aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
blob: 3014e3ef1c2ca632ec675f19959f36dc39e55021 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "glsl/ir.h"
#include "glsl/ir_optimization.h"
#include "glsl/nir/glsl_to_nir.h"
#include "brw_fs.h"

static void
nir_optimize(nir_shader *nir)
{
   bool progress;
   do {
      progress = false;
      nir_lower_vars_to_ssa(nir);
      nir_validate_shader(nir);
      nir_lower_alu_to_scalar(nir);
      nir_validate_shader(nir);
      progress |= nir_copy_prop(nir);
      nir_validate_shader(nir);
      nir_lower_phis_to_scalar(nir);
      nir_validate_shader(nir);
      progress |= nir_copy_prop(nir);
      nir_validate_shader(nir);
      progress |= nir_opt_dce(nir);
      nir_validate_shader(nir);
      progress |= nir_opt_cse(nir);
      nir_validate_shader(nir);
      progress |= nir_opt_peephole_select(nir);
      nir_validate_shader(nir);
      progress |= nir_opt_algebraic(nir);
      nir_validate_shader(nir);
      progress |= nir_opt_constant_folding(nir);
      nir_validate_shader(nir);
      progress |= nir_opt_remove_phis(nir);
      nir_validate_shader(nir);
   } while (progress);
}

static bool
count_nir_instrs_in_block(nir_block *block, void *state)
{
   int *count = (int *) state;
   nir_foreach_instr(block, instr) {
      *count = *count + 1;
   }
   return true;
}

static int
count_nir_instrs(nir_shader *nir)
{
   int count = 0;
   nir_foreach_overload(nir, overload) {
      if (!overload->impl)
         continue;
      nir_foreach_block(overload->impl, count_nir_instrs_in_block, &count);
   }
   return count;
}

void
fs_visitor::emit_nir_code()
{
   /* first, lower the GLSL IR shader to NIR */
   lower_output_reads(shader->base.ir);
   nir_shader *nir = glsl_to_nir(shader->base.ir, NULL, true);
   nir_validate_shader(nir);

   nir_lower_global_vars_to_local(nir);
   nir_validate_shader(nir);

   nir_split_var_copies(nir);
   nir_validate_shader(nir);

   nir_optimize(nir);

   /* Lower a bunch of stuff */
   nir_lower_var_copies(nir);
   nir_validate_shader(nir);

   nir_lower_io(nir);
   nir_validate_shader(nir);

   nir_lower_locals_to_regs(nir);
   nir_validate_shader(nir);

   nir_remove_dead_variables(nir);
   nir_validate_shader(nir);

   nir_lower_samplers(nir, shader_prog, shader->base.Program);
   nir_validate_shader(nir);

   nir_lower_system_values(nir);
   nir_validate_shader(nir);

   nir_lower_atomics(nir);
   nir_validate_shader(nir);

   nir_optimize(nir);

   nir_lower_to_source_mods(nir);
   nir_validate_shader(nir);
   nir_copy_prop(nir);
   nir_validate_shader(nir);

   if (INTEL_DEBUG & DEBUG_WM) {
      fprintf(stderr, "NIR (SSA form) for fragment shader:\n");
      nir_print_shader(nir, stderr);
   }

   if (dispatch_width == 8) {
      static GLuint msg_id = 0;
      _mesa_gl_debug(&brw->ctx, &msg_id,
                     MESA_DEBUG_SOURCE_SHADER_COMPILER,
                     MESA_DEBUG_TYPE_OTHER,
                     MESA_DEBUG_SEVERITY_NOTIFICATION,
                     "FS NIR shader: %d inst\n",
                     count_nir_instrs(nir));
   }

   nir_convert_from_ssa(nir);
   nir_validate_shader(nir);

