1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
|
/*
Copyright (C) Intel Corp. 2006. All Rights Reserved.
Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
develop this 3D driver.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice (including the
next paragraph) shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**********************************************************************/
/*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
#include "main/macros.h"
#include "shader/program.h"
#include "shader/prog_parameter.h"
#include "shader/prog_print.h"
#include "brw_context.h"
#include "brw_vs.h"
/* Do things as simply as possible. Allocate and populate all regs
* ahead of time.
*/
static void brw_vs_alloc_regs( struct brw_vs_compile *c )
{
GLuint i, reg = 0, mrf;
GLuint nr_params;
/* r0 -- reserved as usual
*/
c->r0 = brw_vec8_grf(reg, 0); reg++;
/* User clip planes from curbe:
*/
if (c->key.nr_userclip) {
for (i = 0; i < c->key.nr_userclip; i++) {
c->userplane[i] = stride( brw_vec4_grf(reg+3+i/2, (i%2) * 4), 0, 4, 1);
}
/* Deal with curbe alignment:
*/
reg += ((6+c->key.nr_userclip+3)/4)*2;
}
/* Vertex program parameters from curbe:
*/
nr_params = c->vp->program.Base.Parameters->NumParameters;
for (i = 0; i < nr_params; i++) {
c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2, (i%2) * 4), 0, 4, 1);
}
reg += (nr_params+1)/2;
c->prog_data.curb_read_length = reg - 1;
/* Allocate input regs:
*/
c->nr_inputs = 0;
for (i = 0; i < VERT_ATTRIB_MAX; i++) {
if (c->prog_data.inputs_read & (1<<i)) {
c->nr_inputs++;
c->regs[PROGRAM_INPUT][i] = brw_vec8_grf(reg, 0);
reg++;
}
}
/* Allocate outputs: TODO: could organize the non-position outputs
* to go straight into message regs.
*/
c->nr_outputs = 0;
c->first_output = reg;
mrf = 4;
for (i = 0; i < VERT_RESULT_MAX; i++) {
if (c->prog_data.outputs_written & (1<<i)) {
c->nr_outputs++;
if (i == VERT_RESULT_HPOS) {
c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
reg++;
}
else if (i == VERT_RESULT_PSIZ) {
c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
reg++;
mrf++; /* just a placeholder? XXX fix later stages & remove this */
}
else {
c->regs[PROGRAM_OUTPUT][i] = brw_message_reg(mrf);
mrf++;
}
}
}
/* Allocate program temporaries:
*/
for (i = 0; i < c->vp->program.Base.NumTemporaries; i++) {
c->regs[PROGRAM_TEMPORARY][i] = brw_vec8_grf(reg, 0);
reg++;
}
/* Address reg(s). Don't try to use the internal address reg until
* deref time.
*/
for (i = 0; i < c->vp->program.Base.NumAddressRegs; i++) {
c->regs[PROGRAM_ADDRESS][i] = brw_reg(BRW_GENERAL_REGISTER_FILE,
reg,
0,
BRW_REGISTER_TYPE_D,
BRW_VERTICAL_STRIDE_8,
BRW_WIDTH_8,
BRW_HORIZONTAL_STRIDE_1,
BRW_SWIZZLE_XXXX,
WRITEMASK_X);
reg++;
}
for (i = 0; i < 128; i++) {
if (c->output_regs[i].used_in_src) {
c->output_regs[i].reg = brw_vec8_grf(reg, 0);
reg++;
}
}
c->stack = brw_uw16_reg(BRW_GENERAL_REGISTER_FILE, reg, 0);
reg += 2;
/* Some opcodes need an internal temporary:
*/
c->first_tmp = reg;
c->last_tmp = reg; /* for allocation purposes */
/* Each input reg holds data from two vertices. The
* urb_read_length is the number of registers read from *each*
* vertex urb, so is half the amount:
*/
c->prog_data.urb_read_length = (c->nr_inputs+1)/2;
c->prog_data.urb_entry_size = (c->nr_outputs+2+3)/4;
c->prog_data.total_grf = reg;
}
static struct brw_reg get_tmp( struct brw_vs_compile *c )
{
struct brw_reg tmp = brw_vec8_grf(c->last_tmp, 0);
if (++c->last_tmp > c->prog_data.total_grf)
c->prog_data.total_grf = c->last_tmp;
return tmp;
}
static void release_tmp( struct brw_vs_compile *c, struct brw_reg tmp )
{
if (tmp.nr == c->last_tmp-1)
c->last_tmp--;
}
static void release_tmps( struct brw_vs_compile *c )
{
c->last_tmp = c->first_tmp;
}
static void unalias1( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0,
void (*func)( struct brw_vs_compile *,
struct brw_reg,
struct brw_reg ))
{
if (dst.file == arg0.file && dst.nr == arg0.nr) {
struct brw_compile *p = &c->func;
struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
func(c, tmp, arg0);
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
else {
func(c, dst, arg0);
}
}
static void unalias2( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1,
void (*func)( struct brw_vs_compile *,
struct brw_reg,
