1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_context.h"
#include "brw_state.h"
#include "brw_defines.h"
#include "brw_util.h"
#include "compiler/nir/nir.h"
#include "main/macros.h"
#include "main/fbobject.h"
#include "main/framebuffer.h"
#include "intel_batchbuffer.h"
/**
* Determine the appropriate attribute override value to store into the
* 3DSTATE_SF structure for a given fragment shader attribute. The attribute
* override value contains two pieces of information: the location of the
* attribute in the VUE (relative to urb_entry_read_offset, see below), and a
* flag indicating whether to "swizzle" the attribute based on the direction
* the triangle is facing.
*
* If an attribute is "swizzled", then the given VUE location is used for
* front-facing triangles, and the VUE location that immediately follows is
* used for back-facing triangles. We use this to implement the mapping from
* gl_FrontColor/gl_BackColor to gl_Color.
*
* urb_entry_read_offset is the offset into the VUE at which the SF unit is
* being instructed to begin reading attribute data. It can be set to a
* nonzero value to prevent the SF unit from wasting time reading elements of
* the VUE that are not needed by the fragment shader. It is measured in
* 256-bit increments.
*/
static uint32_t
get_attr_override(const struct brw_vue_map *vue_map, int urb_entry_read_offset,
int fs_attr, bool two_side_color, uint32_t *max_source_attr)
{
/* Find the VUE slot for this attribute. */
int slot = vue_map->varying_to_slot[fs_attr];
/* Viewport and Layer are stored in the VUE header. We need to override
* them to zero if earlier stages didn't write them, as GL requires that
* they read back as zero when not explicitly set.
*/
if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
unsigned override =
ATTRIBUTE_0_OVERRIDE_X | ATTRIBUTE_0_OVERRIDE_W |
ATTRIBUTE_CONST_0000 << ATTRIBUTE_0_CONST_SOURCE_SHIFT;
if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
override |= ATTRIBUTE_0_OVERRIDE_Y;
if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
override |= ATTRIBUTE_0_OVERRIDE_Z;
return override;
}
/* If there was only a back color written but not front, use back
* as the color instead of undefined
*/
if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
if (slot == -1) {
/* This attribute does not exist in the VUE--that means that the vertex
* shader did not write to it. This means that either:
*
* (a) This attribute is a texture coordinate, and it is going to be
* replaced with point coordinates (as a consequence of a call to
* glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
* hardware will ignore whatever attribute override we supply.
*
* (b) This attribute is read by the fragment shader but not written by
* the vertex shader, so its value is undefined. Therefore the
* attribute override we supply doesn't matter.
*
* (c) This attribute is gl_PrimitiveID, and it wasn't written by the
* previous shader stage.
*
* Note that we don't have to worry about the cases where the attribute
* is gl_PointCoord or is undergoing point sprite coordinate
* replacement, because in those cases, this function isn't called.
*
* In case (c), we need to program the attribute overrides so that the
* primitive ID will be stored in this slot. In every other case, the
* attribute override we supply doesn't matter. So just go ahead and
* program primitive ID in every case.
*/
return (ATTRIBUTE_0_OVERRIDE_W |
ATTRIBUTE_0_OVERRIDE_Z |
ATTRIBUTE_0_OVERRIDE_Y |
ATTRIBUTE_0_OVERRIDE_X |
(ATTRIBUTE_CONST_PRIM_ID << ATTRIBUTE_0_CONST_SOURCE_SHIFT));
}
/* Compute the location of the attribute relative to urb_entry_read_offset.
* Each increment of urb_entry_read_offset represents a 256-bit value, so
* it counts for two 128-bit VUE slots.
*/
int source_attr = slot - 2 * urb_entry_read_offset;
assert(source_attr >= 0 && source_attr < 32);
/* If we are doing two-sided color, and the VUE slot following this one
* represents a back-facing color, then we need to instruct the SF unit to
* do back-facing swizzling.
*/
bool swizzling = two_side_color &&
((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
(vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
/* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
if (*max_source_attr < source_attr + swizzling)
*max_source_attr = source_attr + swizzling;
if (swizzling) {
return source_attr |
(ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
}
return source_attr;
}
/**
* Create the mapping from the FS inputs we produce to the previous pipeline
* stage (GS or VS) outputs they source from.
