aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/drivers/dri/i965/brw_vec4_visitor.cpp
blob: c50a722b0f424c859662b41429764b57e70fe8c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
/*
 * Copyright © 2011 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "brw_vec4.h"
extern "C" {
#include "main/macros.h"
#include "program/prog_parameter.h"
}

namespace brw {

src_reg::src_reg(dst_reg reg)
{
   init();

   this->file = reg.file;
   this->reg = reg.reg;
   this->reg_offset = reg.reg_offset;
   this->type = reg.type;
   this->reladdr = reg.reladdr;
   this->fixed_hw_reg = reg.fixed_hw_reg;

   int swizzles[4];
   int next_chan = 0;
   int last = 0;

   for (int i = 0; i < 4; i++) {
      if (!(reg.writemask & (1 << i)))
	 continue;

      swizzles[next_chan++] = last = i;
   }

   for (; next_chan < 4; next_chan++) {
      swizzles[next_chan] = last;
   }

   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
				swizzles[2], swizzles[3]);
}

dst_reg::dst_reg(src_reg reg)
{
   init();

   this->file = reg.file;
   this->reg = reg.reg;
   this->reg_offset = reg.reg_offset;
   this->type = reg.type;
   this->writemask = WRITEMASK_XYZW;
   this->reladdr = reg.reladdr;
   this->fixed_hw_reg = reg.fixed_hw_reg;
}

vec4_instruction::vec4_instruction(vec4_visitor *v,
				   enum opcode opcode, dst_reg dst,
				   src_reg src0, src_reg src1, src_reg src2)
{
   this->opcode = opcode;
   this->dst = dst;
   this->src[0] = src0;
   this->src[1] = src1;
   this->src[2] = src2;
   this->ir = v->base_ir;
   this->annotation = v->current_annotation;
}

vec4_instruction *
vec4_visitor::emit(vec4_instruction *inst)
{
   this->instructions.push_tail(inst);

   return inst;
}

vec4_instruction *
vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
{
   new_inst->ir = inst->ir;
   new_inst->annotation = inst->annotation;

   inst->insert_before(new_inst);

   return inst;
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode, dst_reg dst,
		   src_reg src0, src_reg src1, src_reg src2)
{
   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
					     src0, src1, src2));
}


vec4_instruction *
vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
{
   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
{
   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode)
{
   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
}

#define ALU1(op)							\
   vec4_instruction *							\
   vec4_visitor::op(dst_reg dst, src_reg src0)				\
   {									\
      return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst,	\
					   src0);			\
   }

#define ALU2(op)							\
   vec4_instruction *							\
   vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1)		\
   {									\
      return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst,	\
					   src0, src1);			\
   }

ALU1(NOT)
ALU1(MOV)
ALU1(FRC)
ALU1(RNDD)
ALU1(RNDE)
ALU1(RNDZ)
ALU2(ADD)
ALU2(MUL)
ALU2(MACH)
ALU2(AND)
ALU2(OR)
ALU2(XOR)
ALU2(DP3)
ALU2(DP4)

/** Gen4 predicated IF. */
vec4_instruction *
vec4_visitor::IF(uint32_t predicate)
{
   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
   inst->predicate = predicate;

   return inst;
}

/** Gen6+ IF with embedded comparison. */
vec4_instruction *
vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
{
   assert(intel->gen >= 6);

   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
					src0, src1);
   inst->conditional_mod = condition;

   return inst;
}

/**
 * CMP: Sets the low bit of the destination channels with the result
 * of the comparison, while the upper bits are undefined, and updates
 * the flag register with the packed 16 bits of the result.
 */
vec4_instruction *
vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
{
   vec4_instruction *inst;

   /* original gen4 does type conversion to the destination type
    * before before comparison, producing garbage results for floating
    * point comparisons.
    */
   if (intel->gen == 4) {
      dst.type = src0.type;
      if (dst.file == HW_REG)
	 dst.fixed_hw_reg.type = dst.type;
   }

   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
   inst->conditional_mod = condition;

   return inst;
}

vec4_instruction *
vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
{
   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
					dst, index);
   inst->base_mrf = 14;
   inst->mlen = 1;

   return inst;
}

vec4_instruction *
vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
{
   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
					dst, src, index);
   inst->base_mrf = 13;
   inst->mlen = 2;

   return inst;
}

void
vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
{
   static enum opcode dot_opcodes[] = {
      BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
   };

   emit(dot_opcodes[elements - 2], dst, src0, src1);
}

void
vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
{
   /* The gen6 math instruction ignores the source modifiers --
    * swizzle, abs, negate, and at least some parts of the register
    * region description.
    *
    * While it would seem that this MOV could be avoided at this point
    * in the case that the swizzle is matched up with the destination
    * writemask, note that uniform packing and register allocation
    * could rearrange our swizzle, so let's leave this matter up to
    * copy propagation later.
    */
   src_reg temp_src = src_reg(this, glsl_type::vec4_type);
   emit(MOV(dst_reg(temp_src), src));

   if (dst.writemask != WRITEMASK_XYZW) {
      /* The gen6 math instruction must be align1, so we can't do
       * writemasks.
       */
      dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);

      emit(opcode, temp_dst, temp_src);

      emit(MOV(dst, src_reg(temp_dst)));
   } else {
      emit(opcode, dst, temp_src);
   }
}

void
vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
{
   vec4_instruction *inst = emit(opcode, dst, src);
   inst->base_mrf = 1;
   inst->mlen = 1;
}

void
vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
{
   switch (opcode) {
   case SHADER_OPCODE_RCP:
   case SHADER_OPCODE_RSQ:
   case SHADER_OPCODE_SQRT:
   case SHADER_OPCODE_EXP2:
   case SHADER_OPCODE_LOG2:
   case SHADER_OPCODE_SIN:
   case SHADER_OPCODE_COS:
      break;
   default:
      assert(!"not reached: bad math opcode");
      return;
   }

   if (intel->gen >= 6) {
      return emit_math1_gen6(opcode, dst, src);
   } else {
      return emit_math1_gen4(opcode, dst, src);
   }
}

void
vec4_visitor::emit_math2_gen6(enum opcode opcode,
			      dst_reg dst, src_reg src0, src_reg src1)
{
   src_reg expanded;

