1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_context.h"
#include "brw_state.h"
#include "brw_defines.h"
#include "brw_util.h"
#include "main/macros.h"
#include "intel_batchbuffer.h"
/**
* Determine the appropriate attribute override value to store into the
* 3DSTATE_SF structure for a given fragment shader attribute. The attribute
* override value contains two pieces of information: the location of the
* attribute in the VUE (relative to urb_entry_read_offset, see below), and a
* flag indicating whether to "swizzle" the attribute based on the direction
* the triangle is facing.
*
* If an attribute is "swizzled", then the given VUE location is used for
* front-facing triangles, and the VUE location that immediately follows is
* used for back-facing triangles. We use this to implement the mapping from
* gl_FrontColor/gl_BackColor to gl_Color.
*
* urb_entry_read_offset is the offset into the VUE at which the SF unit is
* being instructed to begin reading attribute data. It can be set to a
* nonzero value to prevent the SF unit from wasting time reading elements of
* the VUE that are not needed by the fragment shader. It is measured in
* 256-bit increments.
*/
uint32_t
get_attr_override(struct brw_vue_map *vue_map, int urb_entry_read_offset,
int fs_attr, bool two_side_color)
{
int attr_override, slot;
int vs_attr = _mesa_frag_attrib_to_vert_result(fs_attr);
if (vs_attr < 0 || vs_attr == VERT_RESULT_HPOS) {
/* These attributes will be overwritten by the fragment shader's
* interpolation code (see emit_interp() in brw_wm_fp.c), so just let
* them reference the first available attribute.
*/
return 0;
}
/* Find the VUE slot for this attribute. */
slot = vue_map->vert_result_to_slot[vs_attr];
/* If there was only a back color written but not front, use back
* as the color instead of undefined
*/
if (slot == -1 && vs_attr == VERT_RESULT_COL0)
slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC0];
if (slot == -1 && vs_attr == VERT_RESULT_COL1)
slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC1];
if (slot == -1) {
/* This attribute does not exist in the VUE--that means that the vertex
* shader did not write to it. Behavior is undefined in this case, so
* just reference the first available attribute.
*/
return 0;
}
/* Compute the location of the attribute relative to urb_entry_read_offset.
* Each increment of urb_entry_read_offset represents a 256-bit value, so
* it counts for two 128-bit VUE slots.
*/
attr_override = slot - 2 * urb_entry_read_offset;
assert (attr_override >= 0 && attr_override < 32);
/* If we are doing two-sided color, and the VUE slot following this one
* represents a back-facing color, then we need to instruct the SF unit to
* do back-facing swizzling.
*/
if (two_side_color) {
if (vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL0 &&
vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC0)
attr_override |= (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
else if (vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL1 &&
vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC1)
attr_override |= (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
}
return attr_override;
}
static void
upload_sf_state(struct brw_context *brw)
{
struct intel_context *intel = &brw->intel;
struct gl_context *ctx = &intel->ctx;
struct brw_vue_map vue_map;
uint32_t urb_entry_read_length;
/* CACHE_NEW_VS_PROG */
GLbitfield64 vs_outputs_written = brw->vs.prog_data->outputs_written;
/* BRW_NEW_FRAGMENT_PROGRAM */
uint32_t num_outputs = _mesa_bitcount_64(brw->fragment_program->Base.InputsRead);
uint32_t dw1, dw2, dw3, dw4, dw16, dw17;
int i;
/* _NEW_BUFFER */
GLboolean render_to_fbo = brw->intel.ctx.DrawBuffer->Name != 0;
int attr = 0, input_index = 0;
int urb_entry_read_offset = 1;
float point_size;
uint16_t attr_overrides[FRAG_ATTRIB_MAX];
int nr_userclip;
/* _NEW_TRANSFORM */
nr_userclip = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
brw_compute_vue_map(&vue_map, intel, nr_userclip, vs_outputs_written);
urb_entry_read_length = (vue_map.num_slots + 1)/2 - urb_entry_read_offset;
if (urb_entry_read_length == 0) {
/* Setting the URB entry read length to 0 causes undefined behavior, so
* if we have no URB data to read, set it to 1.
