1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file gen7_sol_state.c
*
* Controls the stream output logic (SOL) stage of the gen7 hardware, which is
* used to implement GL_EXT_transform_feedback.
*/
#include "brw_context.h"
#include "brw_state.h"
#include "brw_defines.h"
#include "intel_batchbuffer.h"
#include "intel_buffer_objects.h"
#include "main/transformfeedback.h"
static void
upload_3dstate_so_buffers(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_VERTEX_PROGRAM */
const struct gl_shader_program *vs_prog =
ctx->Shader.CurrentVertexProgram;
const struct gl_transform_feedback_info *linked_xfb_info =
&vs_prog->LinkedTransformFeedback;
/* BRW_NEW_TRANSFORM_FEEDBACK */
struct gl_transform_feedback_object *xfb_obj =
ctx->TransformFeedback.CurrentObject;
int i;
/* Set up the up to 4 output buffers. These are the ranges defined in the
* gl_transform_feedback_object.
*/
for (i = 0; i < 4; i++) {
struct intel_buffer_object *bufferobj =
intel_buffer_object(xfb_obj->Buffers[i]);
drm_intel_bo *bo;
uint32_t start, end;
uint32_t stride;
if (!xfb_obj->Buffers[i]) {
/* The pitch of 0 in this command indicates that the buffer is
* unbound and won't be written to.
*/
BEGIN_BATCH(4);
OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
OUT_BATCH(0);
OUT_BATCH(0);
ADVANCE_BATCH();
continue;
}
stride = linked_xfb_info->BufferStride[i] * 4;
start = xfb_obj->Offset[i];
assert(start % 4 == 0);
end = ALIGN(start + xfb_obj->Size[i], 4);
bo = intel_bufferobj_buffer(brw, bufferobj, start, end - start);
assert(end <= bo->size);
BEGIN_BATCH(4);
OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT) | stride);
OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, end);
ADVANCE_BATCH();
}
}
/**
* Outputs the 3DSTATE_SO_DECL_LIST command.
*
* The data output is a series of 64-bit entries containing a SO_DECL per
* stream. We only have one stream of rendering coming out of the GS unit, so
* we only emit stream 0 (low 16 bits) SO_DECLs.
*/
void
gen7_upload_3dstate_so_decl_list(struct brw_context *brw,
const struct brw_vue_map *vue_map)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_VERTEX_PROGRAM */
const struct gl_shader_program *vs_prog =
ctx->Shader.CurrentVertexProgram;
/* BRW_NEW_TRANSFORM_FEEDBACK */
const struct gl_transform_feedback_info *linked_xfb_info =
&vs_prog->LinkedTransformFeedback;
uint16_t so_decl[128];
int buffer_mask = 0;
int next_offset[4] = {0, 0, 0, 0};
int decls = 0;
STATIC_ASSERT(ARRAY_SIZE(so_decl) >= MAX_PROGRAM_OUTPUTS);
/* Construct the list of SO_DECLs to be emitted. The formatting of the
* command is feels strange -- each dword pair contains a SO_DECL per stream.
*/
for (int i = 0; i < linked_xfb_info->NumOutputs; i++) {
int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
uint16_t decl = 0;
int varying = linked_xfb_info->Outputs[i].OutputRegister;
const unsigned components = linked_xfb_info->Outputs[i].NumComponents;
unsigned component_mask = (1 << components) - 1;
/* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
if (varying == VARYING_SLOT_PSIZ) {
assert(components == 1);
component_mask <<= 3;
} else {
component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
}
buffer_mask |= 1 << buffer;
decl |= buffer << SO_DECL_OUTPUT_BUFFER_SLOT_SHIFT;
decl |= vue_map->varying_to_slot[varying] <<
SO_DECL_REGISTER_INDEX_SHIFT;
decl |= component_mask << SO_DECL_COMPONENT_MASK_SHIFT;
/* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
* array. Instead, it simply increments DstOffset for the following
* input by the number of components that should be skipped.
*
* Our hardware is unusual in that it requires us to program SO_DECLs
* for fake "hole" components, rather than simply taking the offset
* for each real varying. Each hole can have size 1, 2, 3, or 4; we
* program as many size = 4 holes as we can, then a final hole to
* accomodate the final 1, 2, or 3 remaining.
