); return 1;
case RC_OPCODE_POW: transform_POW(c, inst); return 1;
case RC_OPCODE_RSQ: transform_RSQ(c, inst); return 1;
case RC_OPCODE_SEQ: transform_SEQ(c, inst); return 1;
case RC_OPCODE_SFL: transform_SFL(c, inst); return 1;
case RC_OPCODE_SGE: transform_SGE(c, inst); return 1;
case RC_OPCODE_SGT: transform_SGT(c, inst); return 1;
case RC_OPCODE_SLE: transform_SLE(c, inst); return 1;
case RC_OPCODE_SLT: transform_SLT(c, inst); return 1;
case RC_OPCODE_SNE: transform_SNE(c, inst); return 1;
case RC_OPCODE_SUB: transform_SUB(c, inst); return 1;
case RC_OPCODE_SWZ: transform_SWZ(c, inst); return 1;
case RC_OPCODE_XPD: transform_XPD(c, inst); return 1;
default:
return 0;
}
}
static void transform_r300_vertex_ABS(struct radeon_compiler* c,
struct rc_instruction* inst)
{
/* Note: r500 can take absolute values, but r300 cannot. */
inst->U.I.Opcode = RC_OPCODE_MAX;
inst->U.I.SrcReg[1] = inst->U.I.SrcReg[0];
inst->U.I.SrcReg[1].Negate ^= RC_MASK_XYZW;
}
/**
* For use with radeonLocalTransform, this transforms non-native ALU
* instructions of the r300 up to r500 vertex engine.
*/
int r300_transform_vertex_alu(
struct radeon_compiler * c,
struct rc_instruction* inst,
void* unused)
{
switch(inst->U.I.Opcode) {
case RC_OPCODE_ABS: transform_r300_vertex_ABS(c, inst); return 1;
case RC_OPCODE_DP3: transform_DP3(c, inst); return 1;
case RC_OPCODE_DPH: transform_DPH(c, inst); return 1;
case RC_OPCODE_FLR: transform_FLR(c, inst); return 1;
case RC_OPCODE_LRP: transform_LRP(c, inst); return 1;
case RC_OPCODE_SUB: transform_SUB(c, inst); return 1;
case RC_OPCODE_SWZ: transform_SWZ(c, inst); return 1;
case RC_OPCODE_XPD: transform_XPD(c, inst); return 1;
default:
return 0;
}
}
static void sincos_constants(struct radeon_compiler* c, unsigned int *constants)
{
static const float SinCosConsts[2][4] = {
{
1.273239545, // 4/PI
-0.405284735, // -4/(PI*PI)
3.141592654, // PI
0.2225 // weight
},
{
0.75,
0.5,
0.159154943, // 1/(2*PI)
6.283185307 // 2*PI
}
};
int i;
for(i = 0; i < 2; ++i)
constants[i] = rc_constants_add_immediate_vec4(&c->Program.Constants, SinCosConsts[i]);
}
/**
* Approximate sin(x), where x is clamped to (-pi/2, pi/2).
*
* MUL tmp.xy, src, { 4/PI, -4/(PI^2) }
* MAD tmp.x, tmp.y, |src|, tmp.x
* MAD tmp.y, tmp.x, |tmp.x|, -tmp.x
* MAD dest, tmp.y, weight, tmp.x
*/
static void sin_approx(
struct radeon_compiler* c, struct rc_instruction * before,
struct rc_dst_register dst, struct rc_src_register src, const unsigned int* constants)
{
unsigned int tempreg = rc_find_free_temporary(c);
emit2(c, before, RC_OPCODE_MUL, 0, dstregtmpmask(tempreg, RC_MASK_XY),
swizzle(src, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
srcreg(RC_FILE_CONSTANT, constants[0]));
emit3(c, before, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_X),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y),
absolute(swizzle(src, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X)),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X));
emit3(c, before, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_Y),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
absolute(swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X)),
negate(swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X)));
emit3(c, before, RC_OPCODE_MAD, 0, dst,
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y),
swizzle(srcreg(RC_FILE_CONSTANT, constants[0]), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X));
}
/**
* Translate the trigonometric functions COS, SIN, and SCS
* using only the basic instructions
* MOV, ADD, MUL, MAD, FRC
*/
int radeonTransformTrigSimple(struct radeon_compiler* c,
struct rc_instruction* inst,
void* unused)
{
if (inst->U.I.Opcode != RC_OPCODE_COS &&
inst->U.I.Opcode != RC_OPCODE_SIN &&
inst->U.I.Opcode != RC_OPCODE_SCS)
return 0;
unsigned int constants[2];
unsigned int tempreg = rc_find_free_temporary(c);
sincos_constants(c, constants);
if (inst->U.I.Opcode == RC_OPCODE_COS) {
// MAD tmp.x, src, 1/(2*PI), 0.75
// FRC tmp.x, tmp.x
// MAD tmp.z, tmp.x, 2*PI, -PI
emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X));
emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_W),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W));
emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
negate(swizzle(srcreg(RC_FILE_CONSTANT, constants[0]), RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z)));
sin_approx(c, inst, inst->U.I.DstReg,
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
constants);
} else if (inst->U.I.Opcode == RC_OPCODE_SIN) {
emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y));
emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_W),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W));
emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
negate(swizzle(srcreg(RC_FILE_CONSTANT, constants[0]), RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z)));
sin_approx(c, inst, inst->U.I.DstReg,
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
constants);
} else {
emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_XY),
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_W));
emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_XY),
srcreg(RC_FILE_TEMPORARY, tempreg));
emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_XY),
srcreg(RC_FILE_TEMPORARY, tempreg),
swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W, RC_SWIZZLE_W),
negate(swizzle(srcreg(RC_FILE_CONSTANT, constants[0]), RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z, RC_SWIZZLE_Z)));
struct rc_dst_register dst = inst->U.I.DstReg;
dst.WriteMask = inst->U.I.DstReg.WriteMask & RC_MASK_X;
sin_approx(c, inst, dst,
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
constants);
dst.WriteMask = inst->U.I.DstReg.WriteMask & RC_MASK_Y;
sin_approx(c, inst, dst,
swizzle(srcreg(RC_FILE_TEMPORARY, tempreg), RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y, RC_SWIZZLE_Y),
constants);
}
rc_remove_instruction(inst);
return 1;
}
/**
* Transform the trigonometric functions COS, SIN, and SCS
* to include pre-scaling by 1/(2*PI) and taking the fractional
* part, so that the input to COS and SIN is always in the range [0,1).
