1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file gen7_sol_state.c
*
* Controls the stream output logic (SOL) stage of the gen7 hardware, which is
* used to implement GL_EXT_transform_feedback.
*/
#include "brw_context.h"
#include "brw_state.h"
#include "brw_defines.h"
#include "intel_batchbuffer.h"
#include "intel_buffer_objects.h"
static void
upload_3dstate_so_buffers(struct brw_context *brw)
{
struct intel_context *intel = &brw->intel;
struct gl_context *ctx = &intel->ctx;
/* BRW_NEW_VERTEX_PROGRAM */
const struct gl_shader_program *vs_prog =
ctx->Shader.CurrentVertexProgram;
const struct gl_transform_feedback_info *linked_xfb_info =
&vs_prog->LinkedTransformFeedback;
/* _NEW_TRANSFORM_FEEDBACK */
struct gl_transform_feedback_object *xfb_obj =
ctx->TransformFeedback.CurrentObject;
int i;
/* Set up the up to 4 output buffers. These are the ranges defined in the
* gl_transform_feedback_object.
*/
for (i = 0; i < 4; i++) {
struct intel_buffer_object *bufferobj =
intel_buffer_object(xfb_obj->Buffers[i]);
drm_intel_bo *bo;
uint32_t start, end;
uint32_t stride;
if (!xfb_obj->Buffers[i]) {
/* The pitch of 0 in this command indicates that the buffer is
* unbound and won't be written to.
*/
BEGIN_BATCH(4);
OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
OUT_BATCH(0);
OUT_BATCH(0);
ADVANCE_BATCH();
continue;
}
bo = intel_bufferobj_buffer(intel, bufferobj, INTEL_WRITE_PART);
stride = linked_xfb_info->BufferStride[i] * 4;
start = xfb_obj->Offset[i];
assert(start % 4 == 0);
end = ALIGN(start + xfb_obj->Size[i], 4);
assert(end <= bo->size);
/* Offset the starting offset by the current vertex index into the
* feedback buffer, offset register is always set to 0 at the start of the
* batchbuffer.
*/
start += brw->sol.offset_0_batch_start * stride;
assert(start <= end);
BEGIN_BATCH(4);
OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT) | stride);
OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, end);
ADVANCE_BATCH();
}
}
/**
* Outputs the 3DSTATE_SO_DECL_LIST command.
*
* The data output is a series of 64-bit entries containing a SO_DECL per
* stream. We only have one stream of rendering coming out of the GS unit, so
* we only emit stream 0 (low 16 bits) SO_DECLs.
*/
static void
upload_3dstate_so_decl_list(struct brw_context *brw,
struct brw_vue_map *vue_map)
{
struct intel_context *intel = &brw->intel;
struct gl_context *ctx = &intel->ctx;
/* BRW_NEW_VERTEX_PROGRAM */
const struct gl_shader_program *vs_prog =
ctx->Shader.CurrentVertexProgram;
/* _NEW_TRANSFORM_FEEDBACK */
const struct gl_transform_feedback_info *linked_xfb_info =
&vs_prog->LinkedTransformFeedback;
int i;
uint16_t so_decl[128];
int buffer_mask = 0;
int next_offset[4] = {0, 0, 0, 0};
STATIC_ASSERT(ARRAY_SIZE(so_decl) >= MAX_PROGRAM_OUTPUTS);
/* Construct the list of SO_DECLs to be emitted. The formatting of the
* command is feels strange -- each dword pair contains a SO_DECL per stream.
*/
for (i = 0; i < linked_xfb_info->NumOutputs; i++) {
int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
uint16_t decl = 0;
int vert_result = linked_xfb_info->Outputs[i].OutputRegister;
unsigned component_mask =
(1 << linked_xfb_info->Outputs[i].NumComponents) - 1;
/* gl_PointSize is stored in VERT_RESULT_PSIZ.w. */
if (vert_result == VERT_RESULT_PSIZ) {
assert(linked_xfb_info->Outputs[i].NumComponents == 1);
component_mask <<= 3;
} else {
component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
}
buffer_mask |= 1 << buffer;
decl |= buffer << SO_DECL_OUTPUT_BUFFER_SLOT_SHIFT;
decl |= vue_map->vert_result_to_slot[vert_result] <<
SO_DECL_REGISTER_INDEX_SHIFT;
decl |= component_mask << SO_DECL_COMPONENT_MASK_SHIFT;
/* This assert should be true until GL_ARB_transform_feedback_instanced
* is added and we start using the hole flag.