   /* emit the arrays used for inputs and outputs - load/store intrinsics will
    * be converted to reads/writes of these arrays
    */

   if (nir->num_inputs > 0) {
      nir_inputs = vgrf(nir->num_inputs);
      nir_setup_inputs(nir);
   }

   if (nir->num_outputs > 0) {
      nir_outputs = vgrf(nir->num_outputs);
      nir_setup_outputs(nir);
   }

   if (nir->num_uniforms > 0) {
      nir_uniforms = fs_reg(UNIFORM, 0);
      nir_setup_uniforms(nir);
   }

   nir_emit_system_values(nir);

   nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
   foreach_list_typed(nir_register, reg, node, &nir->registers) {
      unsigned array_elems =
         reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
      unsigned size = array_elems * reg->num_components;
      nir_globals[reg->index] = vgrf(size);
   }

   /* get the main function and emit it */
   nir_foreach_overload(nir, overload) {
      assert(strcmp(overload->function->name, "main") == 0);
      assert(overload->impl);
      nir_emit_impl(overload->impl);
   }

   if (INTEL_DEBUG & DEBUG_WM) {
      fprintf(stderr, "NIR (final form) for fragment shader:\n");
      nir_print_shader(nir, stderr);
   }

   ralloc_free(nir);
}

void
fs_visitor::nir_setup_inputs(nir_shader *shader)
{
   struct hash_entry *entry;
   hash_table_foreach(shader->inputs, entry) {
      nir_variable *var = (nir_variable *) entry->data;
      fs_reg varying = offset(nir_inputs, var->data.driver_location);

      fs_reg reg;
      if (!strcmp(var->name, "gl_FragCoord")) {
         reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
                                             var->data.origin_upper_left);
         emit_percomp(MOV(varying, reg), 0xF);
      } else if (!strcmp(var->name, "gl_FrontFacing")) {
         reg = *emit_frontfacing_interpolation();
         emit(MOV(retype(varying, BRW_REGISTER_TYPE_UD), reg));
      } else {
         emit_general_interpolation(varying, var->name, var->type,
                                    (glsl_interp_qualifier) var->data.interpolation,
                                    var->data.location, var->data.centroid,
                                    var->data.sample);
      }
   }
}

void
fs_visitor::nir_setup_outputs(nir_shader *shader)
{
   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;

   struct hash_entry *entry;
   hash_table_foreach(shader->outputs, entry) {
      nir_variable *var = (nir_variable *) entry->data;
      fs_reg reg = offset(nir_outputs, var->data.driver_location);

      if (var->data.index > 0) {
         assert(var->data.location == FRAG_RESULT_DATA0);
         assert(var->data.index == 1);
         this->dual_src_output = reg;
         this->do_dual_src = true;
      } else if (var->data.location == FRAG_RESULT_COLOR) {
         /* Writing gl_FragColor outputs to all color regions. */
         for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
            this->outputs[i] = reg;
            this->output_components[i] = 4;
         }
      } else if (var->data.location == FRAG_RESULT_DEPTH) {
         this->frag_depth = reg;
      } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
         this->sample_mask = reg;
      } else {
         /* gl_FragData or a user-defined FS output */
         assert(var->data.location >= FRAG_RESULT_DATA0 &&
                var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);

         int vector_elements =
            var->type->is_array() ? var->type->fields.array->vector_elements
                                  : var->type->vector_elements;

         /* General color output. */
         for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
            int output = var->data.location - FRAG_RESULT_DATA0 + i;
            this->outputs[output] = offset(reg, vector_elements * i);
            this->output_components[output] = vector_elements;
         }
      }
   }
}

void
fs_visitor::nir_setup_uniforms(nir_shader *shader)
{
   uniforms = shader->num_uniforms;
   param_size[0] = shader->num_uniforms;

   if (dispatch_width != 8)
      return;

   struct hash_entry *entry;
   hash_table_foreach(shader->uniforms, entry) {
      nir_variable *var = (nir_variable *) entry->data;