*/
int skip_components =
linked_xfb_info->Outputs[i].DstOffset - next_offset[buffer];
next_offset[buffer] += skip_components;
while (skip_components >= 4) {
so_decl[decls++] = SO_DECL_HOLE_FLAG | 0xf;
skip_components -= 4;
}
if (skip_components > 0)
so_decl[decls++] = SO_DECL_HOLE_FLAG | ((1 << skip_components) - 1);
assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
next_offset[buffer] += components;
so_decl[decls++] = decl;
}
BEGIN_BATCH(decls * 2 + 3);
OUT_BATCH(_3DSTATE_SO_DECL_LIST << 16 | (decls * 2 + 1));
OUT_BATCH((buffer_mask << SO_STREAM_TO_BUFFER_SELECTS_0_SHIFT) |
(0 << SO_STREAM_TO_BUFFER_SELECTS_1_SHIFT) |
(0 << SO_STREAM_TO_BUFFER_SELECTS_2_SHIFT) |
(0 << SO_STREAM_TO_BUFFER_SELECTS_3_SHIFT));
OUT_BATCH((decls << SO_NUM_ENTRIES_0_SHIFT) |
(0 << SO_NUM_ENTRIES_1_SHIFT) |
(0 << SO_NUM_ENTRIES_2_SHIFT) |
(0 << SO_NUM_ENTRIES_3_SHIFT));
for (int i = 0; i < decls; i++) {
OUT_BATCH(so_decl[i]);
OUT_BATCH(0);
}
ADVANCE_BATCH();
}
static void
upload_3dstate_streamout(struct brw_context *brw, bool active,
const struct brw_vue_map *vue_map)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_TRANSFORM_FEEDBACK */
struct gl_transform_feedback_object *xfb_obj =
ctx->TransformFeedback.CurrentObject;
uint32_t dw1 = 0, dw2 = 0;
int i;
if (active) {
int urb_entry_read_offset = 0;
int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
urb_entry_read_offset;
dw1 |= SO_FUNCTION_ENABLE;
dw1 |= SO_STATISTICS_ENABLE;
/* _NEW_LIGHT */
if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
dw1 |= SO_REORDER_TRAILING;
for (i = 0; i < 4; i++) {
if (xfb_obj->Buffers[i]) {
dw1 |= SO_BUFFER_ENABLE(i);
}
}
/* We always read the whole vertex. This could be reduced at some
* point by reading less and offsetting the register index in the
* SO_DECLs.
*/
dw2 |= urb_entry_read_offset << SO_STREAM_0_VERTEX_READ_OFFSET_SHIFT;
dw2 |= (urb_entry_read_length - 1) <<
SO_STREAM_0_VERTEX_READ_LENGTH_SHIFT;
}
BEGIN_BATCH(3);
OUT_BATCH(_3DSTATE_STREAMOUT << 16 | (3 - 2));
OUT_BATCH(dw1);
OUT_BATCH(dw2);
ADVANCE_BATCH();
}
static void
upload_sol_state(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_TRANSFORM_FEEDBACK */
bool active = _mesa_is_xfb_active_and_unpaused(ctx);
if (active) {
upload_3dstate_so_buffers(brw);
/* BRW_NEW_VUE_MAP_GEOM_OUT */
gen7_upload_3dstate_so_decl_list(brw, &brw->vue_map_geom_out);
}
/* Finally, set up the SOL stage. This command must always follow updates to
* the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
* MMIO register updates (current performed by the kernel at each batch
* emit).
*/
upload_3dstate_streamout(brw, active, &brw->vue_map_geom_out);
}
const struct brw_tracked_state gen7_sol_state = {
.dirty = {
.mesa = (_NEW_LIGHT),
.brw = (BRW_NEW_BATCH |
BRW_NEW_VERTEX_PROGRAM |
BRW_NEW_VUE_MAP_GEOM_OUT |
BRW_NEW_TRANSFORM_FEEDBACK)
},
.emit = upload_sol_state,
};
/**
* Tally the number of primitives generated so far.