   /* The gen6 math instruction ignores the source modifiers --
    * swizzle, abs, negate, and at least some parts of the register
    * region description.  Move the sources to temporaries to make it
    * generally work.
    */

   expanded = src_reg(this, glsl_type::vec4_type);
   emit(MOV(dst_reg(expanded), src0));
   src0 = expanded;

   expanded = src_reg(this, glsl_type::vec4_type);
   emit(MOV(dst_reg(expanded), src1));
   src1 = expanded;

   if (dst.writemask != WRITEMASK_XYZW) {
      /* The gen6 math instruction must be align1, so we can't do
       * writemasks.
       */
      dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);

      emit(opcode, temp_dst, src0, src1);

      emit(MOV(dst, src_reg(temp_dst)));
   } else {
      emit(opcode, dst, src0, src1);
   }
}

void
vec4_visitor::emit_math2_gen4(enum opcode opcode,
			      dst_reg dst, src_reg src0, src_reg src1)
{
   vec4_instruction *inst = emit(opcode, dst, src0, src1);
   inst->base_mrf = 1;
   inst->mlen = 2;
}

void
vec4_visitor::emit_math(enum opcode opcode,
			dst_reg dst, src_reg src0, src_reg src1)
{
   assert(opcode == SHADER_OPCODE_POW);

   if (intel->gen >= 6) {
      return emit_math2_gen6(opcode, dst, src0, src1);
   } else {
      return emit_math2_gen4(opcode, dst, src0, src1);
   }
}

void
vec4_visitor::visit_instructions(const exec_list *list)
{
   foreach_list(node, list) {
      ir_instruction *ir = (ir_instruction *)node;

      base_ir = ir;
      ir->accept(this);
   }
}


static int
type_size(const struct glsl_type *type)
{
   unsigned int i;
   int size;

   switch (type->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_BOOL:
      if (type->is_matrix()) {
	 return type->matrix_columns;
      } else {
	 /* Regardless of size of vector, it gets a vec4. This is bad
	  * packing for things like floats, but otherwise arrays become a
	  * mess.  Hopefully a later pass over the code can pack scalars
	  * down if appropriate.
	  */
	 return 1;
      }
   case GLSL_TYPE_ARRAY:
      assert(type->length > 0);
      return type_size(type->fields.array) * type->length;
   case GLSL_TYPE_STRUCT:
      size = 0;
      for (i = 0; i < type->length; i++) {
	 size += type_size(type->fields.structure[i].type);
      }
      return size;
   case GLSL_TYPE_SAMPLER:
      /* Samplers take up one slot in UNIFORMS[], but they're baked in
       * at link time.
       */
      return 1;
   default:
      assert(0);
      return 0;
   }
}

int
vec4_visitor::virtual_grf_alloc(int size)
{
   if (virtual_grf_array_size <= virtual_grf_count) {
      if (virtual_grf_array_size == 0)
	 virtual_grf_array_size = 16;
      else
	 virtual_grf_array_size *= 2;
      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
				   virtual_grf_array_size);
   }
   virtual_grf_sizes[virtual_grf_count] = size;
   return virtual_grf_count++;
}

src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
{
   init();

   this->file = GRF;
   this->reg = v->virtual_grf_alloc(type_size(type));

   if (type->is_array() || type->is_record()) {
      this->swizzle = BRW_SWIZZLE_NOOP;
   } else {
      this->swizzle = swizzle_for_size(type->vector_elements);
   }

   this->type = brw_type_for_base_type(type);
}

dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
{
   init();

   this->file = GRF;
   this->reg = v->virtual_grf_alloc(type_size(type));

   if (type->is_array() || type->is_record()) {
      this->writemask = WRITEMASK_XYZW;
   } else {
      this->writemask = (1 << type->vector_elements) - 1;
   }

   this->type = brw_type_for_base_type(type);
}

/* Our support for uniforms is piggy-backed on the struct
 * gl_fragment_program, because that's where the values actually
 * get stored, rather than in some global gl_shader_program uniform
 * store.
 */
int
vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
{
   unsigned int offset = 0;
   float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;

   if (type->is_matrix()) {
      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
							type->vector_elements,
							1);

      for (unsigned int i = 0; i < type->matrix_columns; i++) {
	 offset += setup_uniform_values(loc + offset, column);
      }

      return offset;
   }

   switch (type->base_type) {
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_BOOL:
      for (unsigned int i = 0; i < type->vector_elements; i++) {
	 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
      }

      /* Set up pad elements to get things aligned to a vec4 boundary. */
      for (unsigned int i = type->vector_elements; i < 4; i++) {
	 static float zero = 0;

	 c->prog_data.param[this->uniforms * 4 + i] = &zero;
      }

      /* Track the size of this uniform vector, for future packing of
       * uniforms.
       */
      this->uniform_vector_size[this->uniforms] = type->vector_elements;
      this->uniforms++;

      return 1;

   case GLSL_TYPE_STRUCT:
      for (unsigned int i = 0; i < type->length; i++) {
	 offset += setup_uniform_values(loc + offset,
					type->fields.structure[i].type);
      }
      return offset;

   case GLSL_TYPE_ARRAY:
      for (unsigned int i = 0; i < type->length; i++) {
	 offset += setup_uniform_values(loc + offset, type->fields.array);
      }
      return offset;

   case GLSL_TYPE_SAMPLER:
      /* The sampler takes up a slot, but we don't use any values from it. */
      return 1;

   default:
      assert(!"not reached");
      return 0;
   }
}

/* Our support for builtin uniforms is even scarier than non-builtin.
 * It sits on top of the PROG_STATE_VAR parameters that are
 * automatically updated from GL context state.
 */
void
vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
{
   const ir_state_slot *const slots = ir->state_slots;
   assert(ir->state_slots != NULL);

   for (unsigned int i = 0; i < ir->num_state_slots; i++) {
      /* This state reference has already been setup by ir_to_mesa,
       * but we'll get the same index back here.  We can reference
       * ParameterValues directly, since unlike brw_fs.cpp, we never
       * add new state references during compile.
       */
      int index = _mesa_add_state_reference(this->vp->Base.Parameters,
					    (gl_state_index *)slots[i].tokens);
      float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;

      this->uniform_vector_size[this->uniforms] = 0;
      /* Add each of the unique swizzled channels of the element.
       * This will end up matching the size of the glsl_type of this field.
       */
      int last_swiz = -1;
      for (unsigned int j = 0; j < 4; j++) {
	 int swiz = GET_SWZ(slots[i].swizzle, j);
	 last_swiz = swiz;

	 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
	 if (swiz <= last_swiz)
	    this->uniform_vector_size[this->uniforms]++;
      }
      this->uniforms++;
   }
}

dst_reg *
vec4_visitor::variable_storage(ir_variable *var)
{
   return (dst_reg *)hash_table_find(this->variable_ht, var);
}

void
vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
{
   ir_expression *expr = ir->as_expression();

   *predicate = BRW_PREDICATE_NORMAL;

   if (expr) {
      src_reg op[2];
      vec4_instruction *inst;

      assert(expr->get_num_operands() <= 2);
      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
	 expr->operands[i]->accept(this);
	 op[i] = this->result;
      }

      switch (expr->operation) {
      case ir_unop_logic_not:
	 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
	 inst->conditional_mod = BRW_CONDITIONAL_Z;
	 break;

      case ir_binop_logic_xor:
	 inst = emit(XOR(dst_null_d(), op[0], op[1]));
	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
	 break;

      case ir_binop_logic_or:
	 inst = emit(OR(dst_null_d(), op[0], op[1]));
	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
	 break;

      case ir_binop_logic_and:
	 inst = emit(AND(dst_null_d(), op[0], op[1]));
	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
	 break;

      case ir_unop_f2b:
	 if (intel->gen >= 6) {
	    emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
	 } else {
	    inst = emit(MOV(dst_null_f(), op[0]));
	    inst->conditional_mod = BRW_CONDITIONAL_NZ;
	 }
	 break;

      case ir_unop_i2b:
	 if (intel->gen >= 6) {
	    emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
	 } else {
	    inst = emit(MOV(dst_null_d(), op[0]));
	    inst->conditional_mod = BRW_CONDITIONAL_NZ;
	 }
	 break;

      case ir_binop_all_equal:
	 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
	 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
	 break;

      case ir_binop_any_nequal:
	 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
	 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
	 break;

      case ir_unop_any:
	 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
	 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
	 break;

      case ir_binop_greater:
      case ir_binop_gequal:
      case ir_binop_less:
      case ir_binop_lequal:
      case ir_binop_equal:
      case ir_binop_nequal:
	 emit(CMP(dst_null_d(), op[0], op[1],
		  brw_conditional_for_comparison(expr->operation)));
	 break;

      default:
	 assert(!"not reached");
	 break;
      }
      return;
   }

   ir->accept(this);

   if (intel->gen >= 6) {
      vec4_instruction *inst = emit(AND(dst_null_d(),
					this->result, src_reg(1)));
      inst->conditional_mod = BRW_CONDITIONAL_NZ;
   } else {
      vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
      inst->conditional_mod = BRW_CONDITIONAL_NZ;
   }
}