      /* UBO's and atomics don't take up space in the uniform file */

      if (var->interface_type != NULL || var->type->contains_atomic())
         continue;

      if (strncmp(var->name, "gl_", 3) == 0)
         nir_setup_builtin_uniform(var);
      else
         nir_setup_uniform(var);
   }
}

void
fs_visitor::nir_setup_uniform(nir_variable *var)
{
   int namelen = strlen(var->name);

   /* The data for our (non-builtin) uniforms is stored in a series of
      * gl_uniform_driver_storage structs for each subcomponent that
      * glGetUniformLocation() could name.  We know it's been set up in the
      * same order we'd walk the type, so walk the list of storage and find
      * anything with our name, or the prefix of a component that starts with
      * our name.
      */
   unsigned index = var->data.driver_location;
   for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
      struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];

      if (strncmp(var->name, storage->name, namelen) != 0 ||
         (storage->name[namelen] != 0 &&
         storage->name[namelen] != '.' &&
         storage->name[namelen] != '[')) {
         continue;
      }

      unsigned slots = storage->type->component_slots();
      if (storage->array_elements)
         slots *= storage->array_elements;

      for (unsigned i = 0; i < slots; i++) {
         stage_prog_data->param[index++] = &storage->storage[i];
      }
   }

   /* Make sure we actually initialized the right amount of stuff here. */
   assert(var->data.driver_location + var->type->component_slots() == index);
}

void
fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
{
   const nir_state_slot *const slots = var->state_slots;
   assert(var->state_slots != NULL);

   unsigned uniform_index = var->data.driver_location;
   for (unsigned int i = 0; i < var->num_state_slots; i++) {
      /* This state reference has already been setup by ir_to_mesa, but we'll
       * get the same index back here.
       */
      int index = _mesa_add_state_reference(this->prog->Parameters,
                                            (gl_state_index *)slots[i].tokens);

      /* Add each of the unique swizzles of the element as a parameter.
       * This'll end up matching the expected layout of the
       * array/matrix/structure we're trying to fill in.
       */
      int last_swiz = -1;
      for (unsigned int j = 0; j < 4; j++) {
         int swiz = GET_SWZ(slots[i].swizzle, j);
         if (swiz == last_swiz)
            break;
         last_swiz = swiz;

         stage_prog_data->param[uniform_index++] =
            &prog->Parameters->ParameterValues[index][swiz];
      }
   }
}

static bool
emit_system_values_block(nir_block *block, void *void_visitor)
{
   fs_visitor *v = (fs_visitor *)void_visitor;
   fs_reg *reg;

   nir_foreach_instr(block, instr) {
      if (instr->type != nir_instr_type_intrinsic)
         continue;

      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
      switch (intrin->intrinsic) {
      case nir_intrinsic_load_sample_pos:
         assert(v->stage == MESA_SHADER_FRAGMENT);
         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
         if (reg->file == BAD_FILE)
            *reg = *v->emit_samplepos_setup();
         break;

      case nir_intrinsic_load_sample_id:
         assert(v->stage == MESA_SHADER_FRAGMENT);
         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
         if (reg->file == BAD_FILE)
            *reg = *v->emit_sampleid_setup();
         break;

      case nir_intrinsic_load_sample_mask_in:
         assert(v->stage == MESA_SHADER_FRAGMENT);
         assert(v->brw->gen >= 7);
         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
         if (reg->file == BAD_FILE)
            *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
                                 BRW_REGISTER_TYPE_D));
         break;

      default:
         break;
      }
   }

   return true;
}

void
fs_visitor::nir_emit_system_values(nir_shader *shader)
{
   nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
   nir_foreach_overload(shader, overload) {
      assert(strcmp(overload->function->name, "main") == 0);
      assert(overload->impl);
      nir_foreach_block(overload->impl, emit_system_values_block, this);
   }
}

void
fs_visitor::nir_emit_impl(nir_function_impl *impl)
{
   nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
   foreach_list_typed(nir_register, reg, node, &impl->registers) {
      unsigned array_elems =
         reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
      unsigned size = array_elems * reg->num_components;
      nir_locals[reg->index] = vgrf(size);
   }