struct brw_reg,
struct brw_reg ))
{
if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
(dst.file == arg1.file && dst.nr == arg1.nr)) {
struct brw_compile *p = &c->func;
struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
func(c, tmp, arg0, arg1);
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
else {
func(c, dst, arg0, arg1);
}
}
static void unalias3( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1,
struct brw_reg arg2,
void (*func)( struct brw_vs_compile *,
struct brw_reg,
struct brw_reg,
struct brw_reg,
struct brw_reg ))
{
if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
(dst.file == arg1.file && dst.nr == arg1.nr) ||
(dst.file == arg2.file && dst.nr == arg2.nr)) {
struct brw_compile *p = &c->func;
struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
func(c, tmp, arg0, arg1, arg2);
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
else {
func(c, dst, arg0, arg1, arg2);
}
}
static void emit_sop( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1,
GLuint cond)
{
brw_MOV(p, dst, brw_imm_f(0.0f));
brw_CMP(p, brw_null_reg(), cond, arg0, arg1);
brw_MOV(p, dst, brw_imm_f(1.0f));
brw_set_predicate_control_flag_value(p, 0xff);
}
static void emit_seq( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
emit_sop(p, dst, arg0, arg1, BRW_CONDITIONAL_EQ);
}
static void emit_sne( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
emit_sop(p, dst, arg0, arg1, BRW_CONDITIONAL_NEQ);
}
static void emit_slt( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
emit_sop(p, dst, arg0, arg1, BRW_CONDITIONAL_L);
}
static void emit_sle( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
emit_sop(p, dst, arg0, arg1, BRW_CONDITIONAL_LE);
}
static void emit_sgt( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
emit_sop(p, dst, arg0, arg1, BRW_CONDITIONAL_G);
}
static void emit_sge( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
emit_sop(p, dst, arg0, arg1, BRW_CONDITIONAL_GE);
}
static void emit_max( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, arg1);
brw_SEL(p, dst, arg1, arg0);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
}
static void emit_min( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1 )
{
brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, arg1);
brw_SEL(p, dst, arg0, arg1);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
}
static void emit_math1( struct brw_vs_compile *c,
GLuint function,
struct brw_reg dst,
struct brw_reg arg0,
GLuint precision)
{
/* There are various odd behaviours with SEND on the simulator. In
* addition there are documented issues with the fact that the GEN4
* processor doesn't do dependency control properly on SEND
* results. So, on balance, this kludge to get around failures
* with writemasked math results looks like it might be necessary
* whether that turns out to be a simulator bug or not:
*/
struct brw_compile *p = &c->func;
struct brw_reg tmp = dst;
GLboolean need_tmp = (dst.dw1.bits.writemask != 0xf ||
dst.file != BRW_GENERAL_REGISTER_FILE);
if (need_tmp)
tmp = get_tmp(c);
brw_math(p,
tmp,
function,
BRW_MATH_SATURATE_NONE,
2,
arg0,
BRW_MATH_DATA_SCALAR,
precision);
if (need_tmp) {
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
}
static void emit_math2( struct brw_vs_compile *c,
GLuint function,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1,
GLuint precision)
{
struct brw_compile *p = &c->func;
struct brw_reg tmp = dst;
GLboolean need_tmp = (dst.dw1.bits.writemask != 0xf ||
dst.file != BRW_GENERAL_REGISTER_FILE);
if (need_tmp)
tmp = get_tmp(c);
brw_MOV(p, brw_message_reg(3), arg1);
brw_math(p,
tmp,
function,
BRW_MATH_SATURATE_NONE,
2,
arg0,
BRW_MATH_DATA_SCALAR,
precision);
if (need_tmp) {
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
}
static void emit_exp_noalias( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0 )
{
struct brw_compile *p = &c->func;
if (dst.dw1.bits.writemask & WRITEMASK_X) {
struct brw_reg tmp = get_tmp(c);
struct brw_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D);
/* tmp_d = floor(arg0.x) */
brw_RNDD(p, tmp_d, brw_swizzle1(arg0, 0));
/* result[0] = 2.0 ^ tmp */
/* Adjust exponent for floating point:
* exp += 127
*/
brw_ADD(p, brw_writemask(tmp_d, WRITEMASK_X), tmp_d, brw_imm_d(127));
/* Install exponent and sign.
