1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2014 Intel Corporation All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand <jason.ekstrand@intel.com>
*/
#include "intel_tex.h"
#include "intel_blit.h"
#include "intel_mipmap_tree.h"
#include "main/formats.h"
#include "drivers/common/meta.h"
static bool
copy_image_with_blitter(struct brw_context *brw,
struct intel_mipmap_tree *src_mt, int src_level,
int src_x, int src_y, int src_z,
struct intel_mipmap_tree *dst_mt, int dst_level,
int dst_x, int dst_y, int dst_z,
int src_width, int src_height)
{
GLuint bw, bh;
uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
int cpp;
/* The blitter doesn't understand multisampling at all. */
if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
return false;
/* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
* Data Size Limitations):
*
* The BLT engine is capable of transferring very large quantities of
* graphics data. Any graphics data read from and written to the
* destination is permitted to represent a number of pixels that
* occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
* at the destination. The maximum number of pixels that may be
* represented per scan line’s worth of graphics data depends on the
* color depth.
*
* Furthermore, intelEmitCopyBlit (which is called below) uses a signed
* 16-bit integer to represent buffer pitch, so it can only handle buffer
* pitches < 32k.
*
* As a result of these two limitations, we can only use the blitter to do
* this copy when the miptree's pitch is less than 32k.
*/
if (src_mt->pitch >= 32768 ||
dst_mt->pitch >= 32768) {
perf_debug("Falling back due to >=32k pitch\n");
return false;
}
intel_miptree_get_image_offset(src_mt, src_level, src_z,
&src_image_x, &src_image_y);
if (_mesa_is_format_compressed(src_mt->format)) {
_mesa_get_format_block_size(src_mt->format, &bw, &bh);
assert(src_x % bw == 0);
assert(src_y % bh == 0);
assert(src_width % bw == 0);
assert(src_height % bh == 0);
src_x /= (int)bw;
src_y /= (int)bh;
src_width /= (int)bw;
src_height /= (int)bh;
/* Inside of the miptree, the x offsets are stored in pixels while
* the y offsets are stored in blocks. We need to scale just the x
* offset.
*/
src_image_x /= bw;
cpp = _mesa_get_format_bytes(src_mt->format);
} else {
cpp = src_mt->cpp;
}
src_x += src_image_x;
src_y += src_image_y;
intel_miptree_get_image_offset(dst_mt, dst_level, dst_z,
&dst_image_x, &dst_image_y);
if (_mesa_is_format_compressed(dst_mt->format)) {
_mesa_get_format_block_size(dst_mt->format, &bw, &bh);
assert(dst_x % bw == 0);
assert(dst_y % bh == 0);
dst_x /= (int)bw;
dst_y /= (int)bh;
/* Inside of the miptree, the x offsets are stored in pixels while
* the y offsets are stored in blocks. We need to scale just the x
* offset.
*/
dst_image_x /= bw;
}
dst_x += dst_image_x;
dst_y += dst_image_y;
return intelEmitCopyBlit(brw,
cpp,
src_mt->pitch,
src_mt->bo, src_mt->offset,
src_mt->tiling,
dst_mt->pitch,
dst_mt->bo, dst_mt->offset,
dst_mt->tiling,
src_x, src_y,
dst_x, dst_y,
src_width, src_height,
GL_COPY);
}
static void
copy_image_with_memcpy(struct brw_context *brw,
struct intel_mipmap_tree *src_mt, int src_level,
int src_x, int src_y, int src_z,
struct intel_mipmap_tree *dst_mt, int dst_level,
int dst_x, int dst_y, int dst_z,
int src_width, int src_height)
{
bool same_slice;
void *mapped, *src_mapped, *dst_mapped;
ptrdiff_t src_stride, dst_stride, cpp;
int map_x1, map_y1, map_x2, map_y2;
GLuint src_bw, src_bh;
cpp = _mesa_get_format_bytes(src_mt->format);
_mesa_get_format_block_size(src_mt->format, &src_bw, &src_bh);
assert(src_width % src_bw == 0);
assert(src_height % src_bw == 0);
assert(src_x % src_bw == 0);
assert(src_y % src_bw == 0);
/* If we are on the same miptree, same level, and same slice, then
* intel_miptree_map won't let us map it twice. We have to do things a
* bit differently. In particular, we do a single map large enough for
* both portions and in read-write mode.