*/
void
calculate_attr_overrides(const struct brw_context *brw,
uint16_t *attr_overrides,
uint32_t *point_sprite_enables,
uint32_t *urb_entry_read_length,
uint32_t *urb_entry_read_offset)
{
/* BRW_NEW_FS_PROG_DATA */
const struct brw_wm_prog_data *wm_prog_data =
brw_wm_prog_data(brw->wm.base.prog_data);
uint32_t max_source_attr = 0;
*point_sprite_enables = 0;
*urb_entry_read_offset = BRW_SF_URB_ENTRY_READ_OFFSET;
/* BRW_NEW_FRAGMENT_PROGRAM
*
* If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
* the full vertex header. Otherwise, we can program the SF to start
* reading at an offset of 1 (2 varying slots) to skip unnecessary data:
* - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
* - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
*/
bool fs_needs_vue_header = brw->fragment_program->info.inputs_read &
(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
*urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
/* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
* description of dw10 Point Sprite Texture Coordinate Enable:
*
* "This field must be programmed to zero when non-point primitives
* are rendered."
*
* The SandyBridge PRM doesn't explicitly say that point sprite enables
* must be programmed to zero when rendering non-point primitives, but
* the IvyBridge PRM does, and if we don't, we get garbage.
*
* This is not required on Haswell, as the hardware ignores this state
* when drawing non-points -- although we do still need to be careful to
* correctly set the attr overrides.
*
* _NEW_POLYGON
* BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
*/
bool drawing_points = brw_is_drawing_points(brw);
/* Initialize all the attr_overrides to 0. In the loop below we'll modify
* just the ones that correspond to inputs used by the fs.
*/
memset(attr_overrides, 0, 16*sizeof(*attr_overrides));
for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
int input_index = wm_prog_data->urb_setup[attr];
if (input_index < 0)
continue;
/* _NEW_POINT */
bool point_sprite = false;
if (drawing_points) {
if (brw->ctx.Point.PointSprite &&
(attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
(brw->ctx.Point.CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
point_sprite = true;
}
if (attr == VARYING_SLOT_PNTC)
point_sprite = true;
if (point_sprite)
*point_sprite_enables |= (1 << input_index);
}
/* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
uint16_t attr_override = point_sprite ? 0 :
get_attr_override(&brw->vue_map_geom_out,
*urb_entry_read_offset, attr,
brw->ctx.VertexProgram._TwoSideEnabled,
&max_source_attr);
/* The hardware can only do the overrides on 16 overrides at a
* time, and the other up to 16 have to be lined up so that the
* input index = the output index. We'll need to do some
* tweaking to make sure that's the case.
*/
if (input_index < 16)
attr_overrides[input_index] = attr_override;
else
assert(attr_override == input_index);
}
/* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
* 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
*
* "This field should be set to the minimum length required to read the
* maximum source attribute. The maximum source attribute is indicated
* by the maximum value of the enabled Attribute # Source Attribute if
* Attribute Swizzle Enable is set, Number of Output Attributes-1 if
* enable is not set.
* read_length = ceiling((max_source_attr + 1) / 2)
*
* [errata] Corruption/Hang possible if length programmed larger than
* recommended"
*
* Similar text exists for Ivy Bridge.