* Excess drops off the edge:
*/
brw_SHL(p, brw_writemask(retype(dst, BRW_REGISTER_TYPE_D), WRITEMASK_X),
tmp_d, brw_imm_d(23));
release_tmp(c, tmp);
}
if (dst.dw1.bits.writemask & WRITEMASK_Y) {
/* result[1] = arg0.x - floor(arg0.x) */
brw_FRC(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0, 0));
}
if (dst.dw1.bits.writemask & WRITEMASK_Z) {
/* As with the LOG instruction, we might be better off just
* doing a taylor expansion here, seeing as we have to do all
* the prep work.
*
* If mathbox partial precision is too low, consider also:
* result[3] = result[0] * EXP(result[1])
*/
emit_math1(c,
BRW_MATH_FUNCTION_EXP,
brw_writemask(dst, WRITEMASK_Z),
brw_swizzle1(arg0, 0),
BRW_MATH_PRECISION_FULL);
}
if (dst.dw1.bits.writemask & WRITEMASK_W) {
/* result[3] = 1.0; */
brw_MOV(p, brw_writemask(dst, WRITEMASK_W), brw_imm_f(1));
}
}
static void emit_log_noalias( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0 )
{
struct brw_compile *p = &c->func;
struct brw_reg tmp = dst;
struct brw_reg tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
struct brw_reg arg0_ud = retype(arg0, BRW_REGISTER_TYPE_UD);
GLboolean need_tmp = (dst.dw1.bits.writemask != 0xf ||
dst.file != BRW_GENERAL_REGISTER_FILE);
if (need_tmp) {
tmp = get_tmp(c);
tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
}
/* Perform mant = frexpf(fabsf(x), &exp), adjust exp and mnt
* according to spec:
*
* These almost look likey they could be joined up, but not really
* practical:
*
* result[0].f = (x.i & ((1<<31)-1) >> 23) - 127
* result[1].i = (x.i & ((1<<23)-1) + (127<<23)
*/
if (dst.dw1.bits.writemask & WRITEMASK_XZ) {
brw_AND(p,
brw_writemask(tmp_ud, WRITEMASK_X),
brw_swizzle1(arg0_ud, 0),
brw_imm_ud((1U<<31)-1));
brw_SHR(p,
brw_writemask(tmp_ud, WRITEMASK_X),
tmp_ud,
brw_imm_ud(23));
brw_ADD(p,
brw_writemask(tmp, WRITEMASK_X),
retype(tmp_ud, BRW_REGISTER_TYPE_D), /* does it matter? */
brw_imm_d(-127));
}
if (dst.dw1.bits.writemask & WRITEMASK_YZ) {
brw_AND(p,
brw_writemask(tmp_ud, WRITEMASK_Y),
brw_swizzle1(arg0_ud, 0),
brw_imm_ud((1<<23)-1));
brw_OR(p,
brw_writemask(tmp_ud, WRITEMASK_Y),
tmp_ud,
brw_imm_ud(127<<23));
}
if (dst.dw1.bits.writemask & WRITEMASK_Z) {
/* result[2] = result[0] + LOG2(result[1]); */
/* Why bother? The above is just a hint how to do this with a
* taylor series. Maybe we *should* use a taylor series as by
* the time all the above has been done it's almost certainly
* quicker than calling the mathbox, even with low precision.