* SCS is replaced by one COS and one SIN instruction.
*
* @warning This transformation implicitly changes the semantics of SIN and COS!
*/
int radeonTransformTrigScale(struct radeon_compiler* c,
struct rc_instruction* inst,
void* unused)
{
if (inst->U.I.Opcode != RC_OPCODE_COS &&
inst->U.I.Opcode != RC_OPCODE_SIN &&
inst->U.I.Opcode != RC_OPCODE_SCS)
return 0;
static const float RCP_2PI = 0.15915494309189535;
unsigned int temp;
unsigned int constant;
unsigned int constant_swizzle;
temp = rc_find_free_temporary(c);
constant = rc_constants_add_immediate_scalar(&c->Program.Constants, RCP_2PI, &constant_swizzle);
emit2(c, inst->Prev, RC_OPCODE_MUL, 0, dstregtmpmask(temp, RC_MASK_W),
swizzle(inst->U.I.SrcReg[0], RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X, RC_SWIZZLE_X),
srcregswz(RC_FILE_CONSTANT, constant, constant_swizzle));
emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(temp, RC_MASK_W),
srcreg(RC_FILE_TEMPORARY, temp));
if (inst->U.I.Opcode == RC_OPCODE_COS) {
emit1(c, inst->Prev, RC_OPCODE_COS, inst->U.I.SaturateMode, inst->U.I.DstReg,
srcregswz(RC_FILE_TEMPORARY, temp, RC_SWIZZLE_WWWW));
} else if (inst->U.I.Opcode == RC_OPCODE_SIN) {
emit1(c, inst->Prev, RC_OPCODE_SIN, inst->U.I.SaturateMode,
inst->U.I.DstReg, srcregswz(RC_FILE_TEMPORARY, temp, RC_SWIZZLE_WWWW));
} else if (inst->U.I.Opcode == RC_OPCODE_SCS) {
struct rc_dst_register moddst = inst->U.I.DstReg;
if (inst->U.I.DstReg.WriteMask & RC_MASK_X) {
moddst.WriteMask = RC_MASK_X;
emit1(c, inst->Prev, RC_OPCODE_COS, inst->U.I.SaturateMode, moddst,
srcregswz(RC_FILE_TEMPORARY, temp, RC_SWIZZLE_WWWW));
}
if (inst->U.I.DstReg.WriteMask & RC_MASK_Y) {
moddst.WriteMask = RC_MASK_Y;
emit1(c, inst->Prev, RC_OPCODE_SIN, inst->U.I.SaturateMode, moddst,
srcregswz(RC_FILE_TEMPORARY, temp, RC_SWIZZLE_WWWW));
}
}
rc_remove_instruction(inst);
return 1;
}
/**
* Rewrite DDX/DDY instructions to properly work with r5xx shaders.
* The r5xx MDH/MDV instruction provides per-quad partial derivatives.
* It takes the form A*B+C. A and C are set by setting src0. B should be -1.
*
* @warning This explicitly changes the form of DDX and DDY!
*/
int radeonTransformDeriv(struct radeon_compiler* c,
struct rc_instruction* inst,
void* unused)
{
if (inst->U.I.Opcode != RC_OPCODE_DDX && inst->U.I.Opcode != RC_OPCODE_DDY)
return 0;
inst->U.I.SrcReg[1].Swizzle = RC_MAKE_SWIZZLE(RC_SWIZZLE_ONE, RC_SWIZZLE_ONE, RC_SWIZZLE_ONE, RC_SWIZZLE_ONE);
inst->U.I.SrcReg[1].Negate = RC_MASK_XYZW;
return 1;
}
|