   nir_emit_cf_list(&impl->body);
}

void
fs_visitor::nir_emit_cf_list(exec_list *list)
{
   exec_list_validate(list);
   foreach_list_typed(nir_cf_node, node, node, list) {
      switch (node->type) {
      case nir_cf_node_if:
         nir_emit_if(nir_cf_node_as_if(node));
         break;

      case nir_cf_node_loop:
         nir_emit_loop(nir_cf_node_as_loop(node));
         break;

      case nir_cf_node_block:
         nir_emit_block(nir_cf_node_as_block(node));
         break;

      default:
         unreachable("Invalid CFG node block");
      }
   }
}

void
fs_visitor::nir_emit_if(nir_if *if_stmt)
{
   /* first, put the condition into f0 */
   fs_inst *inst = emit(MOV(reg_null_d,
                            retype(get_nir_src(if_stmt->condition),
                                   BRW_REGISTER_TYPE_UD)));
   inst->conditional_mod = BRW_CONDITIONAL_NZ;

   emit(IF(BRW_PREDICATE_NORMAL));

   nir_emit_cf_list(&if_stmt->then_list);

   /* note: if the else is empty, dead CF elimination will remove it */
   emit(BRW_OPCODE_ELSE);

   nir_emit_cf_list(&if_stmt->else_list);

   emit(BRW_OPCODE_ENDIF);

   if (!try_replace_with_sel() && brw->gen < 6) {
      no16("Can't support (non-uniform) control flow on SIMD16\n");
   }
}

void
fs_visitor::nir_emit_loop(nir_loop *loop)
{
   if (brw->gen < 6) {
      no16("Can't support (non-uniform) control flow on SIMD16\n");
   }

   emit(BRW_OPCODE_DO);

   nir_emit_cf_list(&loop->body);

   emit(BRW_OPCODE_WHILE);
}

void
fs_visitor::nir_emit_block(nir_block *block)
{
   nir_foreach_instr(block, instr) {
      nir_emit_instr(instr);
   }
}

void
fs_visitor::nir_emit_instr(nir_instr *instr)
{
   switch (instr->type) {
   case nir_instr_type_alu:
      nir_emit_alu(nir_instr_as_alu(instr));
      break;

   case nir_instr_type_intrinsic:
      nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
      break;

   case nir_instr_type_tex:
      nir_emit_texture(nir_instr_as_tex(instr));
      break;

   case nir_instr_type_load_const:
      /* We can hit these, but we do nothing now and use them as
       * immediates later.
       */
      break;

   case nir_instr_type_jump:
      nir_emit_jump(nir_instr_as_jump(instr));
      break;

   default:
      unreachable("unknown instruction type");
   }
}

static brw_reg_type
brw_type_for_nir_type(nir_alu_type type)
{
   switch (type) {
   case nir_type_bool:
   case nir_type_unsigned:
      return BRW_REGISTER_TYPE_UD;
   case nir_type_int:
      return BRW_REGISTER_TYPE_D;
   case nir_type_float:
      return BRW_REGISTER_TYPE_F;
   default:
      unreachable("unknown type");
   }

   return BRW_REGISTER_TYPE_F;
}

void
fs_visitor::nir_emit_alu(nir_alu_instr *instr)
{
   struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
   fs_inst *inst;

   fs_reg result = get_nir_dest(instr->dest.dest);
   result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);

   fs_reg op[4];
   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
      op[i] = get_nir_src(instr->src[i].src);
      op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
      op[i].abs = instr->src[i].abs;
      op[i].negate = instr->src[i].negate;
   }