*/
assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
next_offset[buffer] += linked_xfb_info->Outputs[i].NumComponents;
so_decl[i] = decl;
}
BEGIN_BATCH(linked_xfb_info->NumOutputs * 2 + 3);
OUT_BATCH(_3DSTATE_SO_DECL_LIST << 16 |
(linked_xfb_info->NumOutputs * 2 + 1));
OUT_BATCH((buffer_mask << SO_STREAM_TO_BUFFER_SELECTS_0_SHIFT) |
(0 << SO_STREAM_TO_BUFFER_SELECTS_1_SHIFT) |
(0 << SO_STREAM_TO_BUFFER_SELECTS_2_SHIFT) |
(0 << SO_STREAM_TO_BUFFER_SELECTS_3_SHIFT));
OUT_BATCH((linked_xfb_info->NumOutputs << SO_NUM_ENTRIES_0_SHIFT) |
(0 << SO_NUM_ENTRIES_1_SHIFT) |
(0 << SO_NUM_ENTRIES_2_SHIFT) |
(0 << SO_NUM_ENTRIES_3_SHIFT));
for (i = 0; i < linked_xfb_info->NumOutputs; i++) {
OUT_BATCH(so_decl[i]);
OUT_BATCH(0);
}
ADVANCE_BATCH();
}
static void
upload_3dstate_streamout(struct brw_context *brw, bool active,
struct brw_vue_map *vue_map)
{
struct intel_context *intel = &brw->intel;
struct gl_context *ctx = &intel->ctx;
/* _NEW_TRANSFORM_FEEDBACK */
struct gl_transform_feedback_object *xfb_obj =
ctx->TransformFeedback.CurrentObject;
uint32_t dw1 = 0, dw2 = 0;
int i;
/* _NEW_RASTERIZER_DISCARD */
if (ctx->RasterDiscard)
dw1 |= SO_RENDERING_DISABLE;
if (active) {
int urb_entry_read_offset = 0;
int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
urb_entry_read_offset;
dw1 |= SO_FUNCTION_ENABLE;
dw1 |= SO_STATISTICS_ENABLE;
/* _NEW_LIGHT */
if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
dw1 |= SO_REORDER_TRAILING;
for (i = 0; i < 4; i++) {
if (xfb_obj->Buffers[i]) {
dw1 |= SO_BUFFER_ENABLE(i);
}
}
/* We always read the whole vertex. This could be reduced at some
* point by reading less and offsetting the register index in the
* SO_DECLs.
*/
dw2 |= urb_entry_read_offset << SO_STREAM_0_VERTEX_READ_OFFSET_SHIFT;
dw2 |= (urb_entry_read_length - 1) <<
SO_STREAM_0_VERTEX_READ_LENGTH_SHIFT;
}
BEGIN_BATCH(3);
OUT_BATCH(_3DSTATE_STREAMOUT << 16 | (3 - 2));
OUT_BATCH(dw1);
OUT_BATCH(dw2);
ADVANCE_BATCH();
}
static void
upload_sol_state(struct brw_context *brw)
{
struct intel_context *intel = &brw->intel;
struct gl_context *ctx = &intel->ctx;
/* _NEW_TRANSFORM_FEEDBACK */
struct gl_transform_feedback_object *xfb_obj =
ctx->TransformFeedback.CurrentObject;
bool active = xfb_obj->Active && !xfb_obj->Paused;
struct brw_vue_map vue_map;
/* CACHE_NEW_VS_PROG */
brw_compute_vue_map(&vue_map, intel, brw->vs.prog_data);
if (active) {
upload_3dstate_so_buffers(brw);
upload_3dstate_so_decl_list(brw, &vue_map);
intel->batch.needs_sol_reset = true;
}
/* Finally, set up the SOL stage. This command must always follow updates to
* the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
* MMIO register updates (current performed by the kernel at each batch
* emit).
*/
upload_3dstate_streamout(brw, active, &vue_map);
}
const struct brw_tracked_state gen7_sol_state = {
.dirty = {
.mesa = (_NEW_RASTERIZER_DISCARD |
_NEW_LIGHT |
_NEW_TRANSFORM_FEEDBACK),
.brw = (BRW_NEW_BATCH |
BRW_NEW_VERTEX_PROGRAM),
.cache = CACHE_NEW_VS_PROG,
},
.emit = upload_sol_state,
};
void
gen7_end_transform_feedback(struct gl_context *ctx,
struct gl_transform_feedback_object *obj)
{
/* Because we have to rely on the kernel to reset our SO write offsets, and
* we only get to do it once per batchbuffer, flush the batch after feedback
* so another transform feedback can get the write offset reset it needs.
*
* This also covers any cache flushing required.
*/
struct brw_context *brw = brw_context(ctx);
struct intel_context *intel = &brw->intel;
intel_batchbuffer_flush(intel);
}
|