/**
 * Emit a gen6 IF statement with the comparison folded into the IF
 * instruction.
 */
void
vec4_visitor::emit_if_gen6(ir_if *ir)
{
   ir_expression *expr = ir->condition->as_expression();

   if (expr) {
      src_reg op[2];
      dst_reg temp;

      assert(expr->get_num_operands() <= 2);
      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
	 expr->operands[i]->accept(this);
	 op[i] = this->result;
      }

      switch (expr->operation) {
      case ir_unop_logic_not:
	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
	 return;

      case ir_binop_logic_xor:
	 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
	 return;

      case ir_binop_logic_or:
	 temp = dst_reg(this, glsl_type::bool_type);
	 emit(OR(temp, op[0], op[1]));
	 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
	 return;

      case ir_binop_logic_and:
	 temp = dst_reg(this, glsl_type::bool_type);
	 emit(AND(temp, op[0], op[1]));
	 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
	 return;

      case ir_unop_f2b:
	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
	 return;

      case ir_unop_i2b:
	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
	 return;

      case ir_binop_greater:
      case ir_binop_gequal:
      case ir_binop_less:
      case ir_binop_lequal:
      case ir_binop_equal:
      case ir_binop_nequal:
	 emit(IF(op[0], op[1],
		 brw_conditional_for_comparison(expr->operation)));
	 return;

      case ir_binop_all_equal:
	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
	 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
	 return;

      case ir_binop_any_nequal:
	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
	 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
	 return;

      case ir_unop_any:
	 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
	 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
	 return;

      default:
	 assert(!"not reached");
	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
	 return;
      }
      return;
   }

   ir->condition->accept(this);

   emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
}

void
vec4_visitor::visit(ir_variable *ir)
{
   dst_reg *reg = NULL;

   if (variable_storage(ir))
      return;

   switch (ir->mode) {
   case ir_var_in:
      reg = new(mem_ctx) dst_reg(ATTR, ir->location);

      /* Do GL_FIXED rescaling for GLES2.0.  Our GL_FIXED attributes
       * come in as floating point conversions of the integer values.
       */
      for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
	 if (!c->key.gl_fixed_input_size[i])
	    continue;

	 dst_reg dst = *reg;
	 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
	 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
      }
      break;

   case ir_var_out:
      reg = new(mem_ctx) dst_reg(this, ir->type);

      for (int i = 0; i < type_size(ir->type); i++) {
	 output_reg[ir->location + i] = *reg;
	 output_reg[ir->location + i].reg_offset = i;
	 output_reg[ir->location + i].type = BRW_REGISTER_TYPE_F;
	 output_reg_annotation[ir->location + i] = ir->name;
      }
      break;

   case ir_var_auto:
   case ir_var_temporary:
      reg = new(mem_ctx) dst_reg(this, ir->type);
      break;

   case ir_var_uniform:
      reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);

      /* Track how big the whole uniform variable is, in case we need to put a
       * copy of its data into pull constants for array access.
       */
      this->uniform_size[this->uniforms] = type_size(ir->type);

      if (!strncmp(ir->name, "gl_", 3)) {
	 setup_builtin_uniform_values(ir);
      } else {
	 setup_uniform_values(ir->location, ir->type);
      }
      break;

   default:
      assert(!"not reached");
   }

   reg->type = brw_type_for_base_type(ir->type);
   hash_table_insert(this->variable_ht, reg, ir);
}

void
vec4_visitor::visit(ir_loop *ir)
{
   dst_reg counter;

   /* We don't want debugging output to print the whole body of the
    * loop as the annotation.
    */
   this->base_ir = NULL;

   if (ir->counter != NULL) {
      this->base_ir = ir->counter;
      ir->counter->accept(this);
      counter = *(variable_storage(ir->counter));

      if (ir->from != NULL) {
	 this->base_ir = ir->from;
	 ir->from->accept(this);

	 emit(MOV(counter, this->result));
      }
   }

   emit(BRW_OPCODE_DO);

   if (ir->to) {
      this->base_ir = ir->to;
      ir->to->accept(this);

      emit(CMP(dst_null_d(), src_reg(counter), this->result,
	       brw_conditional_for_comparison(ir->cmp)));

      vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
      inst->predicate = BRW_PREDICATE_NORMAL;
   }

   visit_instructions(&ir->body_instructions);


   if (ir->increment) {
      this->base_ir = ir->increment;
      ir->increment->accept(this);
      emit(ADD(counter, src_reg(counter), this->result));
   }

   emit(BRW_OPCODE_WHILE);
}

void
vec4_visitor::visit(ir_loop_jump *ir)
{
   switch (ir->mode) {
   case ir_loop_jump::jump_break:
      emit(BRW_OPCODE_BREAK);
      break;
   case ir_loop_jump::jump_continue:
      emit(BRW_OPCODE_CONTINUE);
      break;
   }
}


void
vec4_visitor::visit(ir_function_signature *ir)
{
   assert(0);
   (void)ir;
}

void
vec4_visitor::visit(ir_function *ir)
{
   /* Ignore function bodies other than main() -- we shouldn't see calls to
    * them since they should all be inlined.
    */
   if (strcmp(ir->name, "main") == 0) {
      const ir_function_signature *sig;
      exec_list empty;

      sig = ir->matching_signature(&empty);

      assert(sig);

      visit_instructions(&sig->body);
   }
}

GLboolean
vec4_visitor::try_emit_sat(ir_expression *ir)
{
   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
   if (!sat_src)
      return false;

   sat_src->accept(this);
   src_reg src = this->result;

   this->result = src_reg(this, ir->type);
   vec4_instruction *inst;
   inst = emit(MOV(dst_reg(this->result), src));
   inst->saturate = true;

   return true;
}

void
vec4_visitor::emit_bool_comparison(unsigned int op,
				 dst_reg dst, src_reg src0, src_reg src1)
{
   /* original gen4 does destination conversion before comparison. */
   if (intel->gen < 5)
      dst.type = src0.type;

   emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));

   dst.type = BRW_REGISTER_TYPE_D;
   emit(AND(dst, src_reg(dst), src_reg(0x1)));
}

void
vec4_visitor::visit(ir_expression *ir)
{
   unsigned int operand;
   src_reg op[Elements(ir->operands)];
   src_reg result_src;
   dst_reg result_dst;
   vec4_instruction *inst;

   if (try_emit_sat(ir))
      return;

   for (operand = 0; operand < ir->get_num_operands(); operand++) {
      this->result.file = BAD_FILE;
      ir->operands[operand]->accept(this);
      if (this->result.file == BAD_FILE) {
	 printf("Failed to get tree for expression operand:\n");
	 ir->operands[operand]->print();
	 exit(1);
      }
      op[operand] = this->result;