   /* We get a bunch of mov's out of the from_ssa pass and they may still
    * be vectorized.  We'll handle them as a special-case.  We'll also
    * handle vecN here because it's basically the same thing.
    */
   switch (instr->op) {
   case nir_op_imov:
   case nir_op_fmov:
   case nir_op_vec2:
   case nir_op_vec3:
   case nir_op_vec4: {
      fs_reg temp = result;
      bool need_extra_copy = false;
      for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
         if (!instr->src[i].src.is_ssa &&
             instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
            need_extra_copy = true;
            temp = retype(vgrf(4), result.type);
            break;
         }
      }

      for (unsigned i = 0; i < 4; i++) {
         if (!(instr->dest.write_mask & (1 << i)))
            continue;

         if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
            inst = emit(MOV(offset(temp, i),
                        offset(op[0], instr->src[0].swizzle[i])));
         } else {
            inst = emit(MOV(offset(temp, i),
                        offset(op[i], instr->src[i].swizzle[0])));
         }
         inst->saturate = instr->dest.saturate;
      }

      /* In this case the source and destination registers were the same,
       * so we need to insert an extra set of moves in order to deal with
       * any swizzling.
       */
      if (need_extra_copy) {
         for (unsigned i = 0; i < 4; i++) {
            if (!(instr->dest.write_mask & (1 << i)))
               continue;

            emit(MOV(offset(result, i), offset(temp, i)));
         }
      }
      return;
   }
   default:
      break;
   }

   /* At this point, we have dealt with any instruction that operates on
    * more than a single channel.  Therefore, we can just adjust the source
    * and destination registers for that channel and emit the instruction.
    */
   unsigned channel = 0;
   if (nir_op_infos[instr->op].output_size == 0) {
      /* Since NIR is doing the scalarizing for us, we should only ever see
       * vectorized operations with a single channel.
       */
      assert(_mesa_bitcount(instr->dest.write_mask) == 1);
      channel = ffs(instr->dest.write_mask) - 1;

      result = offset(result, channel);
   }

   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
      assert(nir_op_infos[instr->op].input_sizes[i] < 2);
      op[i] = offset(op[i], instr->src[i].swizzle[channel]);
   }

   switch (instr->op) {
   case nir_op_i2f:
   case nir_op_u2f:
      inst = emit(MOV(result, op[0]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_f2i:
   case nir_op_f2u:
      emit(MOV(result, op[0]));
      break;

   case nir_op_fsign: {
      /* AND(val, 0x80000000) gives the sign bit.
         *
         * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
         * zero.
         */
      emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));

      fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
      op[0].type = BRW_REGISTER_TYPE_UD;
      result.type = BRW_REGISTER_TYPE_UD;
      emit(AND(result_int, op[0], fs_reg(0x80000000u)));

      inst = emit(OR(result_int, result_int, fs_reg(0x3f800000u)));
      inst->predicate = BRW_PREDICATE_NORMAL;
      if (instr->dest.saturate) {
         inst = emit(MOV(result, result));
         inst->saturate = true;
      }
      break;
   }

   case nir_op_isign:
      /*  ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
       *               -> non-negative val generates 0x00000000.
       *  Predicated OR sets 1 if val is positive.
       */
      emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
      emit(ASR(result, op[0], fs_reg(31)));
      inst = emit(OR(result, result, fs_reg(1)));
      inst->predicate = BRW_PREDICATE_NORMAL;
      break;

   case nir_op_frcp:
      inst = emit_math(SHADER_OPCODE_RCP, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fexp2:
      inst = emit_math(SHADER_OPCODE_EXP2, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_flog2:
      inst = emit_math(SHADER_OPCODE_LOG2, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fexp:
   case nir_op_flog:
      unreachable("not reached: should be handled by ir_explog_to_explog2");