*/
*urb_entry_read_length = ALIGN(max_source_attr + 1, 2) / 2;
}
static void
upload_sf_state(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_FS_PROG_DATA */
const struct brw_wm_prog_data *wm_prog_data =
brw_wm_prog_data(brw->wm.base.prog_data);
uint32_t num_outputs = wm_prog_data->num_varying_inputs;
uint32_t dw1, dw2, dw3, dw4;
uint32_t point_sprite_enables;
int i;
/* _NEW_BUFFER */
bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
float point_size;
uint16_t attr_overrides[16];
uint32_t point_sprite_origin;
dw1 = GEN6_SF_SWIZZLE_ENABLE | num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT;
dw2 = GEN6_SF_STATISTICS_ENABLE;
if (brw->sf.viewport_transform_enable)
dw2 |= GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;
dw3 = 0;
dw4 = 0;
/* _NEW_POLYGON */
if (ctx->Polygon._FrontBit == render_to_fbo)
dw2 |= GEN6_SF_WINDING_CCW;
if (ctx->Polygon.OffsetFill)
dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
if (ctx->Polygon.OffsetLine)
dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
if (ctx->Polygon.OffsetPoint)
dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
switch (ctx->Polygon.FrontMode) {
case GL_FILL:
dw2 |= GEN6_SF_FRONT_SOLID;
break;
case GL_LINE:
dw2 |= GEN6_SF_FRONT_WIREFRAME;
break;
case GL_POINT:
dw2 |= GEN6_SF_FRONT_POINT;
break;
default:
unreachable("not reached");
}
switch (ctx->Polygon.BackMode) {
case GL_FILL:
dw2 |= GEN6_SF_BACK_SOLID;
break;
case GL_LINE:
dw2 |= GEN6_SF_BACK_WIREFRAME;
break;
case GL_POINT:
dw2 |= GEN6_SF_BACK_POINT;
break;
default:
unreachable("not reached");
}
/* _NEW_SCISSOR | _NEW_POLYGON,
* BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
*/
if (ctx->Scissor.EnableFlags ||
brw_is_drawing_points(brw) || brw_is_drawing_lines(brw))
dw3 |= GEN6_SF_SCISSOR_ENABLE;
/* _NEW_POLYGON */
if (ctx->Polygon.CullFlag) {
switch (ctx->Polygon.CullFaceMode) {
case GL_FRONT:
dw3 |= GEN6_SF_CULL_FRONT;
break;
case GL_BACK:
dw3 |= GEN6_SF_CULL_BACK;
break;
case GL_FRONT_AND_BACK:
dw3 |= GEN6_SF_CULL_BOTH;
break;
default:
unreachable("not reached");
}
} else {
dw3 |= GEN6_SF_CULL_NONE;
}
/* _NEW_LINE */
{
uint32_t line_width_u3_7 = brw_get_line_width(brw);
dw3 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
}
if (ctx->Line.SmoothFlag) {
dw3 |= GEN6_SF_LINE_AA_ENABLE;
dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
}
/* _NEW_MULTISAMPLE */
if (multisampled_fbo && ctx->Multisample.Enabled)
dw3 |= GEN6_SF_MSRAST_ON_PATTERN;
/* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
if (use_state_point_size(brw))
dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;
/* _NEW_POINT - Clamp to ARB_point_parameters user limits */
point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
/* Clamp to the hardware limits and convert to fixed point */
dw4 |= U_FIXED(CLAMP(point_size, 0.125f, 255.875f), 3);
/*
* Window coordinates in an FBO are inverted, which means point
* sprite origin must be inverted, too.
*/
if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
} else {
point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
}
dw1 |= point_sprite_origin;
/* _NEW_LIGHT */
if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
dw4 |=
(2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
(2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
(1 << GEN6_SF_LINE_PROVOKE_SHIFT);
} else {
dw4 |=
(1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
}
/* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
*/
uint32_t urb_entry_read_length;
uint32_t urb_entry_read_offset;
calculate_attr_overrides(brw, attr_overrides, &point_sprite_enables,
&urb_entry_read_length, &urb_entry_read_offset);
dw1 |= (urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT);
BEGIN_BATCH(20);
OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
OUT_BATCH(dw1);
OUT_BATCH(dw2);
OUT_BATCH(dw3);
OUT_BATCH(dw4);
OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant. copied from gen4 */
OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
OUT_BATCH_F(ctx->Polygon.OffsetClamp); /* global depth offset clamp */
for (i = 0; i < 8; i++) {
OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
}
OUT_BATCH(point_sprite_enables); /* dw16 */
OUT_BATCH(wm_prog_data->flat_inputs);
OUT_BATCH(0); /* wrapshortest enables 0-7 */
OUT_BATCH(0); /* wrapshortest enables 8-15 */
ADVANCE_BATCH();
}
const struct brw_tracked_state gen6_sf_state = {
.dirty = {
.mesa = _NEW_BUFFERS |
_NEW_LIGHT |
_NEW_LINE |
_NEW_MULTISAMPLE |
_NEW_POINT |
_NEW_POLYGON |
_NEW_PROGRAM |
_NEW_SCISSOR,
.brw = BRW_NEW_BLORP |
BRW_NEW_CONTEXT |
BRW_NEW_FRAGMENT_PROGRAM |
BRW_NEW_FS_PROG_DATA |
BRW_NEW_GS_PROG_DATA |
BRW_NEW_PRIMITIVE |
BRW_NEW_TES_PROG_DATA |
BRW_NEW_VUE_MAP_GEOM_OUT,
},
.emit = upload_sf_state,
};
|