1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_fs.h"
#include "glsl/glsl_types.h"
#include "glsl/ir_optimization.h"
#include "glsl/ir_print_visitor.h"
static void
assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
{
if (reg->file == GRF) {
assert(reg->reg_offset >= 0);
reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
reg->reg_offset = 0;
}
}
void
fs_visitor::assign_regs_trivial()
{
int hw_reg_mapping[this->virtual_grf_count + 1];
int i;
int reg_width = c->dispatch_width / 8;
/* Note that compressed instructions require alignment to 2 registers. */
hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
for (i = 1; i <= this->virtual_grf_count; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
this->virtual_grf_sizes[i - 1] * reg_width);
}
this->grf_used = hw_reg_mapping[this->virtual_grf_count];
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
assign_reg(hw_reg_mapping, &inst->dst, reg_width);
assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
}
if (this->grf_used >= max_grf) {
fail("Ran out of regs on trivial allocator (%d/%d)\n",
this->grf_used, max_grf);
}
}
static void
brw_alloc_reg_set_for_classes(struct brw_context *brw,
int *class_sizes,
int class_count,
int reg_width,
int base_reg_count)
{
struct intel_context *intel = &brw->intel;
/* Compute the total number of registers across all classes. */
int ra_reg_count = 0;
for (int i = 0; i < class_count; i++) {
ra_reg_count += base_reg_count - (class_sizes[i] - 1);
}
ralloc_free(brw->wm.ra_reg_to_grf);
brw->wm.ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
ralloc_free(brw->wm.regs);
brw->wm.regs = ra_alloc_reg_set(brw, ra_reg_count);
ralloc_free(brw->wm.classes);
brw->wm.classes = ralloc_array(brw, int, class_count + 1);
brw->wm.aligned_pairs_class = -1;
/* Now, add the registers to their classes, and add the conflicts
* between them and the base GRF registers (and also each other).
*/
int reg = 0;
int pairs_base_reg = 0;
int pairs_reg_count = 0;
for (int i = 0; i < class_count; i++) {
int class_reg_count = base_reg_count - (class_sizes[i] - 1);
brw->wm.classes[i] = ra_alloc_reg_class(brw->wm.regs);
/* Save this off for the aligned pair class at the end. */
if (class_sizes[i] == 2) {
pairs_base_reg = reg;
pairs_reg_count = class_reg_count;
}
for (int j = 0; j < class_reg_count; j++) {
ra_class_add_reg(brw->wm.regs, brw->wm.classes[i], reg);
brw->wm.ra_reg_to_grf[reg] = j;
for (int base_reg = j;
base_reg < j + class_sizes[i];
base_reg++) {
ra_add_transitive_reg_conflict(brw->wm.regs, base_reg, reg);
}
reg++;
}
}
assert(reg == ra_reg_count);
/* Add a special class for aligned pairs, which we'll put delta_x/y
* in on gen5 so that we can do PLN.
*/
if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
brw->wm.aligned_pairs_class = ra_alloc_reg_class(brw->wm.regs);
for (int i = 0; i < pairs_reg_count; i++) {
if ((brw->wm.ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
ra_class_add_reg(brw->wm.regs, brw->wm.aligned_pairs_class,
pairs_base_reg + i);
}
}
class_count++;
}
ra_set_finalize(brw->wm.regs);
}
bool
fs_visitor::assign_regs()
{
/* Most of this allocation was written for a reg_width of 1
* (dispatch_width == 8). In extending to 16-wide, the code was
* left in place and it was converted to have the hardware
* registers it's allocating be contiguous physical pairs of regs
* for reg_width == 2.
*/
int reg_width = c->dispatch_width / 8;
int hw_reg_mapping[this->virtual_grf_count];
int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width);
int base_reg_count = (max_grf - first_assigned_grf) / reg_width;
int class_sizes[base_reg_count];
int class_count = 0;
calculate_live_intervals();
/* Set up the register classes.
*
* The base registers store a scalar value. For texture samples,
* we get virtual GRFs composed of 4 contiguous hw register. For
* structures and arrays, we store them as contiguous larger things
* than that, though we should be able to do better most of the
* time.
*/
class_sizes[class_count++] = 1;
if (brw->has_pln && intel->gen < 6) {
/* Always set up the (unaligned) pairs for gen5, so we can find
* them for making the aligned pair class.
*/
class_sizes[class_count++] = 2;
}
for (int r = 0; r < this->virtual_grf_count; r++) {
int i;
for (i = 0; i < class_count; i++) {
if (class_sizes[i] == this->virtual_grf_sizes[r])
break;
}
if (i == class_count) {
if (this->virtual_grf_sizes[r] >= base_reg_count) {
fail("Object too large to register allocate.\n");
}
class_sizes[class_count++] = this->virtual_grf_sizes[r];
}
}
brw_alloc_reg_set_for_classes(brw, class_sizes, class_count,
reg_width, base_reg_count);
struct ra_graph *g = ra_alloc_interference_graph(brw->wm.regs,
this->virtual_grf_count);
for (int i = 0; i < this->virtual_grf_count; i++) {
for (int c = 0; c < class_count; c++) {
if (class_sizes[c] == this->virtual_grf_sizes[i]) {
/* Special case: on pre-GEN6 hardware that supports PLN, the
* second operand of a PLN instruction needs to be an
* even-numbered register, so we have a special register class
* wm_aligned_pairs_class to handle this case. pre-GEN6 always
* uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
* second operand of a PLN instruction (since it doesn't support
* any other interpolation modes). So all we need to do is find
* that register and set it to the appropriate class.