*
* Options are:
* - result[0] + mathbox.LOG2(result[1])
* - mathbox.LOG2(arg0.x)
* - result[0] + inline_taylor_approx(result[1])
*/
emit_math1(c,
BRW_MATH_FUNCTION_LOG,
brw_writemask(tmp, WRITEMASK_Z),
brw_swizzle1(tmp, 1),
BRW_MATH_PRECISION_FULL);
brw_ADD(p,
brw_writemask(tmp, WRITEMASK_Z),
brw_swizzle1(tmp, 2),
brw_swizzle1(tmp, 0));
}
if (dst.dw1.bits.writemask & WRITEMASK_W) {
/* result[3] = 1.0; */
brw_MOV(p, brw_writemask(tmp, WRITEMASK_W), brw_imm_f(1));
}
if (need_tmp) {
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
}
/* Need to unalias - consider swizzles: r0 = DST r0.xxxx r1
*/
static void emit_dst_noalias( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1)
{
struct brw_compile *p = &c->func;
/* There must be a better way to do this:
*/
if (dst.dw1.bits.writemask & WRITEMASK_X)
brw_MOV(p, brw_writemask(dst, WRITEMASK_X), brw_imm_f(1.0));
if (dst.dw1.bits.writemask & WRITEMASK_Y)
brw_MUL(p, brw_writemask(dst, WRITEMASK_Y), arg0, arg1);
if (dst.dw1.bits.writemask & WRITEMASK_Z)
brw_MOV(p, brw_writemask(dst, WRITEMASK_Z), arg0);
if (dst.dw1.bits.writemask & WRITEMASK_W)
brw_MOV(p, brw_writemask(dst, WRITEMASK_W), arg1);
}
static void emit_xpd( struct brw_compile *p,
struct brw_reg dst,
struct brw_reg t,
struct brw_reg u)
{
brw_MUL(p, brw_null_reg(), brw_swizzle(t, 1,2,0,3), brw_swizzle(u,2,0,1,3));
brw_MAC(p, dst, negate(brw_swizzle(t, 2,0,1,3)), brw_swizzle(u,1,2,0,3));
}
static void emit_lit_noalias( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0 )
{
struct brw_compile *p = &c->func;
struct brw_instruction *if_insn;
struct brw_reg tmp = dst;
GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
if (need_tmp)
tmp = get_tmp(c);
brw_MOV(p, brw_writemask(dst, WRITEMASK_YZ), brw_imm_f(0));
brw_MOV(p, brw_writemask(dst, WRITEMASK_XW), brw_imm_f(1));
/* Need to use BRW_EXECUTE_8 and also do an 8-wide compare in order
* to get all channels active inside the IF. In the clipping code
* we run with NoMask, so it's not an option and we can use
* BRW_EXECUTE_1 for all comparisions.
*/
brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,0), brw_imm_f(0));
if_insn = brw_IF(p, BRW_EXECUTE_8);
{
brw_MOV(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0,0));
brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,1), brw_imm_f(0));
brw_MOV(p, brw_writemask(tmp, WRITEMASK_Z), brw_swizzle1(arg0,1));
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
emit_math2(c,
BRW_MATH_FUNCTION_POW,
brw_writemask(dst, WRITEMASK_Z),
brw_swizzle1(tmp, 2),
brw_swizzle1(arg0, 3),
BRW_MATH_PRECISION_PARTIAL);
}
brw_ENDIF(p, if_insn);
}
static void emit_lrp_noalias(struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0,
struct brw_reg arg1,
struct brw_reg arg2)
{
struct brw_compile *p = &c->func;
brw_ADD(p, dst, negate(arg0), brw_imm_f(1.0));
brw_MUL(p, brw_null_reg(), dst, arg2);
brw_MAC(p, dst, arg0, arg1);
}
/** 3 or 4-component vector normalization */
static void emit_nrm( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0,
int num_comps)
{
struct brw_compile *p = &c->func;
struct brw_reg tmp = get_tmp(c);
/* tmp = dot(arg0, arg0) */
if (num_comps == 3)
brw_DP3(p, tmp, arg0, arg0);
else
brw_DP4(p, tmp, arg0, arg0);
/* tmp = 1 / sqrt(tmp) */
emit_math1(c, BRW_MATH_FUNCTION_RSQ, tmp, tmp, BRW_MATH_PRECISION_FULL);
/* dst = arg0 * tmp */
brw_MUL(p, dst, arg0, tmp);
release_tmp(c, tmp);
}
/* TODO: relative addressing!
*/
static struct brw_reg get_reg( struct brw_vs_compile *c,
GLuint file,
GLuint index )
{
switch (file) {
case PROGRAM_TEMPORARY:
case PROGRAM_INPUT:
case PROGRAM_OUTPUT:
assert(c->regs[file][index].nr != 0);
return c->regs[file][index];
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT:
case PROGRAM_UNIFORM:
assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
return c->regs[PROGRAM_STATE_VAR][index];
case PROGRAM_ADDRESS:
assert(index == 0);
return c->regs[file][index];
case PROGRAM_UNDEFINED: /* undef values */
return brw_null_reg();
case PROGRAM_LOCAL_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_WRITE_ONLY:
default:
assert(0);
return brw_null_reg();
}
}
static struct brw_reg deref( struct brw_vs_compile *c,
struct brw_reg arg,
GLint offset)
{
struct brw_compile *p = &c->func;
struct brw_reg tmp = vec4(get_tmp(c));
struct brw_reg vp_address = retype(vec1(get_reg(c, PROGRAM_ADDRESS, 0)), BRW_REGISTER_TYPE_UW);
GLuint byte_offset = arg.nr * 32 + arg.subnr + offset * 16;
struct brw_reg indirect = brw_vec4_indirect(0,0);
{
brw_push_insn_state(p);
brw_set_access_mode(p, BRW_ALIGN_1);
/* This is pretty clunky - load the address register twice and
* fetch each 4-dword value in turn. There must be a way to do
* this in a single pass, but I couldn't get it to work.