      /* Matrix expression operands should have been broken down to vector
       * operations already.
       */
      assert(!ir->operands[operand]->type->is_matrix());
   }

   int vector_elements = ir->operands[0]->type->vector_elements;
   if (ir->operands[1]) {
      vector_elements = MAX2(vector_elements,
			     ir->operands[1]->type->vector_elements);
   }

   this->result.file = BAD_FILE;

   /* Storage for our result.  Ideally for an assignment we'd be using
    * the actual storage for the result here, instead.
    */
   result_src = src_reg(this, ir->type);
   /* convenience for the emit functions below. */
   result_dst = dst_reg(result_src);
   /* If nothing special happens, this is the result. */
   this->result = result_src;
   /* Limit writes to the channels that will be used by result_src later.
    * This does limit this temp's use as a temporary for multi-instruction
    * sequences.
    */
   result_dst.writemask = (1 << ir->type->vector_elements) - 1;

   switch (ir->operation) {
   case ir_unop_logic_not:
      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
       * ones complement of the whole register, not just bit 0.
       */
      emit(XOR(result_dst, op[0], src_reg(1)));
      break;
   case ir_unop_neg:
      op[0].negate = !op[0].negate;
      this->result = op[0];
      break;
   case ir_unop_abs:
      op[0].abs = true;
      op[0].negate = false;
      this->result = op[0];
      break;

   case ir_unop_sign:
      emit(MOV(result_dst, src_reg(0.0f)));

      emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
      inst = emit(MOV(result_dst, src_reg(1.0f)));
      inst->predicate = BRW_PREDICATE_NORMAL;

      emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
      inst = emit(MOV(result_dst, src_reg(-1.0f)));
      inst->predicate = BRW_PREDICATE_NORMAL;

      break;

   case ir_unop_rcp:
      emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
      break;

   case ir_unop_exp2:
      emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
      break;
   case ir_unop_log2:
      emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
      break;
   case ir_unop_exp:
   case ir_unop_log:
      assert(!"not reached: should be handled by ir_explog_to_explog2");
      break;
   case ir_unop_sin:
   case ir_unop_sin_reduced:
      emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
      break;
   case ir_unop_cos:
   case ir_unop_cos_reduced:
      emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
      break;

   case ir_unop_dFdx:
   case ir_unop_dFdy:
      assert(!"derivatives not valid in vertex shader");
      break;

   case ir_unop_noise:
      assert(!"not reached: should be handled by lower_noise");
      break;

   case ir_binop_add:
      emit(ADD(result_dst, op[0], op[1]));
      break;
   case ir_binop_sub:
      assert(!"not reached: should be handled by ir_sub_to_add_neg");
      break;

   case ir_binop_mul:
      if (ir->type->is_integer()) {
	 /* For integer multiplication, the MUL uses the low 16 bits
	  * of one of the operands (src0 on gen6, src1 on gen7).  The
	  * MACH accumulates in the contribution of the upper 16 bits
	  * of that operand.
	  *
	  * FINISHME: Emit just the MUL if we know an operand is small
	  * enough.
	  */
	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);

	 emit(MUL(acc, op[0], op[1]));
	 emit(MACH(dst_null_d(), op[0], op[1]));
	 emit(MOV(result_dst, src_reg(acc)));
      } else {
	 emit(MUL(result_dst, op[0], op[1]));
      }
      break;
   case ir_binop_div:
      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
   case ir_binop_mod:
      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
      break;

   case ir_binop_less:
   case ir_binop_greater:
   case ir_binop_lequal:
   case ir_binop_gequal:
   case ir_binop_equal:
   case ir_binop_nequal: {
      emit(CMP(result_dst, op[0], op[1],
	       brw_conditional_for_comparison(ir->operation)));
      emit(AND(result_dst, result_src, src_reg(0x1)));
      break;
   }

   case ir_binop_all_equal:
      /* "==" operator producing a scalar boolean. */
      if (ir->operands[0]->type->is_vector() ||
	  ir->operands[1]->type->is_vector()) {
	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
	 emit(MOV(result_dst, src_reg(0)));
	 inst = emit(MOV(result_dst, src_reg(1)));
	 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
      } else {
	 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
	 emit(AND(result_dst, result_src, src_reg(0x1)));
      }
      break;
   case ir_binop_any_nequal:
      /* "!=" operator producing a scalar boolean. */
      if (ir->operands[0]->type->is_vector() ||
	  ir->operands[1]->type->is_vector()) {
	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));

	 emit(MOV(result_dst, src_reg(0)));
	 inst = emit(MOV(result_dst, src_reg(1)));
	 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
      } else {
	 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
	 emit(AND(result_dst, result_src, src_reg(0x1)));
      }
      break;

   case ir_unop_any:
      emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
      emit(MOV(result_dst, src_reg(0)));

      inst = emit(MOV(result_dst, src_reg(1)));
      inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
      break;

   case ir_binop_logic_xor:
      emit(XOR(result_dst, op[0], op[1]));
      break;

   case ir_binop_logic_or:
      emit(OR(result_dst, op[0], op[1]));
      break;

   case ir_binop_logic_and:
      emit(AND(result_dst, op[0], op[1]));
      break;

   case ir_binop_dot:
      assert(ir->operands[0]->type->is_vector());
      assert(ir->operands[0]->type == ir->operands[1]->type);
      emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
      break;

   case ir_unop_sqrt:
      emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
      break;
   case ir_unop_rsq:
      emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
      break;
   case ir_unop_i2f:
   case ir_unop_i2u:
   case ir_unop_u2i:
   case ir_unop_u2f:
   case ir_unop_b2f:
   case ir_unop_b2i:
   case ir_unop_f2i:
      emit(MOV(result_dst, op[0]));
      break;
   case ir_unop_f2b:
   case ir_unop_i2b: {
      emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
      emit(AND(result_dst, result_src, src_reg(1)));
      break;
   }

   case ir_unop_trunc:
      emit(RNDZ(result_dst, op[0]));
      break;
   case ir_unop_ceil:
      op[0].negate = !op[0].negate;
      inst = emit(RNDD(result_dst, op[0]));
      this->result.negate = true;
      break;
   case ir_unop_floor:
      inst = emit(RNDD(result_dst, op[0]));
      break;
   case ir_unop_fract:
      inst = emit(FRC(result_dst, op[0]));
      break;
   case ir_unop_round_even:
      emit(RNDE(result_dst, op[0]));
      break;

   case ir_binop_min:
      emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));

      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
      inst->predicate = BRW_PREDICATE_NORMAL;
      break;
   case ir_binop_max:
      emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));