*
* The buffer contains a series of pairs:
* (<start0, start1, start2, start3>, <end0, end1, end2, end3>) ;
* (<start0, start1, start2, start3>, <end0, end1, end2, end3>) ;
*
* For each stream, we subtract the pair of values (end - start) to get the
* number of primitives generated during one section. We accumulate these
* values, adding them up to get the total number of primitives generated.
*/
static void
gen7_tally_prims_generated(struct brw_context *brw,
struct brw_transform_feedback_object *obj)
{
/* If the current batch is still contributing to the number of primitives
* generated, flush it now so the results will be present when mapped.
*/
if (drm_intel_bo_references(brw->batch.bo, obj->prim_count_bo))
intel_batchbuffer_flush(brw);
if (unlikely(brw->perf_debug && drm_intel_bo_busy(obj->prim_count_bo)))
perf_debug("Stalling for # of transform feedback primitives written.\n");
drm_intel_bo_map(obj->prim_count_bo, false);
uint64_t *prim_counts = obj->prim_count_bo->virtual;
assert(obj->prim_count_buffer_index % (2 * BRW_MAX_XFB_STREAMS) == 0);
int pairs = obj->prim_count_buffer_index / (2 * BRW_MAX_XFB_STREAMS);
for (int i = 0; i < pairs; i++) {
for (int s = 0; s < BRW_MAX_XFB_STREAMS; s++) {
obj->prims_generated[s] +=
prim_counts[BRW_MAX_XFB_STREAMS + s] - prim_counts[s];
}
prim_counts += 2 * BRW_MAX_XFB_STREAMS; /* move to the next pair */
}
drm_intel_bo_unmap(obj->prim_count_bo);
/* We've already gathered up the old data; we can safely overwrite it now. */
obj->prim_count_buffer_index = 0;
}
/**
* Store the SO_NUM_PRIMS_WRITTEN counters for each stream (4 uint64_t values)
* to prim_count_bo.
*
* If prim_count_bo is out of space, gather up the results so far into
* prims_generated[] and allocate a new buffer with enough space.
*
* The number of primitives written is used to compute the number of vertices
* written to a transform feedback stream, which is required to implement
* DrawTransformFeedback().
*/
static void
gen7_save_primitives_written_counters(struct brw_context *brw,
struct brw_transform_feedback_object *obj)
{
const int streams = BRW_MAX_XFB_STREAMS;
/* Check if there's enough space for a new pair of four values. */
if (obj->prim_count_bo != NULL &&
obj->prim_count_buffer_index + 2 * streams >= 4096 / sizeof(uint64_t)) {
/* Gather up the results so far and release the BO. */
gen7_tally_prims_generated(brw, obj);
}
/* Flush any drawing so that the counters have the right values. */
intel_batchbuffer_emit_mi_flush(brw);
/* Emit MI_STORE_REGISTER_MEM commands to write the values. */
for (int i = 0; i < streams; i++) {
brw_store_register_mem64(brw, obj->prim_count_bo,
GEN7_SO_NUM_PRIMS_WRITTEN(i),
obj->prim_count_buffer_index + i);
}
/* Update where to write data to. */
obj->prim_count_buffer_index += streams;
}
/**
* Compute the number of vertices written by this transform feedback operation.
*/
static void
brw_compute_xfb_vertices_written(struct brw_context *brw,
struct brw_transform_feedback_object *obj)
{
if (obj->vertices_written_valid || !obj->base.EndedAnytime)
return;
unsigned vertices_per_prim = 0;
switch (obj->primitive_mode) {
case GL_POINTS:
vertices_per_prim = 1;
break;
case GL_LINES:
vertices_per_prim = 2;
break;
case GL_TRIANGLES:
vertices_per_prim = 3;
break;
default:
assert(!"Invalid transform feedback primitive mode.");
}
/* Get the number of primitives generated. */
gen7_tally_prims_generated(brw, obj);
for (int i = 0; i < BRW_MAX_XFB_STREAMS; i++) {
obj->vertices_written[i] = vertices_per_prim * obj->prims_generated[i];
}
obj->vertices_written_valid = true;
}
/**
* GetTransformFeedbackVertexCount() driver hook.
*
* Returns the number of vertices written to a particular stream by the last
* Begin/EndTransformFeedback block. Used to implement DrawTransformFeedback().