*/
brw_ADD(p, brw_address_reg(0), vp_address, brw_imm_d(byte_offset));
brw_MOV(p, tmp, indirect);
brw_ADD(p, brw_address_reg(0), suboffset(vp_address, 8), brw_imm_d(byte_offset));
brw_MOV(p, suboffset(tmp, 4), indirect);
brw_pop_insn_state(p);
}
return vec8(tmp);
}
static void emit_arl( struct brw_vs_compile *c,
struct brw_reg dst,
struct brw_reg arg0 )
{
struct brw_compile *p = &c->func;
struct brw_reg tmp = dst;
GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
if (need_tmp)
tmp = get_tmp(c);
brw_RNDD(p, tmp, arg0);
brw_MUL(p, dst, tmp, brw_imm_d(16));
if (need_tmp)
release_tmp(c, tmp);
}
/* Will return mangled results for SWZ op. The emit_swz() function
* ignores this result and recalculates taking extended swizzles into
* account.
*/
static struct brw_reg get_arg( struct brw_vs_compile *c,
struct prog_src_register *src )
{
struct brw_reg reg;
if (src->File == PROGRAM_UNDEFINED)
return brw_null_reg();
if (src->RelAddr)
reg = deref(c, c->regs[PROGRAM_STATE_VAR][0], src->Index);
else
reg = get_reg(c, src->File, src->Index);
/* Convert 3-bit swizzle to 2-bit.
*/
reg.dw1.bits.swizzle = BRW_SWIZZLE4(GET_SWZ(src->Swizzle, 0),
GET_SWZ(src->Swizzle, 1),
GET_SWZ(src->Swizzle, 2),
GET_SWZ(src->Swizzle, 3));
/* Note this is ok for non-swizzle instructions:
*/
reg.negate = src->NegateBase ? 1 : 0;
return reg;
}
static struct brw_reg get_dst( struct brw_vs_compile *c,
struct prog_dst_register dst )
{
struct brw_reg reg = get_reg(c, dst.File, dst.Index);
reg.dw1.bits.writemask = dst.WriteMask;
return reg;
}
static void emit_swz( struct brw_vs_compile *c,
struct brw_reg dst,
struct prog_src_register src )
{
struct brw_compile *p = &c->func;
GLuint zeros_mask = 0;
GLuint ones_mask = 0;
GLuint src_mask = 0;
GLubyte src_swz[4];
GLboolean need_tmp = (src.NegateBase &&
dst.file != BRW_GENERAL_REGISTER_FILE);
struct brw_reg tmp = dst;
GLuint i;
if (need_tmp)
tmp = get_tmp(c);
for (i = 0; i < 4; i++) {
if (dst.dw1.bits.writemask & (1<<i)) {
GLubyte s = GET_SWZ(src.Swizzle, i);
switch (s) {
case SWIZZLE_X:
case SWIZZLE_Y:
case SWIZZLE_Z:
case SWIZZLE_W:
src_mask |= 1<<i;
src_swz[i] = s;
break;
case SWIZZLE_ZERO:
zeros_mask |= 1<<i;
break;
case SWIZZLE_ONE:
ones_mask |= 1<<i;
break;
}
}
}
/* Do src first, in case dst aliases src:
*/
if (src_mask) {
struct brw_reg arg0;
if (src.RelAddr)
arg0 = deref(c, c->regs[PROGRAM_STATE_VAR][0], src.Index);
else
arg0 = get_reg(c, src.File, src.Index);
arg0 = brw_swizzle(arg0,
src_swz[0], src_swz[1],
src_swz[2], src_swz[3]);
brw_MOV(p, brw_writemask(tmp, src_mask), arg0);
}
if (zeros_mask)
brw_MOV(p, brw_writemask(tmp, zeros_mask), brw_imm_f(0));
if (ones_mask)
brw_MOV(p, brw_writemask(tmp, ones_mask), brw_imm_f(1));
if (src.NegateBase)
brw_MOV(p, brw_writemask(tmp, src.NegateBase), negate(tmp));
if (need_tmp) {
brw_MOV(p, dst, tmp);
release_tmp(c, tmp);
}
}
/**
* Post-vertex-program processing. Send the results to the URB.