      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
      inst->predicate = BRW_PREDICATE_NORMAL;
      break;

   case ir_binop_pow:
      emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
      break;

   case ir_unop_bit_not:
      inst = emit(NOT(result_dst, op[0]));
      break;
   case ir_binop_bit_and:
      inst = emit(AND(result_dst, op[0], op[1]));
      break;
   case ir_binop_bit_xor:
      inst = emit(XOR(result_dst, op[0], op[1]));
      break;
   case ir_binop_bit_or:
      inst = emit(OR(result_dst, op[0], op[1]));
      break;

   case ir_binop_lshift:
   case ir_binop_rshift:
      assert(!"GLSL 1.30 features unsupported");
      break;

   case ir_quadop_vector:
      assert(!"not reached: should be handled by lower_quadop_vector");
      break;
   }
}


void
vec4_visitor::visit(ir_swizzle *ir)
{
   src_reg src;
   int i = 0;
   int swizzle[4];

   /* Note that this is only swizzles in expressions, not those on the left
    * hand side of an assignment, which do write masking.  See ir_assignment
    * for that.
    */

   ir->val->accept(this);
   src = this->result;
   assert(src.file != BAD_FILE);

   for (i = 0; i < ir->type->vector_elements; i++) {
      switch (i) {
      case 0:
	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
	 break;
      case 1:
	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
	 break;
      case 2:
	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
	 break;
      case 3:
	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
	    break;
      }
   }
   for (; i < 4; i++) {
      /* Replicate the last channel out. */
      swizzle[i] = swizzle[ir->type->vector_elements - 1];
   }

   src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);

   this->result = src;
}

void
vec4_visitor::visit(ir_dereference_variable *ir)
{
   const struct glsl_type *type = ir->type;
   dst_reg *reg = variable_storage(ir->var);

   if (!reg) {
      fail("Failed to find variable storage for %s\n", ir->var->name);
      this->result = src_reg(brw_null_reg());
      return;
   }

   this->result = src_reg(*reg);

   if (type->is_scalar() || type->is_vector() || type->is_matrix())
      this->result.swizzle = swizzle_for_size(type->vector_elements);
}

void
vec4_visitor::visit(ir_dereference_array *ir)
{
   ir_constant *constant_index;
   src_reg src;
   int element_size = type_size(ir->type);

   constant_index = ir->array_index->constant_expression_value();

   ir->array->accept(this);
   src = this->result;

   if (constant_index) {
      src.reg_offset += constant_index->value.i[0] * element_size;
   } else {
      /* Variable index array dereference.  It eats the "vec4" of the
       * base of the array and an index that offsets the Mesa register
       * index.
       */
      ir->array_index->accept(this);

      src_reg index_reg;

      if (element_size == 1) {
	 index_reg = this->result;
      } else {
	 index_reg = src_reg(this, glsl_type::int_type);

	 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
      }

      if (src.reladdr) {
	 src_reg temp = src_reg(this, glsl_type::int_type);

	 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));

	 index_reg = temp;
      }

      src.reladdr = ralloc(mem_ctx, src_reg);
      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
   }

   /* If the type is smaller than a vec4, replicate the last channel out. */
   if (ir->type->is_scalar() || ir->type->is_vector())
      src.swizzle = swizzle_for_size(ir->type->vector_elements);
   else
      src.swizzle = BRW_SWIZZLE_NOOP;
   src.type = brw_type_for_base_type(ir->type);

   this->result = src;
}

void
vec4_visitor::visit(ir_dereference_record *ir)
{
   unsigned int i;
   const glsl_type *struct_type = ir->record->type;
   int offset = 0;

   ir->record->accept(this);

   for (i = 0; i < struct_type->length; i++) {
      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
	 break;
      offset += type_size(struct_type->fields.structure[i].type);
   }

   /* If the type is smaller than a vec4, replicate the last channel out. */
   if (ir->type->is_scalar() || ir->type->is_vector())
      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
   else
      this->result.swizzle = BRW_SWIZZLE_NOOP;
   this->result.type = brw_type_for_base_type(ir->type);

   this->result.reg_offset += offset;
}

/**
 * We want to be careful in assignment setup to hit the actual storage
 * instead of potentially using a temporary like we might with the
 * ir_dereference handler.
 */
static dst_reg
get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
{
   /* The LHS must be a dereference.  If the LHS is a variable indexed array
    * access of a vector, it must be separated into a series conditional moves
    * before reaching this point (see ir_vec_index_to_cond_assign).
    */
   assert(ir->as_dereference());
   ir_dereference_array *deref_array = ir->as_dereference_array();
   if (deref_array) {
      assert(!deref_array->array->type->is_vector());
   }

   /* Use the rvalue deref handler for the most part.  We'll ignore
    * swizzles in it and write swizzles using writemask, though.
    */
   ir->accept(v);
   return dst_reg(v->result);
}

void
vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
			      const struct glsl_type *type, uint32_t predicate)
{
   if (type->base_type == GLSL_TYPE_STRUCT) {
      for (unsigned int i = 0; i < type->length; i++) {
	 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
      }
      return;
   }

   if (type->is_array()) {
      for (unsigned int i = 0; i < type->length; i++) {
	 emit_block_move(dst, src, type->fields.array, predicate);
      }
      return;
   }

   if (type->is_matrix()) {
      const struct glsl_type *vec_type;

      vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
					 type->vector_elements, 1);

      for (int i = 0; i < type->matrix_columns; i++) {
	 emit_block_move(dst, src, vec_type, predicate);
      }
      return;
   }

   assert(type->is_scalar() || type->is_vector());

   dst->type = brw_type_for_base_type(type);
   src->type = dst->type;

   dst->writemask = (1 << type->vector_elements) - 1;

   /* Do we need to worry about swizzling a swizzle? */
   assert(src->swizzle = BRW_SWIZZLE_NOOP);
   src->swizzle = swizzle_for_size(type->vector_elements);

   vec4_instruction *inst = emit(MOV(*dst, *src));
   inst->predicate = predicate;

   dst->reg_offset++;
   src->reg_offset++;
}


/* If the RHS processing resulted in an instruction generating a
 * temporary value, and it would be easy to rewrite the instruction to
 * generate its result right into the LHS instead, do so.  This ends
 * up reliably removing instructions where it can be tricky to do so
 * later without real UD chain information.
 */
bool
vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
				     dst_reg dst,
				     src_reg src,
				     vec4_instruction *pre_rhs_inst,
				     vec4_instruction *last_rhs_inst)
{
   /* This could be supported, but it would take more smarts. */
   if (ir->condition)
      return false;

   if (pre_rhs_inst == last_rhs_inst)
      return false; /* No instructions generated to work with. */

   /* Make sure the last instruction generated our source reg. */
   if (src.file != GRF ||
       src.file != last_rhs_inst->dst.file ||
       src.reg != last_rhs_inst->dst.reg ||
       src.reg_offset != last_rhs_inst->dst.reg_offset ||
       src.reladdr ||
       src.abs ||
       src.negate ||
       last_rhs_inst->predicate != BRW_PREDICATE_NONE)
      return false;