*/
if (brw->wm.aligned_pairs_class >= 0 &&
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
ra_set_node_class(g, i, brw->wm.aligned_pairs_class);
} else {
ra_set_node_class(g, i, brw->wm.classes[c]);
}
break;
}
}
for (int j = 0; j < i; j++) {
if (virtual_grf_interferes(i, j)) {
ra_add_node_interference(g, i, j);
}
}
}
if (!ra_allocate_no_spills(g)) {
/* Failed to allocate registers. Spill a reg, and the caller will
* loop back into here to try again.
*/
int reg = choose_spill_reg(g);
if (reg == -1) {
fail("no register to spill\n");
} else if (c->dispatch_width == 16) {
fail("Failure to register allocate. Reduce number of live scalar "
"values to avoid this.");
} else {
spill_reg(reg);
}
ralloc_free(g);
return false;
}
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
this->grf_used = first_assigned_grf;
for (int i = 0; i < this->virtual_grf_count; i++) {
int reg = ra_get_node_reg(g, i);
hw_reg_mapping[i] = (first_assigned_grf +
brw->wm.ra_reg_to_grf[reg] * reg_width);
this->grf_used = MAX2(this->grf_used,
hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
reg_width);
}
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
assign_reg(hw_reg_mapping, &inst->dst, reg_width);
assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
}
ralloc_free(g);
return true;
}
void
fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
{
fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
unspill_inst->offset = spill_offset;
unspill_inst->ir = inst->ir;
unspill_inst->annotation = inst->annotation;
/* Choose a MRF that won't conflict with an MRF that's live across the
* spill. Nothing else will make it up to MRF 14/15.
*/
unspill_inst->base_mrf = 14;
unspill_inst->mlen = 1; /* header contains offset */
inst->insert_before(unspill_inst);
}
int
fs_visitor::choose_spill_reg(struct ra_graph *g)
{
float loop_scale = 1.0;
float spill_costs[this->virtual_grf_count];
bool no_spill[this->virtual_grf_count];
for (int i = 0; i < this->virtual_grf_count; i++) {
spill_costs[i] = 0.0;
no_spill[i] = false;
}
/* Calculate costs for spilling nodes. Call it a cost of 1 per
* spill/unspill we'll have to do, and guess that the insides of
* loops run 10 times.
*/
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
spill_costs[inst->src[i].reg] += loop_scale;
}
}
if (inst->dst.file == GRF) {
spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale;
}
switch (inst->opcode) {
case BRW_OPCODE_DO:
loop_scale *= 10;
break;
case BRW_OPCODE_WHILE:
loop_scale /= 10;
break;
case FS_OPCODE_SPILL:
if (inst->src[0].file == GRF)
no_spill[inst->src[0].reg] = true;
break;
case FS_OPCODE_UNSPILL:
if (inst->dst.file == GRF)
no_spill[inst->dst.reg] = true;
break;
default:
break;
}
}
for (int i = 0; i < this->virtual_grf_count; i++) {
if (!no_spill[i])
ra_set_node_spill_cost(g, i, spill_costs[i]);
}
return ra_get_best_spill_node(g);
}
void
fs_visitor::spill_reg(int spill_reg)
{
int size = virtual_grf_sizes[spill_reg];
unsigned int spill_offset = c->last_scratch;
assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
c->last_scratch += size * REG_SIZE;
/* Generate spill/unspill instructions for the objects being
* spilled. Right now, we spill or unspill the whole thing to a
* virtual grf of the same size. For most instructions, though, we
* could just spill/unspill the GRF being accessed.
*/
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF &&
inst->src[i].reg == spill_reg) {
inst->src[i].reg = virtual_grf_alloc(1);
emit_unspill(inst, inst->src[i],
spill_offset + REG_SIZE * inst->src[i].reg_offset);
}
}
if (inst->dst.file == GRF &&
inst->dst.reg == spill_reg) {
int subset_spill_offset = (spill_offset +
REG_SIZE * inst->dst.reg_offset);
inst->dst.reg = virtual_grf_alloc(inst->regs_written());
inst->dst.reg_offset = 0;
/* If our write is going to affect just part of the
* inst->regs_written(), then we need to unspill the destination
* since we write back out all of the regs_written().
*/
if (inst->predicated || inst->force_uncompressed || inst->force_sechalf) {
fs_reg unspill_reg = inst->dst;
for (int chan = 0; chan < inst->regs_written(); chan++) {
emit_unspill(inst, unspill_reg,
subset_spill_offset + REG_SIZE * chan);
unspill_reg.reg_offset++;
}
}
fs_reg spill_src = inst->dst;
spill_src.reg_offset = 0;
spill_src.abs = false;
spill_src.negate = false;
spill_src.smear = -1;
for (int chan = 0; chan < inst->regs_written(); chan++) {
fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
reg_null_f, spill_src);
spill_src.reg_offset++;
spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
spill_inst->ir = inst->ir;
spill_inst->annotation = inst->annotation;
spill_inst->base_mrf = 14;
spill_inst->mlen = 2; /* header, value */
inst->insert_after(spill_inst);
}
}
}
this->live_intervals_valid = false;
}
|