*/
static void emit_vertex_write( struct brw_vs_compile *c)
{
struct brw_compile *p = &c->func;
struct brw_reg m0 = brw_message_reg(0);
struct brw_reg pos = c->regs[PROGRAM_OUTPUT][VERT_RESULT_HPOS];
struct brw_reg ndc;
if (c->key.copy_edgeflag) {
brw_MOV(p,
get_reg(c, PROGRAM_OUTPUT, VERT_RESULT_EDGE),
get_reg(c, PROGRAM_INPUT, VERT_ATTRIB_EDGEFLAG));
}
/* Build ndc coords */
if (!c->key.know_w_is_one) {
ndc = get_tmp(c);
emit_math1(c, BRW_MATH_FUNCTION_INV, ndc, brw_swizzle1(pos, 3), BRW_MATH_PRECISION_FULL);
brw_MUL(p, brw_writemask(ndc, WRITEMASK_XYZ), pos, ndc);
}
else {
ndc = pos;
}
/* Update the header for point size, user clipping flags, and -ve rhw
* workaround.
*/
if ((c->prog_data.outputs_written & (1<<VERT_RESULT_PSIZ)) ||
c->key.nr_userclip ||
(!BRW_IS_G4X(p->brw) && !c->key.know_w_is_one))
{
struct brw_reg header1 = retype(get_tmp(c), BRW_REGISTER_TYPE_UD);
GLuint i;
brw_MOV(p, header1, brw_imm_ud(0));
brw_set_access_mode(p, BRW_ALIGN_16);
if (c->prog_data.outputs_written & (1<<VERT_RESULT_PSIZ)) {
struct brw_reg psiz = c->regs[PROGRAM_OUTPUT][VERT_RESULT_PSIZ];
brw_MUL(p, brw_writemask(header1, WRITEMASK_W), brw_swizzle1(psiz, 0), brw_imm_f(1<<11));
brw_AND(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(0x7ff<<8));
}
for (i = 0; i < c->key.nr_userclip; i++) {
brw_set_conditionalmod(p, BRW_CONDITIONAL_L);
brw_DP4(p, brw_null_reg(), pos, c->userplane[i]);
brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<i));
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
}
/* i965 clipping workaround:
* 1) Test for -ve rhw
* 2) If set,
* set ndc = (0,0,0,0)
* set ucp[6] = 1
*
* Later, clipping will detect ucp[6] and ensure the primitive is
* clipped against all fixed planes.
*/
if (!BRW_IS_G4X(p->brw) && !c->key.know_w_is_one) {
brw_CMP(p,
vec8(brw_null_reg()),
BRW_CONDITIONAL_L,
brw_swizzle1(ndc, 3),
brw_imm_f(0));
brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
brw_MOV(p, ndc, brw_imm_f(0));
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
}
brw_set_access_mode(p, BRW_ALIGN_1); /* why? */
brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), header1);
brw_set_access_mode(p, BRW_ALIGN_16);
release_tmp(c, header1);
}
else {
brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
}
/* Emit the (interleaved) headers for the two vertices - an 8-reg
* of zeros followed by two sets of NDC coordinates:
*/
brw_set_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, offset(m0, 2), ndc);
brw_MOV(p, offset(m0, 3), pos);
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
0, /* starting mrf reg nr */
c->r0, /* src */
0, /* allocate */
1, /* used */
c->nr_outputs + 3, /* msg len */
0, /* response len */
1, /* eot */
1, /* writes complete */
0, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
}
static void
post_vs_emit( struct brw_vs_compile *c, struct brw_instruction *end_inst )
{
GLuint nr_insns = c->vp->program.Base.NumInstructions;
GLuint insn, target_insn;
struct prog_instruction *inst1, *inst2;
struct brw_instruction *brw_inst1, *brw_inst2;
int offset;
for (insn = 0; insn < nr_insns; insn++) {
inst1 = &c->vp->program.Base.Instructions[insn];
brw_inst1 = inst1->Data;
switch (inst1->Opcode) {
case OPCODE_CAL:
case OPCODE_BRA:
target_insn = inst1->BranchTarget;
inst2 = &c->vp->program.Base.Instructions[target_insn];
brw_inst2 = inst2->Data;
offset = brw_inst2 - brw_inst1;
brw_set_src1(brw_inst1, brw_imm_d(offset*16));
break;
case OPCODE_END:
offset = end_inst - brw_inst1;
brw_set_src1(brw_inst1, brw_imm_d(offset*16));
break;
default:
break;
}
}
}
/* Emit the fragment program instructions here.