   case nir_op_fsin:
   case nir_op_fsin_reduced:
      inst = emit_math(SHADER_OPCODE_SIN, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fcos:
   case nir_op_fcos_reduced:
      inst = emit_math(SHADER_OPCODE_COS, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fddx:
      if (fs_key->high_quality_derivatives) {
         inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
      } else {
         inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
      }
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_fddx_fine:
      inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_fddx_coarse:
      inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_fddy:
      if (fs_key->high_quality_derivatives) {
         inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
                     fs_reg(fs_key->render_to_fbo));
      } else {
         inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
                     fs_reg(fs_key->render_to_fbo));
      }
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_fddy_fine:
      inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
                  fs_reg(fs_key->render_to_fbo));
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_fddy_coarse:
      inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
                  fs_reg(fs_key->render_to_fbo));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fadd:
   case nir_op_iadd:
      inst = emit(ADD(result, op[0], op[1]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fmul:
      inst = emit(MUL(result, op[0], op[1]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_imul: {
      /* TODO put in the 16-bit constant optimization once we have SSA */

      if (brw->gen >= 7)
         no16("SIMD16 explicit accumulator operands unsupported\n");

      struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);

      emit(MUL(acc, op[0], op[1]));
      emit(MACH(reg_null_d, op[0], op[1]));
      emit(MOV(result, fs_reg(acc)));
      break;
   }

   case nir_op_imul_high:
   case nir_op_umul_high: {
      if (brw->gen >= 7)
         no16("SIMD16 explicit accumulator operands unsupported\n");

      struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);

      emit(MUL(acc, op[0], op[1]));
      emit(MACH(result, op[0], op[1]));
      break;
   }

   case nir_op_idiv:
   case nir_op_udiv:
      emit_math(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
      break;

   case nir_op_uadd_carry: {
      if (brw->gen >= 7)
         no16("SIMD16 explicit accumulator operands unsupported\n");

      struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
                                  BRW_REGISTER_TYPE_UD);

      emit(ADDC(reg_null_ud, op[0], op[1]));
      emit(MOV(result, fs_reg(acc)));
      break;
   }

   case nir_op_usub_borrow: {
      if (brw->gen >= 7)
         no16("SIMD16 explicit accumulator operands unsupported\n");

      struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
                                  BRW_REGISTER_TYPE_UD);

      emit(SUBB(reg_null_ud, op[0], op[1]));
      emit(MOV(result, fs_reg(acc)));
      break;
   }

   case nir_op_umod:
      emit_math(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
      break;

   case nir_op_flt:
   case nir_op_ilt:
   case nir_op_ult:
      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_L));
      break;

   case nir_op_fge:
   case nir_op_ige:
   case nir_op_uge:
      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE));
      break;

   case nir_op_feq:
   case nir_op_ieq:
      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z));
      break;

   case nir_op_fne:
   case nir_op_ine:
      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ));
      break;

   case nir_op_inot:
      emit(NOT(result, op[0]));
      break;
   case nir_op_ixor:
      emit(XOR(result, op[0], op[1]));
      break;
   case nir_op_ior:
      emit(OR(result, op[0], op[1]));
      break;
   case nir_op_iand:
      emit(AND(result, op[0], op[1]));
      break;

   case nir_op_fdot2:
   case nir_op_fdot3:
   case nir_op_fdot4:
   case nir_op_bany2:
   case nir_op_bany3:
   case nir_op_bany4:
   case nir_op_ball2:
   case nir_op_ball3:
   case nir_op_ball4:
   case nir_op_ball_fequal2:
   case nir_op_ball_iequal2:
   case nir_op_ball_fequal3:
   case nir_op_ball_iequal3:
   case nir_op_ball_fequal4:
   case nir_op_ball_iequal4:
   case nir_op_bany_fnequal2:
   case nir_op_bany_inequal2:
   case nir_op_bany_fnequal3:
   case nir_op_bany_inequal3:
   case nir_op_bany_fnequal4:
   case nir_op_bany_inequal4:
      unreachable("Lowered by nir_lower_alu_reductions");

