1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
* Copyright (c) 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "common/gen_l3_config.h"
#include "brw_context.h"
#include "brw_defines.h"
#include "brw_state.h"
#include "intel_batchbuffer.h"
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
static struct gen_l3_weights
get_pipeline_state_l3_weights(const struct brw_context *brw)
{
const struct brw_stage_state *stage_states[] = {
[MESA_SHADER_VERTEX] = &brw->vs.base,
[MESA_SHADER_TESS_CTRL] = &brw->tcs.base,
[MESA_SHADER_TESS_EVAL] = &brw->tes.base,
[MESA_SHADER_GEOMETRY] = &brw->gs.base,
[MESA_SHADER_FRAGMENT] = &brw->wm.base,
[MESA_SHADER_COMPUTE] = &brw->cs.base
};
bool needs_dc = false, needs_slm = false;
for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) {
const struct gl_program *prog =
brw->ctx._Shader->CurrentProgram[stage_states[i]->stage];
const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data;
needs_dc |= (prog && (prog->sh.data->NumAtomicBuffers ||
prog->sh.data->NumShaderStorageBlocks ||
prog->info.num_images)) ||
(prog_data && prog_data->total_scratch);
needs_slm |= prog_data && prog_data->total_shared;
}
return gen_get_default_l3_weights(&brw->screen->devinfo,
needs_dc, needs_slm);
}
/**
* Program the hardware to use the specified L3 configuration.
*/
static void
setup_l3_config(struct brw_context *brw, const struct gen_l3_config *cfg)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_slm = cfg->n[GEN_L3P_SLM];
/* According to the hardware docs, the L3 partitioning can only be changed
* while the pipeline is completely drained and the caches are flushed,
* which involves a first PIPE_CONTROL flush which stalls the pipeline...
*/
brw_emit_pipe_control_flush(brw,
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
/* ...followed by a second pipelined PIPE_CONTROL that initiates
* invalidation of the relevant caches. Note that because RO invalidation
* happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
* command is processed by the CS) we cannot combine it with the previous
* stalling flush as the hardware documentation suggests, because that
* would cause the CS to stall on previous rendering *after* RO
* invalidation and wouldn't prevent the RO caches from being polluted by
* concurrent rendering before the stall completes. This intentionally
* doesn't implement the SKL+ hardware workaround suggesting to enable CS
* stall on PIPE_CONTROLs with the texture cache invalidation bit set for
* GPGPU workloads because the previous and subsequent PIPE_CONTROLs
* already guarantee that there is no concurrent GPGPU kernel execution
* (see SKL HSD 2132585).
*/
brw_emit_pipe_control_flush(brw,
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
/* Now send a third stalling flush to make sure that invalidation is
* complete when the L3 configuration registers are modified.
*/
brw_emit_pipe_control_flush(brw,
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
if (devinfo->gen >= 8) {
assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
const unsigned imm_data = ((has_slm ? GEN8_L3CNTLREG_SLM_ENABLE : 0) |
SET_FIELD(cfg->n[GEN_L3P_URB], GEN8_L3CNTLREG_URB_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_RO], GEN8_L3CNTLREG_RO_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_DC], GEN8_L3CNTLREG_DC_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_ALL], GEN8_L3CNTLREG_ALL_ALLOC));
/* Set up the L3 partitioning. */
brw_load_register_imm32(brw, GEN8_L3CNTLREG, imm_data);
} else {
assert(!cfg->n[GEN_L3P_ALL]);
/* When enabled SLM only uses a portion of the L3 on half of the banks,
* the matching space on the remaining banks has to be allocated to a
* client (URB for all validated configurations) set to the
* lower-bandwidth 2-bank address hashing mode.
*/
const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
/* Minimum number of ways that can be allocated to the URB. */
const unsigned n0_urb = (devinfo->is_baytrail ? 32 : 0);
assert(cfg->n[GEN_L3P_URB] >= n0_urb);
BEGIN_BATCH(7);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2));
/* Demote any clients with no ways assigned to LLC. */
OUT_BATCH(GEN7_L3SQCREG1);
OUT_BATCH((devinfo->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
IVB_L3SQCREG1_SQGHPCI_DEFAULT) |
(has_dc ? 0 : GEN7_L3SQCREG1_CONV_DC_UC) |
(has_is ? 0 : GEN7_L3SQCREG1_CONV_IS_UC) |
(has_c ? 0 : GEN7_L3SQCREG1_CONV_C_UC) |
(has_t ? 0 : GEN7_L3SQCREG1_CONV_T_UC));
/* Set up the L3 partitioning. */
OUT_BATCH(GEN7_L3CNTLREG2);
OUT_BATCH((has_slm ? GEN7_L3CNTLREG2_SLM_ENABLE : 0) |
SET_FIELD(cfg->n[GEN_L3P_URB] - n0_urb, GEN7_L3CNTLREG2_URB_ALLOC) |
(urb_low_bw ? GEN7_L3CNTLREG2_URB_LOW_BW : 0) |
SET_FIELD(cfg->n[GEN_L3P_ALL], GEN7_L3CNTLREG2_ALL_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_RO], GEN7_L3CNTLREG2_RO_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_DC], GEN7_L3CNTLREG2_DC_ALLOC));
OUT_BATCH(GEN7_L3CNTLREG3);
OUT_BATCH(SET_FIELD(cfg->n[GEN_L3P_IS], GEN7_L3CNTLREG3_IS_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_C], GEN7_L3CNTLREG3_C_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_T], GEN7_L3CNTLREG3_T_ALLOC));
ADVANCE_BATCH();
if (can_do_hsw_l3_atomics(brw->screen)) {
/* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
* them disabled to avoid crashing the system hard.