   /* Check that that last instruction fully initialized the channels
    * we want to use, in the order we want to use them.  We could
    * potentially reswizzle the operands of many instructions so that
    * we could handle out of order channels, but don't yet.
    */
   for (int i = 0; i < 4; i++) {
      if (dst.writemask & (1 << i)) {
	 if (!(last_rhs_inst->dst.writemask & (1 << i)))
	    return false;

	 if (BRW_GET_SWZ(src.swizzle, i) != i)
	    return false;
      }
   }

   /* Success!  Rewrite the instruction. */
   last_rhs_inst->dst.file = dst.file;
   last_rhs_inst->dst.reg = dst.reg;
   last_rhs_inst->dst.reg_offset = dst.reg_offset;
   last_rhs_inst->dst.reladdr = dst.reladdr;
   last_rhs_inst->dst.writemask &= dst.writemask;

   return true;
}

void
vec4_visitor::visit(ir_assignment *ir)
{
   dst_reg dst = get_assignment_lhs(ir->lhs, this);
   uint32_t predicate = BRW_PREDICATE_NONE;

   if (!ir->lhs->type->is_scalar() &&
       !ir->lhs->type->is_vector()) {
      ir->rhs->accept(this);
      src_reg src = this->result;

      if (ir->condition) {
	 emit_bool_to_cond_code(ir->condition, &predicate);
      }

      emit_block_move(&dst, &src, ir->rhs->type, predicate);
      return;
   }

   /* Now we're down to just a scalar/vector with writemasks. */
   int i;

   vec4_instruction *pre_rhs_inst, *last_rhs_inst;
   pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();

   ir->rhs->accept(this);

   last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();

   src_reg src = this->result;

   int swizzles[4];
   int first_enabled_chan = 0;
   int src_chan = 0;

   assert(ir->lhs->type->is_vector() ||
	  ir->lhs->type->is_scalar());
   dst.writemask = ir->write_mask;

   for (int i = 0; i < 4; i++) {
      if (dst.writemask & (1 << i)) {
	 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
	 break;
      }
   }

   /* Swizzle a small RHS vector into the channels being written.
    *
    * glsl ir treats write_mask as dictating how many channels are
    * present on the RHS while in our instructions we need to make
    * those channels appear in the slots of the vec4 they're written to.
    */
   for (int i = 0; i < 4; i++) {
      if (dst.writemask & (1 << i))
	 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
      else
	 swizzles[i] = first_enabled_chan;
   }
   src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
			      swizzles[2], swizzles[3]);

   if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
      return;
   }

   if (ir->condition) {
      emit_bool_to_cond_code(ir->condition, &predicate);
   }

   for (i = 0; i < type_size(ir->lhs->type); i++) {
      vec4_instruction *inst = emit(MOV(dst, src));
      inst->predicate = predicate;

      dst.reg_offset++;
      src.reg_offset++;
   }
}

void
vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
{
   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
      foreach_list(node, &ir->components) {
	 ir_constant *field_value = (ir_constant *)node;

	 emit_constant_values(dst, field_value);
      }
      return;
   }

   if (ir->type->is_array()) {
      for (unsigned int i = 0; i < ir->type->length; i++) {
	 emit_constant_values(dst, ir->array_elements[i]);
      }
      return;
   }

   if (ir->type->is_matrix()) {
      for (int i = 0; i < ir->type->matrix_columns; i++) {
	 for (int j = 0; j < ir->type->vector_elements; j++) {
	    dst->writemask = 1 << j;
	    dst->type = BRW_REGISTER_TYPE_F;

	    emit(MOV(*dst,
		     src_reg(ir->value.f[i * ir->type->vector_elements + j])));
	 }
	 dst->reg_offset++;
      }
      return;
   }

   for (int i = 0; i < ir->type->vector_elements; i++) {
      dst->writemask = 1 << i;
      dst->type = brw_type_for_base_type(ir->type);

      switch (ir->type->base_type) {
      case GLSL_TYPE_FLOAT:
	 emit(MOV(*dst, src_reg(ir->value.f[i])));
	 break;
      case GLSL_TYPE_INT:
	 emit(MOV(*dst, src_reg(ir->value.i[i])));
	 break;
      case GLSL_TYPE_UINT:
	 emit(MOV(*dst, src_reg(ir->value.u[i])));
	 break;
      case GLSL_TYPE_BOOL:
	 emit(MOV(*dst, src_reg(ir->value.b[i])));
	 break;
      default:
	 assert(!"Non-float/uint/int/bool constant");
	 break;
      }
   }
   dst->reg_offset++;
}

void
vec4_visitor::visit(ir_constant *ir)
{
   dst_reg dst = dst_reg(this, ir->type);
   this->result = src_reg(dst);

   emit_constant_values(&dst, ir);
}

void
vec4_visitor::visit(ir_call *ir)
{
   assert(!"not reached");
}

void
vec4_visitor::visit(ir_texture *ir)
{
   /* FINISHME: Implement vertex texturing.
    *
    * With 0 vertex samplers available, the linker will reject
    * programs that do vertex texturing, but after our visitor has
    * run.
    */
}

void
vec4_visitor::visit(ir_return *ir)
{
   assert(!"not reached");
}

void
vec4_visitor::visit(ir_discard *ir)
{
   assert(!"not reached");
}

void
vec4_visitor::visit(ir_if *ir)
{
   /* Don't point the annotation at the if statement, because then it plus
    * the then and else blocks get printed.
    */
   this->base_ir = ir->condition;

   if (intel->gen == 6) {
      emit_if_gen6(ir);
   } else {
      uint32_t predicate;
      emit_bool_to_cond_code(ir->condition, &predicate);
      emit(IF(predicate));
   }

   visit_instructions(&ir->then_instructions);

   if (!ir->else_instructions.is_empty()) {
      this->base_ir = ir->condition;
      emit(BRW_OPCODE_ELSE);

      visit_instructions(&ir->else_instructions);
   }

   this->base_ir = ir->condition;
   emit(BRW_OPCODE_ENDIF);
}

void
vec4_visitor::emit_ndc_computation()
{
   /* Get the position */
   src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);

   /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
   dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
   output_reg[BRW_VERT_RESULT_NDC] = ndc;

   current_annotation = "NDC";
   dst_reg ndc_w = ndc;
   ndc_w.writemask = WRITEMASK_W;
   src_reg pos_w = pos;
   pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
   emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);

   dst_reg ndc_xyz = ndc;
   ndc_xyz.writemask = WRITEMASK_XYZ;

   emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
}

void
vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
{
   if (intel->gen < 6 &&
       ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
        c->key.nr_userclip || brw->has_negative_rhw_bug)) {
      dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
      GLuint i;

      emit(MOV(header1, 0u));

      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
	 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);

	 current_annotation = "Point size";
	 header1.writemask = WRITEMASK_W;
	 emit(MUL(header1, psiz, src_reg((float)(1 << 11))));
	 emit(AND(header1, src_reg(header1), 0x7ff << 8));
      }

      current_annotation = "Clipping flags";
      for (i = 0; i < c->key.nr_userclip; i++) {
	 vec4_instruction *inst;

	 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
                         src_reg(c->userplane[i])));
	 inst->conditional_mod = BRW_CONDITIONAL_L;

	 emit(OR(header1, src_reg(header1), 1u << i));
	 inst->predicate = BRW_PREDICATE_NORMAL;
      }

      /* i965 clipping workaround:
       * 1) Test for -ve rhw
       * 2) If set,
       *      set ndc = (0,0,0,0)
       *      set ucp[6] = 1
       *
       * Later, clipping will detect ucp[6] and ensure the primitive is
       * clipped against all fixed planes.
       */
      if (brw->has_negative_rhw_bug) {
#if 0
	 /* FINISHME */
	 brw_CMP(p,
		 vec8(brw_null_reg()),
		 BRW_CONDITIONAL_L,
		 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
		 brw_imm_f(0));

