1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_vec4.h"
extern "C" {
#include "main/macros.h"
#include "program/prog_parameter.h"
}
#define MAX_INSTRUCTION (1 << 30)
namespace brw {
/**
* Common helper for constructing swizzles. When only a subset of
* channels of a vec4 are used, we don't want to reference the other
* channels, as that will tell optimization passes that those other
* channels are used.
*/
unsigned
swizzle_for_size(int size)
{
static const unsigned size_swizzles[4] = {
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
};
assert((size >= 1) && (size <= 4));
return size_swizzles[size - 1];
}
void
src_reg::init()
{
memset(this, 0, sizeof(*this));
this->file = BAD_FILE;
}
src_reg::src_reg(register_file file, int reg, const glsl_type *type)
{
init();
this->file = file;
this->reg = reg;
if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
this->swizzle = swizzle_for_size(type->vector_elements);
else
this->swizzle = SWIZZLE_XYZW;
}
/** Generic unset register constructor. */
src_reg::src_reg()
{
init();
}
src_reg::src_reg(float f)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_F;
this->imm.f = f;
}
src_reg::src_reg(uint32_t u)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_UD;
this->imm.u = u;
}
src_reg::src_reg(int32_t i)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_D;
this->imm.i = i;
}
src_reg::src_reg(dst_reg reg)
{
init();
this->file = reg.file;
this->reg = reg.reg;
this->reg_offset = reg.reg_offset;
this->type = reg.type;
this->reladdr = reg.reladdr;
this->fixed_hw_reg = reg.fixed_hw_reg;
int swizzles[4];
int next_chan = 0;
int last = 0;
for (int i = 0; i < 4; i++) {
if (!(reg.writemask & (1 << i)))
continue;
swizzles[next_chan++] = last = i;
}
for (; next_chan < 4; next_chan++) {
swizzles[next_chan] = last;
}
this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
}
bool
vec4_instruction::is_tex()
{
return (opcode == SHADER_OPCODE_TEX ||
opcode == SHADER_OPCODE_TXD ||
opcode == SHADER_OPCODE_TXF ||
opcode == SHADER_OPCODE_TXL ||
opcode == SHADER_OPCODE_TXS);
}
void
dst_reg::init()
{
memset(this, 0, sizeof(*this));
this->file = BAD_FILE;
this->writemask = WRITEMASK_XYZW;
}
dst_reg::dst_reg()
{
init();
}
dst_reg::dst_reg(register_file file, int reg)
{
init();
this->file = file;
this->reg = reg;
}
dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
int writemask)
{
init();
this->file = file;
this->reg = reg;
this->type = brw_type_for_base_type(type);
this->writemask = writemask;
}
dst_reg::dst_reg(struct brw_reg reg)
{
init();
this->file = HW_REG;
this->fixed_hw_reg = reg;
}
dst_reg::dst_reg(src_reg reg)
{
init();
this->file = reg.file;
this->reg = reg.reg;
this->reg_offset = reg.reg_offset;
this->type = reg.type;
this->writemask = WRITEMASK_XYZW;
this->reladdr = reg.reladdr;
this->fixed_hw_reg = reg.fixed_hw_reg;
}
bool
vec4_instruction::is_math()
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
/**
* Returns how many MRFs an opcode will write over.
*
* Note that this is not the 0 or 1 implied writes in an actual gen
* instruction -- the generate_* functions generate additional MOVs
* for setup.
*/
int
vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
{
if (inst->mlen == 0)
return 0;
switch (inst->opcode) {
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
return 1;
case SHADER_OPCODE_POW:
return 2;
case VS_OPCODE_URB_WRITE:
return 1;
case VS_OPCODE_PULL_CONSTANT_LOAD:
return 2;
case VS_OPCODE_SCRATCH_READ:
return 2;
case VS_OPCODE_SCRATCH_WRITE:
return 3;
default:
assert(!"not reached");
return inst->mlen;
}
}
bool
src_reg::equals(src_reg *r)
{
return (file == r->file &&
reg == r->reg &&
reg_offset == r->reg_offset &&
type == r->type &&
negate == r->negate &&
abs == r->abs &&
swizzle == r->swizzle &&
!reladdr && !r->reladdr &&
memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
sizeof(fixed_hw_reg)) == 0 &&
imm.u == r->imm.u);
}
void
vec4_visitor::calculate_live_intervals()
{
int *def = ralloc_array(mem_ctx, int, virtual_grf_count);
int *use = ralloc_array(mem_ctx, int, virtual_grf_count);
int loop_depth = 0;
int loop_start = 0;
if (this->live_intervals_valid)
return;
for (int i = 0; i < virtual_grf_count; i++) {
def[i] = MAX_INSTRUCTION;
use[i] = -1;
}
int ip = 0;
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
if (inst->opcode == BRW_OPCODE_DO) {
if (loop_depth++ == 0)
loop_start = ip;
} else if (inst->opcode == BRW_OPCODE_WHILE) {
loop_depth--;
if (loop_depth == 0) {
/* Patches up the use of vars marked for being live across
* the whole loop.