*/
same_slice = src_mt == dst_mt && src_level == dst_level && src_z == dst_z;
if (same_slice) {
assert(dst_x % src_bw == 0);
assert(dst_y % src_bw == 0);
map_x1 = MIN2(src_x, dst_x);
map_y1 = MIN2(src_y, dst_y);
map_x2 = MAX2(src_x, dst_x) + src_width;
map_y2 = MAX2(src_y, dst_y) + src_height;
intel_miptree_map(brw, src_mt, src_level, src_z,
map_x1, map_y1, map_x2 - map_x1, map_y2 - map_y1,
GL_MAP_READ_BIT | GL_MAP_WRITE_BIT,
&mapped, &src_stride);
dst_stride = src_stride;
/* Set the offsets here so we don't have to think about while looping */
src_mapped = mapped + ((src_y - map_y1) / src_bh) * src_stride +
((src_x - map_x1) / src_bw) * cpp;
dst_mapped = mapped + ((dst_y - map_y1) / src_bh) * dst_stride +
((dst_x - map_x1) / src_bw) * cpp;
} else {
intel_miptree_map(brw, src_mt, src_level, src_z,
src_x, src_y, src_width, src_height,
GL_MAP_READ_BIT, &src_mapped, &src_stride);
intel_miptree_map(brw, dst_mt, dst_level, dst_z,
dst_x, dst_y, src_width, src_height,
GL_MAP_WRITE_BIT, &dst_mapped, &dst_stride);
}
src_width /= (int)src_bw;
src_height /= (int)src_bh;
for (int i = 0; i < src_height; ++i) {
memcpy(dst_mapped, src_mapped, src_width * cpp);
src_mapped += src_stride;
dst_mapped += dst_stride;
}
if (same_slice) {
intel_miptree_unmap(brw, src_mt, src_level, src_z);
} else {
intel_miptree_unmap(brw, dst_mt, dst_level, dst_z);
intel_miptree_unmap(brw, src_mt, src_level, src_z);
}
}
static void
intel_copy_image_sub_data(struct gl_context *ctx,
struct gl_texture_image *src_image,
int src_x, int src_y, int src_z,
struct gl_texture_image *dst_image,
int dst_x, int dst_y, int dst_z,
int src_width, int src_height)
{
struct brw_context *brw = brw_context(ctx);
struct intel_texture_image *intel_src_image = intel_texture_image(src_image);
struct intel_texture_image *intel_dst_image = intel_texture_image(dst_image);
if (_mesa_meta_CopyImageSubData_uncompressed(ctx,
src_image, src_x, src_y, src_z,
dst_image, dst_x, dst_y, dst_z,
src_width, src_height)) {
return;
}
if (intel_src_image->mt->num_samples > 0 ||
intel_dst_image->mt->num_samples > 0) {
_mesa_problem(ctx, "Failed to copy multisampled texture with meta path\n");
return;
}
/* Cube maps actually have different images per face */
if (src_image->TexObject->Target == GL_TEXTURE_CUBE_MAP)
src_z = src_image->Face;
if (dst_image->TexObject->Target == GL_TEXTURE_CUBE_MAP)
dst_z = dst_image->Face;
/* We are now going to try and copy the texture using the blitter. If
* that fails, we will fall back mapping the texture and using memcpy.
* In either case, we need to do a full resolve.
*/
intel_miptree_all_slices_resolve_hiz(brw, intel_src_image->mt);
intel_miptree_all_slices_resolve_depth(brw, intel_src_image->mt);
intel_miptree_resolve_color(brw, intel_src_image->mt);
intel_miptree_all_slices_resolve_hiz(brw, intel_dst_image->mt);
intel_miptree_all_slices_resolve_depth(brw, intel_dst_image->mt);
intel_miptree_resolve_color(brw, intel_dst_image->mt);
unsigned src_level = src_image->Level + src_image->TexObject->MinLevel;
unsigned dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
if (copy_image_with_blitter(brw, intel_src_image->mt, src_level,
src_x, src_y, src_z,
intel_dst_image->mt, dst_level,
dst_x, dst_y, dst_z,
src_width, src_height))
return;
/* This is a worst-case scenario software fallback that maps the two
* textures and does a memcpy between them.
*/
copy_image_with_memcpy(brw, intel_src_image->mt, src_level,
src_x, src_y, src_z,
intel_dst_image->mt, dst_level,
dst_x, dst_y, dst_z,
src_width, src_height);
}
void
intelInitCopyImageFuncs(struct dd_function_table *functions)
{
functions->CopyImageSubData = intel_copy_image_sub_data;
}
|