	 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
	 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
#endif
      }

      header1.writemask = WRITEMASK_XYZW;
      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
   } else if (intel->gen < 6) {
      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
   } else {
      emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
         emit(MOV(brw_writemask(reg, WRITEMASK_W),
                  src_reg(output_reg[VERT_RESULT_PSIZ])));
      }
   }
}

void
vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
{
   if (intel->gen < 6) {
      /* Clip distance slots are set aside in gen5, but they are not used.  It
       * is not clear whether we actually need to set aside space for them,
       * but the performance cost is negligible.
       */
      return;
   }

   for (int i = 0; i + offset < c->key.nr_userclip && i < 4; ++i) {
      emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
               src_reg(output_reg[VERT_RESULT_HPOS]),
               src_reg(c->userplane[i + offset])));
   }
}

void
vec4_visitor::emit_urb_slot(int mrf, int vert_result)
{
   struct brw_reg reg = brw_message_reg(mrf);

   switch (vert_result) {
   case VERT_RESULT_PSIZ:
      /* PSIZ is always in slot 0, and is coupled with other flags. */
      current_annotation = "indices, point width, clip flags";
      emit_psiz_and_flags(reg);
      break;
   case BRW_VERT_RESULT_NDC:
      current_annotation = "NDC";
      emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
      break;
   case BRW_VERT_RESULT_HPOS_DUPLICATE:
   case VERT_RESULT_HPOS:
      current_annotation = "gl_Position";
      emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
      break;
   case BRW_VERT_RESULT_CLIP0:
      current_annotation = "user clip distances";
      emit_clip_distances(reg, 0);
      break;
   case BRW_VERT_RESULT_CLIP1:
      current_annotation = "user clip distances";
      emit_clip_distances(reg, 4);
      break;
   case BRW_VERT_RESULT_PAD:
      /* No need to write to this slot */
      break;
   default: {
      assert (vert_result < VERT_RESULT_MAX);
      current_annotation = output_reg_annotation[vert_result];
      /* Copy the register, saturating if necessary */
      vec4_instruction *inst = emit(MOV(reg,
                                        src_reg(output_reg[vert_result])));
      if ((vert_result == VERT_RESULT_COL0 ||
	   vert_result == VERT_RESULT_COL1 ||
	   vert_result == VERT_RESULT_BFC0 ||
	   vert_result == VERT_RESULT_BFC1) &&
	  c->key.clamp_vertex_color) {
	 inst->saturate = true;
      }
   }
      break;
   }
}

static int
align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
{
   struct intel_context *intel = &brw->intel;

   if (intel->gen >= 6) {
      /* URB data written (does not include the message header reg) must
       * be a multiple of 256 bits, or 2 VS registers.  See vol5c.5,
       * section 5.4.3.2.2: URB_INTERLEAVED.
       *
       * URB entries are allocated on a multiple of 1024 bits, so an
       * extra 128 bits written here to make the end align to 256 is
       * no problem.
       */
      if ((mlen % 2) != 1)
	 mlen++;
   }

   return mlen;
}

/**
 * Generates the VUE payload plus the 1 or 2 URB write instructions to
 * complete the VS thread.
 *
 * The VUE layout is documented in Volume 2a.
 */
void
vec4_visitor::emit_urb_writes()
{
   /* MRF 0 is reserved for the debugger, so start with message header
    * in MRF 1.
    */
   int base_mrf = 1;
   int mrf = base_mrf;
   /* In the process of generating our URB write message contents, we
    * may need to unspill a register or load from an array.  Those
    * reads would use MRFs 14-15.
    */
   int max_usable_mrf = 13;

   /* The following assertion verifies that max_usable_mrf causes an
    * even-numbered amount of URB write data, which will meet gen6's
    * requirements for length alignment.
    */
   assert ((max_usable_mrf - base_mrf) % 2 == 0);

   /* FINISHME: edgeflag */

   brw_compute_vue_map(&c->vue_map, intel, c->key.nr_userclip,
                       c->prog_data.outputs_written);

   /* First mrf is the g0-based message header containing URB handles and such,
    * which is implied in VS_OPCODE_URB_WRITE.
    */
   mrf++;

   if (intel->gen < 6) {
      emit_ndc_computation();
   }

   /* Set up the VUE data for the first URB write */
   int slot;
   for (slot = 0; slot < c->vue_map.num_slots; ++slot) {
      emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);

      /* If this was max_usable_mrf, we can't fit anything more into this URB
       * WRITE.
       */
      if (mrf > max_usable_mrf) {
	 slot++;
	 break;
      }
   }

   current_annotation = "URB write";
   vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
   inst->base_mrf = base_mrf;
   inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
   inst->eot = (slot >= c->vue_map.num_slots);

   /* Optional second URB write */
   if (!inst->eot) {
      mrf = base_mrf + 1;

      for (; slot < c->vue_map.num_slots; ++slot) {
	 assert(mrf < max_usable_mrf);

         emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
      }

      current_annotation = "URB write";
      inst = emit(VS_OPCODE_URB_WRITE);
      inst->base_mrf = base_mrf;
      inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
      inst->eot = true;
      /* URB destination offset.  In the previous write, we got MRFs
       * 2-13 minus the one header MRF, so 12 regs.  URB offset is in
       * URB row increments, and each of our MRFs is half of one of
       * those, since we're doing interleaved writes.
       */
      inst->offset = (max_usable_mrf - base_mrf) / 2;
   }

   if (intel->gen == 6)
      c->prog_data.urb_entry_size = ALIGN(c->vue_map.num_slots, 8) / 8;
   else
      c->prog_data.urb_entry_size = ALIGN(c->vue_map.num_slots, 4) / 4;
}

src_reg
vec4_visitor::get_scratch_offset(vec4_instruction *inst,
				 src_reg *reladdr, int reg_offset)
{
   /* Because we store the values to scratch interleaved like our
    * vertex data, we need to scale the vec4 index by 2.
    */
   int message_header_scale = 2;

   /* Pre-gen6, the message header uses byte offsets instead of vec4
    * (16-byte) offset units.
    */
   if (intel->gen < 6)
      message_header_scale *= 16;

   if (reladdr) {
      src_reg index = src_reg(this, glsl_type::int_type);

      emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
      emit_before(inst, MUL(dst_reg(index),
			    index, src_reg(message_header_scale)));

      return index;
   } else {
      return src_reg(reg_offset * message_header_scale);
   }
}

src_reg
vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
				       src_reg *reladdr, int reg_offset)
{
   if (reladdr) {
      src_reg index = src_reg(this, glsl_type::int_type);

      emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));

      /* Pre-gen6, the message header uses byte offsets instead of vec4
       * (16-byte) offset units.
       */
      if (intel->gen < 6) {
	 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
      }

      return index;
   } else {
      int message_header_scale = intel->gen < 6 ? 16 : 1;
      return src_reg(reg_offset * message_header_scale);
   }
}