*/
for (int i = 0; i < virtual_grf_count; i++) {
if (use[i] == loop_start) {
use[i] = ip;
}
}
}
} else {
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
int reg = inst->src[i].reg;
if (!loop_depth) {
use[reg] = ip;
} else {
def[reg] = MIN2(loop_start, def[reg]);
use[reg] = loop_start;
/* Nobody else is going to go smash our start to
* later in the loop now, because def[reg] now
* points before the bb header.
*/
}
}
}
if (inst->dst.file == GRF) {
int reg = inst->dst.reg;
if (!loop_depth) {
def[reg] = MIN2(def[reg], ip);
} else {
def[reg] = MIN2(def[reg], loop_start);
}
}
}
ip++;
}
ralloc_free(this->virtual_grf_def);
ralloc_free(this->virtual_grf_use);
this->virtual_grf_def = def;
this->virtual_grf_use = use;
this->live_intervals_valid = true;
}
bool
vec4_visitor::virtual_grf_interferes(int a, int b)
{
int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
/* We can't handle dead register writes here, without iterating
* over the whole instruction stream to find every single dead
* write to that register to compare to the live interval of the
* other register. Just assert that dead_code_eliminate() has been
* called.
*/
assert((this->virtual_grf_use[a] != -1 ||
this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
(this->virtual_grf_use[b] != -1 ||
this->virtual_grf_def[b] == MAX_INSTRUCTION));
return start < end;
}
/**
* Must be called after calculate_live_intervales() to remove unused
* writes to registers -- register allocation will fail otherwise
* because something deffed but not used won't be considered to
* interfere with other regs.
*/
bool
vec4_visitor::dead_code_eliminate()
{
bool progress = false;
int pc = 0;
calculate_live_intervals();
foreach_list_safe(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
inst->remove();
progress = true;
}
pc++;
}
if (progress)
live_intervals_valid = false;
return progress;
}
void
vec4_visitor::split_uniform_registers()
{
/* Prior to this, uniforms have been in an array sized according to
* the number of vector uniforms present, sparsely filled (so an
* aggregate results in reg indices being skipped over). Now we're
* going to cut those aggregates up so each .reg index is one
* vector. The goal is to make elimination of unused uniform
* components easier later.
*/
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM)
continue;
assert(!inst->src[i].reladdr);
inst->src[i].reg += inst->src[i].reg_offset;
inst->src[i].reg_offset = 0;
}
}
/* Update that everything is now vector-sized. */
for (int i = 0; i < this->uniforms; i++) {
this->uniform_size[i] = 1;
}
}
void
vec4_visitor::pack_uniform_registers()
{
bool uniform_used[this->uniforms];
int new_loc[this->uniforms];
int new_chan[this->uniforms];
memset(uniform_used, 0, sizeof(uniform_used));
memset(new_loc, 0, sizeof(new_loc));
memset(new_chan, 0, sizeof(new_chan));
/* Find which uniform vectors are actually used by the program. We
* expect unused vector elements when we've moved array access out
* to pull constants, and from some GLSL code generators like wine.
*/
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM)
continue;
uniform_used[inst->src[i].reg] = true;
}
}
int new_uniform_count = 0;
/* Now, figure out a packing of the live uniform vectors into our
* push constants.