   case nir_op_fnoise1_1:
   case nir_op_fnoise1_2:
   case nir_op_fnoise1_3:
   case nir_op_fnoise1_4:
   case nir_op_fnoise2_1:
   case nir_op_fnoise2_2:
   case nir_op_fnoise2_3:
   case nir_op_fnoise2_4:
   case nir_op_fnoise3_1:
   case nir_op_fnoise3_2:
   case nir_op_fnoise3_3:
   case nir_op_fnoise3_4:
   case nir_op_fnoise4_1:
   case nir_op_fnoise4_2:
   case nir_op_fnoise4_3:
   case nir_op_fnoise4_4:
      unreachable("not reached: should be handled by lower_noise");

   case nir_op_ldexp:
      unreachable("not reached: should be handled by ldexp_to_arith()");

   case nir_op_fsqrt:
      inst = emit_math(SHADER_OPCODE_SQRT, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_frsq:
      inst = emit_math(SHADER_OPCODE_RSQ, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_b2i:
      emit(AND(result, op[0], fs_reg(1)));
      break;
   case nir_op_b2f:
      emit(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u)));
      break;

   case nir_op_f2b:
      emit(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
      break;
   case nir_op_i2b:
      emit(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
      break;

   case nir_op_ftrunc:
      inst = emit(RNDZ(result, op[0]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fceil: {
      op[0].negate = !op[0].negate;
      fs_reg temp = vgrf(glsl_type::float_type);
      emit(RNDD(temp, op[0]));
      temp.negate = true;
      inst = emit(MOV(result, temp));
      inst->saturate = instr->dest.saturate;
      break;
   }
   case nir_op_ffloor:
      inst = emit(RNDD(result, op[0]));
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_ffract:
      inst = emit(FRC(result, op[0]));
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_fround_even:
      inst = emit(RNDE(result, op[0]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fmin:
   case nir_op_imin:
   case nir_op_umin:
      if (brw->gen >= 6) {
         inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
         inst->conditional_mod = BRW_CONDITIONAL_L;
      } else {
         emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L));
         inst = emit(SEL(result, op[0], op[1]));
      }
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fmax:
   case nir_op_imax:
   case nir_op_umax:
      if (brw->gen >= 6) {
         inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
         inst->conditional_mod = BRW_CONDITIONAL_GE;
      } else {
         emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE));
         inst = emit(SEL(result, op[0], op[1]));
      }
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_pack_snorm_2x16:
   case nir_op_pack_snorm_4x8:
   case nir_op_pack_unorm_2x16:
   case nir_op_pack_unorm_4x8:
   case nir_op_unpack_snorm_2x16:
   case nir_op_unpack_snorm_4x8:
   case nir_op_unpack_unorm_2x16:
   case nir_op_unpack_unorm_4x8:
   case nir_op_unpack_half_2x16:
   case nir_op_pack_half_2x16:
      unreachable("not reached: should be handled by lower_packing_builtins");

   case nir_op_unpack_half_2x16_split_x:
      inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;
   case nir_op_unpack_half_2x16_split_y:
      inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_fpow:
      inst = emit(SHADER_OPCODE_POW, result, op[0], op[1]);
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_bitfield_reverse:
      emit(BFREV(result, op[0]));
      break;

   case nir_op_bit_count:
      emit(CBIT(result, op[0]));
      break;

   case nir_op_ufind_msb:
   case nir_op_ifind_msb: {
      emit(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]));

      /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
       * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
       * subtract the result from 31 to convert the MSB count into an LSB count.
       */

      emit(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ));
      fs_reg neg_result(result);
      neg_result.negate = true;
      inst = emit(ADD(result, neg_result, fs_reg(31)));
      inst->predicate = BRW_PREDICATE_NORMAL;
      break;
   }

   case nir_op_find_lsb:
      emit(FBL(result, op[0]));
      break;

   case nir_op_ubitfield_extract:
   case nir_op_ibitfield_extract:
      emit(BFE(result, op[2], op[1], op[0]));
      break;
   case nir_op_bfm:
      emit(BFI1(result, op[0], op[1]));
      break;
   case nir_op_bfi:
      emit(BFI2(result, op[0], op[1], op[2]));
      break;