*/
GLsizei
brw_get_transform_feedback_vertex_count(struct gl_context *ctx,
struct gl_transform_feedback_object *obj,
GLuint stream)
{
struct brw_context *brw = brw_context(ctx);
struct brw_transform_feedback_object *brw_obj =
(struct brw_transform_feedback_object *) obj;
assert(obj->EndedAnytime);
assert(stream < BRW_MAX_XFB_STREAMS);
brw_compute_xfb_vertices_written(brw, brw_obj);
return brw_obj->vertices_written[stream];
}
void
gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
struct gl_transform_feedback_object *obj)
{
struct brw_context *brw = brw_context(ctx);
struct brw_transform_feedback_object *brw_obj =
(struct brw_transform_feedback_object *) obj;
intel_batchbuffer_flush(brw);
brw->batch.needs_sol_reset = true;
/* We're about to lose the information needed to compute the number of
* vertices written during the last Begin/EndTransformFeedback section,
* so we can't delay it any further.
*/
brw_compute_xfb_vertices_written(brw, brw_obj);
/* No primitives have been generated yet. */
for (int i = 0; i < BRW_MAX_XFB_STREAMS; i++) {
brw_obj->prims_generated[i] = 0;
}
/* Store the starting value of the SO_NUM_PRIMS_WRITTEN counters. */
gen7_save_primitives_written_counters(brw, brw_obj);
brw_obj->primitive_mode = mode;
}
void
gen7_end_transform_feedback(struct gl_context *ctx,
struct gl_transform_feedback_object *obj)
{
/* After EndTransformFeedback, it's likely that the client program will try
* to draw using the contents of the transform feedback buffer as vertex
* input. In order for this to work, we need to flush the data through at
* least the GS stage of the pipeline, and flush out the render cache. For
* simplicity, just do a full flush.
*/
struct brw_context *brw = brw_context(ctx);
struct brw_transform_feedback_object *brw_obj =
(struct brw_transform_feedback_object *) obj;
/* Store the ending value of the SO_NUM_PRIMS_WRITTEN counters. */
gen7_save_primitives_written_counters(brw, brw_obj);
/* EndTransformFeedback() means that we need to update the number of
* vertices written. Since it's only necessary if DrawTransformFeedback()
* is called and it means mapping a buffer object, we delay computing it
* until it's absolutely necessary to try and avoid stalls.
*/
brw_obj->vertices_written_valid = false;
}
void
gen7_pause_transform_feedback(struct gl_context *ctx,
struct gl_transform_feedback_object *obj)
{
struct brw_context *brw = brw_context(ctx);
struct brw_transform_feedback_object *brw_obj =
(struct brw_transform_feedback_object *) obj;
/* Flush any drawing so that the counters have the right values. */
intel_batchbuffer_emit_mi_flush(brw);
/* Save the SOL buffer offset register values. */
for (int i = 0; i < 4; i++) {
BEGIN_BATCH(3);
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
OUT_BATCH(GEN7_SO_WRITE_OFFSET(i));
OUT_RELOC(brw_obj->offset_bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
i * sizeof(uint32_t));
ADVANCE_BATCH();
}
/* Store the temporary ending value of the SO_NUM_PRIMS_WRITTEN counters.
* While this operation is paused, other transform feedback actions may
* occur, which will contribute to the counters. We need to exclude that
* from our counts.
*/
gen7_save_primitives_written_counters(brw, brw_obj);
}
void
gen7_resume_transform_feedback(struct gl_context *ctx,
struct gl_transform_feedback_object *obj)
{
struct brw_context *brw = brw_context(ctx);
struct brw_transform_feedback_object *brw_obj =
(struct brw_transform_feedback_object *) obj;
/* Reload the SOL buffer offset registers. */
for (int i = 0; i < 4; i++) {
BEGIN_BATCH(3);
OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
OUT_BATCH(GEN7_SO_WRITE_OFFSET(i));
OUT_RELOC(brw_obj->offset_bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
i * sizeof(uint32_t));
ADVANCE_BATCH();
}
/* Store the new starting value of the SO_NUM_PRIMS_WRITTEN counters. */
gen7_save_primitives_written_counters(brw, brw_obj);
}
|