*/
for (int src = 0; src < uniforms; src++) {
int size = this->uniform_vector_size[src];
if (!uniform_used[src]) {
this->uniform_vector_size[src] = 0;
continue;
}
int dst;
/* Find the lowest place we can slot this uniform in. */
for (dst = 0; dst < src; dst++) {
if (this->uniform_vector_size[dst] + size <= 4)
break;
}
if (src == dst) {
new_loc[src] = dst;
new_chan[src] = 0;
} else {
new_loc[src] = dst;
new_chan[src] = this->uniform_vector_size[dst];
/* Move the references to the data */
for (int j = 0; j < size; j++) {
c->prog_data.param[dst * 4 + new_chan[src] + j] =
c->prog_data.param[src * 4 + j];
}
this->uniform_vector_size[dst] += size;
this->uniform_vector_size[src] = 0;
}
new_uniform_count = MAX2(new_uniform_count, dst + 1);
}
this->uniforms = new_uniform_count;
/* Now, update the instructions for our repacked uniforms. */
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
int src = inst->src[i].reg;
if (inst->src[i].file != UNIFORM)
continue;
inst->src[i].reg = new_loc[src];
int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
}
}
}
bool
src_reg::is_zero() const
{
if (file != IMM)
return false;
if (type == BRW_REGISTER_TYPE_F) {
return imm.f == 0.0;
} else {
return imm.i == 0;
}
}
bool
src_reg::is_one() const
{
if (file != IMM)
return false;
if (type == BRW_REGISTER_TYPE_F) {
return imm.f == 1.0;
} else {
return imm.i == 1;
}
}
/**
* Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
*
* While GLSL IR also performs this optimization, we end up with it in
* our instruction stream for a couple of reasons. One is that we
* sometimes generate silly instructions, for example in array access
* where we'll generate "ADD offset, index, base" even if base is 0.
* The other is that GLSL IR's constant propagation doesn't track the
* components of aggregates, so some VS patterns (initialize matrix to
* 0, accumulate in vertex blending factors) end up breaking down to
* instructions involving 0.
*/
bool
vec4_visitor::opt_algebraic()
{
bool progress = false;
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
switch (inst->opcode) {
case BRW_OPCODE_ADD:
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = src_reg();
progress = true;
}
break;
case BRW_OPCODE_MUL:
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
switch (inst->src[0].type) {
case BRW_REGISTER_TYPE_F:
inst->src[0] = src_reg(0.0f);
break;
case BRW_REGISTER_TYPE_D:
inst->src[0] = src_reg(0);
break;
case BRW_REGISTER_TYPE_UD:
inst->src[0] = src_reg(0u);
break;
default:
assert(!"not reached");
inst->src[0] = src_reg(0.0f);
break;
}
inst->src[1] = src_reg();
progress = true;
} else if (inst->src[1].is_one()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = src_reg();
progress = true;
}
break;
default:
break;
}
}
if (progress)
this->live_intervals_valid = false;
return progress;
}
/**
* Only a limited number of hardware registers may be used for push
* constants, so this turns access to the overflowed constants into
* pull constants.
*/
void
vec4_visitor::move_push_constants_to_pull_constants()
{
int pull_constant_loc[this->uniforms];
/* Only allow 32 registers (256 uniform components) as push constants,
* which is the limit on gen6.
*/
int max_uniform_components = 32 * 8;
if (this->uniforms * 4 <= max_uniform_components)
return;
/* Make some sort of choice as to which uniforms get sent to pull
* constants. We could potentially do something clever here like
* look for the most infrequently used uniform vec4s, but leave
* that for later.
*/
for (int i = 0; i < this->uniforms * 4; i += 4) {
pull_constant_loc[i / 4] = -1;
if (i >= max_uniform_components) {
const float **values = &prog_data->param[i];
/* Try to find an existing copy of this uniform in the pull
* constants if it was part of an array access already.
*/
for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
int matches;
for (matches = 0; matches < 4; matches++) {
if (prog_data->pull_param[j + matches] != values[matches])
break;
}
if (matches == 4) {
pull_constant_loc[i / 4] = j / 4;
break;
}
}
if (pull_constant_loc[i / 4] == -1) {
assert(prog_data->nr_pull_params % 4 == 0);
pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
for (int j = 0; j < 4; j++) {
prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
}
}
}
}
/* Now actually rewrite usage of the things we've moved to pull
* constants.
*/
foreach_list_safe(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM ||
pull_constant_loc[inst->src[i].reg] == -1)
continue;
int uniform = inst->src[i].reg;
dst_reg temp = dst_reg(this, glsl_type::vec4_type);
emit_pull_constant_load(inst, temp, inst->src[i],
pull_constant_loc[uniform]);
inst->src[i].file = temp.file;
inst->src[i].reg = temp.reg;
inst->src[i].reg_offset = temp.reg_offset;
inst->src[i].reladdr = NULL;
}
}
/* Repack push constants to remove the now-unused ones. */
pack_uniform_registers();
}
/*
* Tries to reduce extra MOV instructions by taking GRFs that get just
* written and then MOVed into an MRF and making the original write of
* the GRF write directly to the MRF instead.