*/
void brw_vs_emit(struct brw_vs_compile *c )
{
#define MAX_IFSN 32
struct brw_compile *p = &c->func;
GLuint nr_insns = c->vp->program.Base.NumInstructions;
GLuint insn, if_insn = 0;
struct brw_instruction *end_inst;
struct brw_instruction *if_inst[MAX_IFSN];
struct brw_indirect stack_index = brw_indirect(0, 0);
GLuint index;
GLuint file;
if (INTEL_DEBUG & DEBUG_VS) {
_mesa_printf("\n\n\nvs-emit:\n");
_mesa_print_program(&c->vp->program.Base);
_mesa_printf("\n");
}
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_set_access_mode(p, BRW_ALIGN_16);
/* Message registers can't be read, so copy the output into GRF register
if they are used in source registers */
for (insn = 0; insn < nr_insns; insn++) {
GLuint i;
struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
for (i = 0; i < 3; i++) {
struct prog_src_register *src = &inst->SrcReg[i];
GLuint index = src->Index;
GLuint file = src->File;
if (file == PROGRAM_OUTPUT && index != VERT_RESULT_HPOS)
c->output_regs[index].used_in_src = GL_TRUE;
}
}
/* Static register allocation
*/
brw_vs_alloc_regs(c);
brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));
for (insn = 0; insn < nr_insns; insn++) {
struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
struct brw_reg args[3], dst;
GLuint i;
/* Get argument regs. SWZ is special and does this itself.
*/
inst->Data = &p->store[p->nr_insn];
if (inst->Opcode != OPCODE_SWZ)
for (i = 0; i < 3; i++) {
struct prog_src_register *src = &inst->SrcReg[i];
index = src->Index;
file = src->File;
if (file == PROGRAM_OUTPUT&&c->output_regs[index].used_in_src)
args[i] = c->output_regs[index].reg;
else
args[i] = get_arg(c, src);
}
/* Get dest regs. Note that it is possible for a reg to be both
* dst and arg, given the static allocation of registers. So
* care needs to be taken emitting multi-operation instructions.
*/
index = inst->DstReg.Index;
file = inst->DstReg.File;
if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
dst = c->output_regs[index].reg;
else
dst = get_dst(c, inst->DstReg);
if (inst->SaturateMode != SATURATE_OFF) {
_mesa_problem(NULL, "Unsupported saturate %d in vertex shader",
inst->SaturateMode);
}
switch (inst->Opcode) {
case OPCODE_ABS:
brw_MOV(p, dst, brw_abs(args[0]));
break;
case OPCODE_ADD:
brw_ADD(p, dst, args[0], args[1]);
break;
case OPCODE_COS:
emit_math1(c, BRW_MATH_FUNCTION_COS, dst, args[0], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_DP3:
brw_DP3(p, dst, args[0], args[1]);
break;
case OPCODE_DP4:
brw_DP4(p, dst, args[0], args[1]);
break;
case OPCODE_DPH:
brw_DPH(p, dst, args[0], args[1]);
break;
case OPCODE_NRM3:
emit_nrm(c, dst, args[0], 3);
break;
case OPCODE_NRM4:
emit_nrm(c, dst, args[0], 4);
break;
case OPCODE_DST:
unalias2(c, dst, args[0], args[1], emit_dst_noalias);
break;
case OPCODE_EXP:
unalias1(c, dst, args[0], emit_exp_noalias);
break;
case OPCODE_EX2:
emit_math1(c, BRW_MATH_FUNCTION_EXP, dst, args[0], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_ARL:
emit_arl(c, dst, args[0]);
break;
case OPCODE_FLR:
brw_RNDD(p, dst, args[0]);
break;
case OPCODE_FRC:
brw_FRC(p, dst, args[0]);
break;
case OPCODE_LOG:
unalias1(c, dst, args[0], emit_log_noalias);
break;
case OPCODE_LG2:
emit_math1(c, BRW_MATH_FUNCTION_LOG, dst, args[0], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_LIT:
unalias1(c, dst, args[0], emit_lit_noalias);
break;
case OPCODE_LRP:
unalias3(c, dst, args[0], args[1], args[2], emit_lrp_noalias);
break;
case OPCODE_MAD:
brw_MOV(p, brw_acc_reg(), args[2]);
brw_MAC(p, dst, args[0], args[1]);
break;
case OPCODE_MAX:
emit_max(p, dst, args[0], args[1]);
break;
case OPCODE_MIN:
emit_min(p, dst, args[0], args[1]);
break;
case OPCODE_MOV:
brw_MOV(p, dst, args[0]);
break;
case OPCODE_MUL:
brw_MUL(p, dst, args[0], args[1]);
break;
case OPCODE_POW:
emit_math2(c, BRW_MATH_FUNCTION_POW, dst, args[0], args[1], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_RCP:
emit_math1(c, BRW_MATH_FUNCTION_INV, dst, args[0], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_RSQ:
emit_math1(c, BRW_MATH_FUNCTION_RSQ, dst, args[0], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_SEQ:
emit_seq(p, dst, args[0], args[1]);
break;
case OPCODE_SIN:
emit_math1(c, BRW_MATH_FUNCTION_SIN, dst, args[0], BRW_MATH_PRECISION_FULL);
break;
case OPCODE_SNE:
emit_sne(p, dst, args[0], args[1]);
break;
case OPCODE_SGE:
emit_sge(p, dst, args[0], args[1]);
break;
case OPCODE_SGT:
emit_sgt(p, dst, args[0], args[1]);
break;
case OPCODE_SLT:
emit_slt(p, dst, args[0], args[1]);
break;
case OPCODE_SLE:
emit_sle(p, dst, args[0], args[1]);
break;
case OPCODE_SUB:
brw_ADD(p, dst, args[0], negate(args[1]));
break;
case OPCODE_SWZ:
/* The args[0] value can't be used here as it won't have
* correctly encoded the full swizzle:
*/
emit_swz(c, dst, inst->SrcReg[0] );
break;
case OPCODE_TRUNC:
/* round toward zero */
brw_RNDZ(p, dst, args[0]);
break;
case OPCODE_XPD:
emit_xpd(p, dst, args[0], args[1]);
break;
case OPCODE_IF:
assert(if_insn < MAX_IFSN);
if_inst[if_insn++] = brw_IF(p, BRW_EXECUTE_8);
break;
case OPCODE_ELSE:
if_inst[if_insn-1] = brw_ELSE(p, if_inst[if_insn-1]);
break;
case OPCODE_ENDIF:
assert(if_insn > 0);
brw_ENDIF(p, if_inst[--if_insn]);
break;
case OPCODE_BRA:
brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
brw_set_predicate_control_flag_value(p, 0xff);
break;
case OPCODE_CAL:
brw_set_access_mode(p, BRW_ALIGN_1);
brw_ADD(p, deref_1d(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
brw_set_access_mode(p, BRW_ALIGN_16);
brw_ADD(p, get_addr_reg(stack_index),
get_addr_reg(stack_index), brw_imm_d(4));
inst->Data = &p->store[p->nr_insn];
brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
break;
case OPCODE_RET:
brw_ADD(p, get_addr_reg(stack_index),
get_addr_reg(stack_index), brw_imm_d(-4));
brw_set_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, brw_ip_reg(), deref_1d(stack_index, 0));
brw_set_access_mode(p, BRW_ALIGN_16);
case OPCODE_END:
brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
break;
case OPCODE_PRINT:
case OPCODE_BGNSUB:
case OPCODE_ENDSUB:
/* no-op instructions */
break;
default:
_mesa_problem(NULL, "Unsupported opcode %i (%s) in vertex shader",
inst->Opcode, inst->Opcode < MAX_OPCODE ?
_mesa_opcode_string(inst->Opcode) :
"unknown");
}
if ((inst->DstReg.File == PROGRAM_OUTPUT)
&& (inst->DstReg.Index != VERT_RESULT_HPOS)
&& c->output_regs[inst->DstReg.Index].used_in_src) {
brw_MOV(p, get_dst(c, inst->DstReg), dst);
}
/* Result color clamping.
*
* When destination register is an output register and
* it's primary/secondary front/back color, we have to clamp
* the result to [0,1]. This is done by enabling the
* saturation bit for the last instruction.
*
* We don't use brw_set_saturate() as it modifies
* p->current->header.saturate, which affects all the subsequent
* instructions. Instead, we directly modify the header
* of the last (already stored) instruction.
*/
if (inst->DstReg.File == PROGRAM_OUTPUT) {
if ((inst->DstReg.Index == VERT_RESULT_COL0)
|| (inst->DstReg.Index == VERT_RESULT_COL1)
|| (inst->DstReg.Index == VERT_RESULT_BFC0)
|| (inst->DstReg.Index == VERT_RESULT_BFC1)) {
p->store[p->nr_insn-1].header.saturate = 1;
}
}
release_tmps(c);
}
end_inst = &p->store[p->nr_insn];
emit_vertex_write(c);
post_vs_emit(c, end_inst);
for (insn = 0; insn < nr_insns; insn++)
c->vp->program.Base.Instructions[insn].Data = NULL;
}
|