*/
urb_entry_read_length = 1;
}
dw1 =
GEN6_SF_SWIZZLE_ENABLE |
num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT |
urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT;
dw2 = GEN6_SF_VIEWPORT_TRANSFORM_ENABLE |
GEN6_SF_STATISTICS_ENABLE;
dw3 = 0;
dw4 = 0;
dw16 = 0;
dw17 = 0;
/* _NEW_POLYGON */
if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
dw2 |= GEN6_SF_WINDING_CCW;
if (ctx->Polygon.OffsetFill)
dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
if (ctx->Polygon.OffsetLine)
dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
if (ctx->Polygon.OffsetPoint)
dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
switch (ctx->Polygon.FrontMode) {
case GL_FILL:
dw2 |= GEN6_SF_FRONT_SOLID;
break;
case GL_LINE:
dw2 |= GEN6_SF_FRONT_WIREFRAME;
break;
case GL_POINT:
dw2 |= GEN6_SF_FRONT_POINT;
break;
default:
assert(0);
break;
}
switch (ctx->Polygon.BackMode) {
case GL_FILL:
dw2 |= GEN6_SF_BACK_SOLID;
break;
case GL_LINE:
dw2 |= GEN6_SF_BACK_WIREFRAME;
break;
case GL_POINT:
dw2 |= GEN6_SF_BACK_POINT;
break;
default:
assert(0);
break;
}
/* _NEW_SCISSOR */
if (ctx->Scissor.Enabled)
dw3 |= GEN6_SF_SCISSOR_ENABLE;
/* _NEW_POLYGON */
if (ctx->Polygon.CullFlag) {
switch (ctx->Polygon.CullFaceMode) {
case GL_FRONT:
dw3 |= GEN6_SF_CULL_FRONT;
break;
case GL_BACK:
dw3 |= GEN6_SF_CULL_BACK;
break;
case GL_FRONT_AND_BACK:
dw3 |= GEN6_SF_CULL_BOTH;
break;
default:
assert(0);
break;
}
} else {
dw3 |= GEN6_SF_CULL_NONE;
}
/* _NEW_LINE */
dw3 |= U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7) <<
GEN6_SF_LINE_WIDTH_SHIFT;
if (ctx->Line.SmoothFlag) {
dw3 |= GEN6_SF_LINE_AA_ENABLE;
dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
}
/* _NEW_POINT */
if (!(ctx->VertexProgram.PointSizeEnabled ||
ctx->Point._Attenuated))
dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;
/* Clamp to ARB_point_parameters user limits */
point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
/* Clamp to the hardware limits and convert to fixed point */
dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);
if (ctx->Point.SpriteOrigin == GL_LOWER_LEFT)
dw1 |= GEN6_SF_POINT_SPRITE_LOWERLEFT;
/* _NEW_LIGHT */
if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
dw4 |=
(2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
(2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
(1 << GEN6_SF_LINE_PROVOKE_SHIFT);
} else {
dw4 |=
(1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
}
/* Create the mapping from the FS inputs we produce to the VS outputs
* they source from.
*/
for (; attr < FRAG_ATTRIB_MAX; attr++) {
if (!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)))
continue;
/* _NEW_POINT */
if (ctx->Point.PointSprite &&
(attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) &&
ctx->Point.CoordReplace[attr - FRAG_ATTRIB_TEX0]) {
dw16 |= (1 << input_index);
}
if (attr == FRAG_ATTRIB_PNTC)
dw16 |= (1 << input_index);
/* flat shading */
if (ctx->Light.ShadeModel == GL_FLAT) {
/*
* Setup the Constant Interpolation Enable bit mask for each
* corresponding attribute(currently, we only care two attrs:
* FRAG_BIT_COL0 and FRAG_BIT_COL1).
*
* FIXME: should we care other attributes?
*/
if (attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1)
dw17 |= (1 << input_index);
}
/* The hardware can only do the overrides on 16 overrides at a
* time, and the other up to 16 have to be lined up so that the
* input index = the output index. We'll need to do some
* tweaking to make sure that's the case.
*/
assert(input_index < 16 || attr == input_index);
/* _NEW_LIGHT | _NEW_PROGRAM */
attr_overrides[input_index++] =
get_attr_override(&vue_map, urb_entry_read_offset, attr,
ctx->VertexProgram._TwoSideEnabled);
}
for (; input_index < FRAG_ATTRIB_MAX; input_index++)
attr_overrides[input_index] = 0;
BEGIN_BATCH(20);
OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
OUT_BATCH(dw1);
OUT_BATCH(dw2);
OUT_BATCH(dw3);
OUT_BATCH(dw4);
OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant. copied from gen4 */
OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
for (i = 0; i < 8; i++) {
OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
}
OUT_BATCH(dw16); /* point sprite texcoord bitmask */
OUT_BATCH(dw17); /* constant interp bitmask */
OUT_BATCH(0); /* wrapshortest enables 0-7 */
OUT_BATCH(0); /* wrapshortest enables 8-15 */
ADVANCE_BATCH();
}
const struct brw_tracked_state gen6_sf_state = {
.dirty = {
.mesa = (_NEW_LIGHT |
_NEW_PROGRAM |
_NEW_POLYGON |
_NEW_LINE |
_NEW_SCISSOR |
_NEW_BUFFERS |
_NEW_POINT |
_NEW_TRANSFORM),
.brw = (BRW_NEW_CONTEXT |
BRW_NEW_FRAGMENT_PROGRAM),
.cache = CACHE_NEW_VS_PROG
},
.emit = upload_sf_state,
};
|