*/
bool
vec4_visitor::opt_compute_to_mrf()
{
bool progress = false;
int next_ip = 0;
calculate_live_intervals();
foreach_list_safe(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
int ip = next_ip;
next_ip++;
if (inst->opcode != BRW_OPCODE_MOV ||
inst->predicate ||
inst->dst.file != MRF || inst->src[0].file != GRF ||
inst->dst.type != inst->src[0].type ||
inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
continue;
int mrf = inst->dst.reg;
/* Can't compute-to-MRF this GRF if someone else was going to
* read it later.
*/
if (this->virtual_grf_use[inst->src[0].reg] > ip)
continue;
/* We need to check interference with the MRF between this
* instruction and the earliest instruction involved in writing
* the GRF we're eliminating. To do that, keep track of which
* of our source channels we've seen initialized.
*/
bool chans_needed[4] = {false, false, false, false};
int chans_remaining = 0;
for (int i = 0; i < 4; i++) {
int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
if (!(inst->dst.writemask & (1 << i)))
continue;
/* We don't handle compute-to-MRF across a swizzle. We would
* need to be able to rewrite instructions above to output
* results to different channels.
*/
if (chan != i)
chans_remaining = 5;
if (!chans_needed[chan]) {
chans_needed[chan] = true;
chans_remaining++;
}
}
if (chans_remaining > 4)
continue;
/* Now walk up the instruction stream trying to see if we can
* rewrite everything writing to the GRF into the MRF instead.
*/
vec4_instruction *scan_inst;
for (scan_inst = (vec4_instruction *)inst->prev;
scan_inst->prev != NULL;
scan_inst = (vec4_instruction *)scan_inst->prev) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg &&
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
/* Found something writing to the reg we want to turn into
* a compute-to-MRF.
*/
/* SEND instructions can't have MRF as a destination. */
if (scan_inst->mlen)
break;
if (intel->gen >= 6) {
/* gen6 math instructions must have the destination be
* GRF, so no compute-to-MRF for them.
*/
if (scan_inst->is_math()) {
break;
}
}
/* Mark which channels we found unconditional writes for. */
if (!scan_inst->predicate) {
for (int i = 0; i < 4; i++) {
if (scan_inst->dst.writemask & (1 << i) &&
chans_needed[i]) {
chans_needed[i] = false;
chans_remaining--;
}
}
}
if (chans_remaining == 0)
break;
}
/* We don't handle flow control here. Most computation of
* values that end up in MRFs are shortly before the MRF
* write anyway.
*/
if (scan_inst->opcode == BRW_OPCODE_DO ||
scan_inst->opcode == BRW_OPCODE_WHILE ||
scan_inst->opcode == BRW_OPCODE_ELSE ||
scan_inst->opcode == BRW_OPCODE_ENDIF) {
break;
}
/* You can't read from an MRF, so if someone else reads our
* MRF's source GRF that we wanted to rewrite, that stops us.
*/
bool interfered = false;
for (int i = 0; i < 3; i++) {
if (scan_inst->src[i].file == GRF &&
scan_inst->src[i].reg == inst->src[0].reg &&
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
interfered = true;
}
}
if (interfered)
break;
/* If somebody else writes our MRF here, we can't
* compute-to-MRF before that.
*/
if (scan_inst->dst.file == MRF && mrf == scan_inst->dst.reg)
break;
if (scan_inst->mlen > 0) {
/* Found a SEND instruction, which means that there are
* live values in MRFs from base_mrf to base_mrf +
* scan_inst->mlen - 1. Don't go pushing our MRF write up
* above it.
*/
if (mrf >= scan_inst->base_mrf &&
mrf < scan_inst->base_mrf + scan_inst->mlen) {
break;
}
}
}
if (chans_remaining == 0) {
/* If we've made it here, we have an inst we want to
* compute-to-MRF, and a scan_inst pointing to the earliest
* instruction involved in computing the value. Now go
* rewrite the instruction stream between the two.
*/
while (scan_inst != inst) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg &&
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
scan_inst->dst.file = MRF;
scan_inst->dst.reg = mrf;
scan_inst->dst.reg_offset = 0;
scan_inst->dst.writemask &= inst->dst.writemask;
scan_inst->saturate |= inst->saturate;
}
scan_inst = (vec4_instruction *)scan_inst->next;
}
inst->remove();
progress = true;
}
}
if (progress)
live_intervals_valid = false;
return progress;
}
} /* namespace brw */
|