*/
BEGIN_BATCH(5);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
OUT_BATCH(HSW_SCRATCH1);
OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE);
OUT_BATCH(HSW_ROW_CHICKEN3);
OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) |
(has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE));
ADVANCE_BATCH();
}
}
}
/**
* Update the URB size in the context state for the specified L3
* configuration.
*/
static void
update_urb_size(struct brw_context *brw, const struct gen_l3_config *cfg)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const unsigned sz = gen_get_l3_config_urb_size(devinfo, cfg);
if (brw->urb.size != sz) {
brw->urb.size = sz;
brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE;
/* If we change the total URB size, reset the individual stage sizes to
* zero so that, even if there is no URB size change, gen7_upload_urb
* still re-emits 3DSTATE_URB_*.
*/
brw->urb.vsize = 0;
brw->urb.gsize = 0;
brw->urb.hsize = 0;
brw->urb.dsize = 0;
}
}
static void
emit_l3_state(struct brw_context *brw)
{
const struct gen_l3_weights w = get_pipeline_state_l3_weights(brw);
const float dw = gen_diff_l3_weights(w, gen_get_l3_config_weights(brw->l3.config));
/* The distance between any two compatible weight vectors cannot exceed two
* due to the triangle inequality.
*/
const float large_dw_threshold = 2.0;
/* Somewhat arbitrary, simply makes sure that there will be no repeated
* transitions to the same L3 configuration, could probably do better here.
*/
const float small_dw_threshold = 0.5;
/* If we're emitting a new batch the caches should already be clean and the
* transition should be relatively cheap, so it shouldn't hurt much to use
* the smaller threshold. Otherwise use the larger threshold so that we
* only reprogram the L3 mid-batch if the most recently programmed
* configuration is incompatible with the current pipeline state.
*/
const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ?
small_dw_threshold : large_dw_threshold);
if (dw > dw_threshold && can_do_pipelined_register_writes(brw->screen)) {
const struct gen_l3_config *const cfg =
gen_get_l3_config(&brw->screen->devinfo, w);
setup_l3_config(brw, cfg);
update_urb_size(brw, cfg);
brw->l3.config = cfg;
if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold);
gen_dump_l3_config(cfg, stderr);
}
}
}
const struct brw_tracked_state gen7_l3_state = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_BATCH |
BRW_NEW_BLORP |
BRW_NEW_CS_PROG_DATA |
BRW_NEW_FS_PROG_DATA |
BRW_NEW_GS_PROG_DATA |
BRW_NEW_TCS_PROG_DATA |
BRW_NEW_TES_PROG_DATA |
BRW_NEW_VS_PROG_DATA,
},
.emit = emit_l3_state
};
/**
* Hack to restore the default L3 configuration.
*
* This will be called at the end of every batch in order to reset the L3
* configuration to the default values for the time being until the kernel is
* fixed. Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
* (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting
* batch buffers for the default context used by the DDX, which meant that any
* context state changed by the GL would leak into the DDX, the assumption
* being that the DDX would initialize any state it cares about manually. The
* DDX is however not careful enough to program an L3 configuration
* explicitly, and it makes assumptions about it (URB size) which won't hold
* and cause it to misrender if we let our L3 set-up to leak into the DDX.
*
* Since v4.1 of the Linux kernel the default context is saved and restored
* normally, so it's far less likely for our L3 programming to interfere with
* other contexts -- In fact restoring the default L3 configuration at the end
* of the batch will be redundant most of the time. A kind of state leak is
* still possible though if the context making assumptions about L3 state is
* created immediately after our context was active (e.g. without the DDX
* default context being scheduled in between) because at present the DRM
* doesn't fully initialize the contents of newly created contexts and instead
* sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the
* last active context.
*
* It's possible to realize such a scenario if, say, an X server (or a GL
* application using an outdated non-L3-aware Mesa version) is started while
* another GL application is running and happens to have modified the L3
* configuration, or if no X server is running at all and a GL application
* using a non-L3-aware Mesa version is started after another GL application
* ran and modified the L3 configuration -- The latter situation can actually
* be reproduced easily on IVB in our CI system.
*/
void
gen7_restore_default_l3_config(struct brw_context *brw)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const struct gen_l3_config *const cfg = gen_get_default_l3_config(devinfo);
if (cfg != brw->l3.config &&
can_do_pipelined_register_writes(brw->screen)) {
setup_l3_config(brw, cfg);
update_urb_size(brw, cfg);
brw->l3.config = cfg;
}
}
|