/**
 * Emits an instruction before @inst to load the value named by @orig_src
 * from scratch space at @base_offset to @temp.
 */
void
vec4_visitor::emit_scratch_read(vec4_instruction *inst,
				dst_reg temp, src_reg orig_src,
				int base_offset)
{
   int reg_offset = base_offset + orig_src.reg_offset;
   src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);

   emit_before(inst, SCRATCH_READ(temp, index));
}

/**
 * Emits an instruction after @inst to store the value to be written
 * to @orig_dst to scratch space at @base_offset, from @temp.
 */
void
vec4_visitor::emit_scratch_write(vec4_instruction *inst,
				 src_reg temp, dst_reg orig_dst,
				 int base_offset)
{
   int reg_offset = base_offset + orig_dst.reg_offset;
   src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);

   dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
				       orig_dst.writemask));
   vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
   write->predicate = inst->predicate;
   write->ir = inst->ir;
   write->annotation = inst->annotation;
   inst->insert_after(write);
}

/**
 * We can't generally support array access in GRF space, because a
 * single instruction's destination can only span 2 contiguous
 * registers.  So, we send all GRF arrays that get variable index
 * access to scratch space.
 */
void
vec4_visitor::move_grf_array_access_to_scratch()
{
   int scratch_loc[this->virtual_grf_count];

   for (int i = 0; i < this->virtual_grf_count; i++) {
      scratch_loc[i] = -1;
   }

   /* First, calculate the set of virtual GRFs that need to be punted
    * to scratch due to having any array access on them, and where in
    * scratch.
    */
   foreach_list(node, &this->instructions) {
      vec4_instruction *inst = (vec4_instruction *)node;

      if (inst->dst.file == GRF && inst->dst.reladdr &&
	  scratch_loc[inst->dst.reg] == -1) {
	 scratch_loc[inst->dst.reg] = c->last_scratch;
	 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
      }

      for (int i = 0 ; i < 3; i++) {
	 src_reg *src = &inst->src[i];

	 if (src->file == GRF && src->reladdr &&
	     scratch_loc[src->reg] == -1) {
	    scratch_loc[src->reg] = c->last_scratch;
	    c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
	 }
      }
   }

   /* Now, for anything that will be accessed through scratch, rewrite
    * it to load/store.  Note that this is a _safe list walk, because
    * we may generate a new scratch_write instruction after the one
    * we're processing.
    */
   foreach_list_safe(node, &this->instructions) {
      vec4_instruction *inst = (vec4_instruction *)node;

      /* Set up the annotation tracking for new generated instructions. */
      base_ir = inst->ir;
      current_annotation = inst->annotation;

      if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
	 src_reg temp = src_reg(this, glsl_type::vec4_type);

	 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);

	 inst->dst.file = temp.file;
	 inst->dst.reg = temp.reg;
	 inst->dst.reg_offset = temp.reg_offset;
	 inst->dst.reladdr = NULL;
      }

      for (int i = 0 ; i < 3; i++) {
	 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
	    continue;

	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);

	 emit_scratch_read(inst, temp, inst->src[i],
			   scratch_loc[inst->src[i].reg]);

	 inst->src[i].file = temp.file;
	 inst->src[i].reg = temp.reg;
	 inst->src[i].reg_offset = temp.reg_offset;
	 inst->src[i].reladdr = NULL;
      }
   }
}

/**
 * Emits an instruction before @inst to load the value named by @orig_src
 * from the pull constant buffer (surface) at @base_offset to @temp.
 */
void
vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
				      dst_reg temp, src_reg orig_src,
				      int base_offset)
{
   int reg_offset = base_offset + orig_src.reg_offset;
   src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
   vec4_instruction *load;

   load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
					temp, index);
   load->base_mrf = 14;
   load->mlen = 1;
   emit_before(inst, load);
}

/**
 * Implements array access of uniforms by inserting a
 * PULL_CONSTANT_LOAD instruction.
 *
 * Unlike temporary GRF array access (where we don't support it due to
 * the difficulty of doing relative addressing on instruction
 * destinations), we could potentially do array access of uniforms
 * that were loaded in GRF space as push constants.  In real-world
 * usage we've seen, though, the arrays being used are always larger
 * than we could load as push constants, so just always move all
 * uniform array access out to a pull constant buffer.
 */
void
vec4_visitor::move_uniform_array_access_to_pull_constants()
{
   int pull_constant_loc[this->uniforms];

   for (int i = 0; i < this->uniforms; i++) {
      pull_constant_loc[i] = -1;
   }

   /* Walk through and find array access of uniforms.  Put a copy of that
    * uniform in the pull constant buffer.
    *
    * Note that we don't move constant-indexed accesses to arrays.  No
    * testing has been done of the performance impact of this choice.
    */
   foreach_list_safe(node, &this->instructions) {
      vec4_instruction *inst = (vec4_instruction *)node;

      for (int i = 0 ; i < 3; i++) {
	 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
	    continue;

	 int uniform = inst->src[i].reg;

	 /* If this array isn't already present in the pull constant buffer,
	  * add it.
	  */
	 if (pull_constant_loc[uniform] == -1) {
	    const float **values = &prog_data->param[uniform * 4];

	    pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;

	    for (int j = 0; j < uniform_size[uniform] * 4; j++) {
	       prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
	    }
	 }

	 /* Set up the annotation tracking for new generated instructions. */
	 base_ir = inst->ir;
	 current_annotation = inst->annotation;

	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);

	 emit_pull_constant_load(inst, temp, inst->src[i],
				 pull_constant_loc[uniform]);

	 inst->src[i].file = temp.file;
	 inst->src[i].reg = temp.reg;
	 inst->src[i].reg_offset = temp.reg_offset;
	 inst->src[i].reladdr = NULL;
      }
   }

   /* Now there are no accesses of the UNIFORM file with a reladdr, so
    * no need to track them as larger-than-vec4 objects.  This will be
    * relied on in cutting out unused uniform vectors from push
    * constants.
    */
   split_uniform_registers();
}

vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
			   struct gl_shader_program *prog,
			   struct brw_shader *shader)
{
   this->c = c;
   this->p = &c->func;
   this->brw = p->brw;
   this->intel = &brw->intel;
   this->ctx = &intel->ctx;
   this->prog = prog;
   this->shader = shader;

   this->mem_ctx = ralloc_context(NULL);
   this->failed = false;

   this->base_ir = NULL;
   this->current_annotation = NULL;

   this->c = c;
   this->vp = prog->VertexProgram;
   this->prog_data = &c->prog_data;

   this->variable_ht = hash_table_ctor(0,
				       hash_table_pointer_hash,
				       hash_table_pointer_compare);

   this->virtual_grf_def = NULL;
   this->virtual_grf_use = NULL;
   this->virtual_grf_sizes = NULL;
   this->virtual_grf_count = 0;
   this->virtual_grf_array_size = 0;
   this->live_intervals_valid = false;

   this->uniforms = 0;

   this->variable_ht = hash_table_ctor(0,
				       hash_table_pointer_hash,
				       hash_table_pointer_compare);
}

vec4_visitor::~vec4_visitor()
{
   ralloc_free(this->mem_ctx);
   hash_table_dtor(this->variable_ht);
}


void
vec4_visitor::fail(const char *format, ...)
{
   va_list va;
   char *msg;

   if (failed)
      return;

   failed = true;

   va_start(va, format);
   msg = ralloc_vasprintf(mem_ctx, format, va);
   va_end(va);
   msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);

   this->fail_msg = msg;

   if (INTEL_DEBUG & DEBUG_VS) {
      fprintf(stderr, "%s",  msg);
   }
}

} /* namespace brw */