   case nir_op_bitfield_insert:
      unreachable("not reached: should be handled by "
                  "lower_instructions::bitfield_insert_to_bfm_bfi");

   case nir_op_ishl:
      emit(SHL(result, op[0], op[1]));
      break;
   case nir_op_ishr:
      emit(ASR(result, op[0], op[1]));
      break;
   case nir_op_ushr:
      emit(SHR(result, op[0], op[1]));
      break;

   case nir_op_pack_half_2x16_split:
      emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
      break;

   case nir_op_ffma:
      inst = emit(MAD(result, op[2], op[1], op[0]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_flrp:
      /* TODO emulate for gen < 6 */
      inst = emit(LRP(result, op[2], op[1], op[0]));
      inst->saturate = instr->dest.saturate;
      break;

   case nir_op_bcsel:
      emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
      inst = emit(SEL(result, op[1], op[2]));
      inst->predicate = BRW_PREDICATE_NORMAL;
      break;

   default:
      unreachable("unhandled instruction");
   }
}

fs_reg
fs_visitor::get_nir_src(nir_src src)
{
   if (src.is_ssa) {
      assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
      nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
      fs_reg reg = vgrf(src.ssa->num_components);
      reg.type = BRW_REGISTER_TYPE_D;

      for (unsigned i = 0; i < src.ssa->num_components; ++i)
         emit(MOV(offset(reg, i), fs_reg(load->value.i[i])));

      return reg;
   } else {
      fs_reg reg;
      if (src.reg.reg->is_global)
         reg = nir_globals[src.reg.reg->index];
      else
         reg = nir_locals[src.reg.reg->index];

      /* to avoid floating-point denorm flushing problems, set the type by
       * default to D - instructions that need floating point semantics will set
       * this to F if they need to
       */
      reg = retype(offset(reg, src.reg.base_offset), BRW_REGISTER_TYPE_D);
      if (src.reg.indirect) {
         reg.reladdr = new(mem_ctx) fs_reg();
         *reg.reladdr = retype(get_nir_src(*src.reg.indirect),
                               BRW_REGISTER_TYPE_D);
      }

      return reg;
   }
}

fs_reg
fs_visitor::get_nir_dest(nir_dest dest)
{
   fs_reg reg;
   if (dest.reg.reg->is_global)
      reg = nir_globals[dest.reg.reg->index];
   else
      reg = nir_locals[dest.reg.reg->index];

   reg = offset(reg, dest.reg.base_offset);
   if (dest.reg.indirect) {
      reg.reladdr = new(mem_ctx) fs_reg();
      *reg.reladdr = retype(get_nir_src(*dest.reg.indirect),
                            BRW_REGISTER_TYPE_D);
   }

   return reg;
}

void
fs_visitor::emit_percomp(fs_inst *inst, unsigned wr_mask)
{
   for (unsigned i = 0; i < 4; i++) {
      if (!((wr_mask >> i) & 1))
         continue;

      fs_inst *new_inst = new(mem_ctx) fs_inst(*inst);
      new_inst->dst = offset(new_inst->dst, i);
      for (unsigned j = 0; j < new_inst->sources; j++)
         if (inst->src[j].file == GRF)
            new_inst->src[j] = offset(new_inst->src[j], i);

      emit(new_inst);
   }
}

void
fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
   fs_reg dest;
   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
      dest = get_nir_dest(instr->dest);

   bool has_indirect = false;

   switch (instr->intrinsic) {
   case nir_intrinsic_discard: {
      /* We track our discarded pixels in f0.1.  By predicating on it, we can
       * update just the flag bits that aren't yet discarded.  By emitting a
       * CMP of g0 != g0, all our currently executing channels will get turned
       * off.
       */
      fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
                                    BRW_REGISTER_TYPE_UW));
      fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
                              BRW_CONDITIONAL_NZ));
      cmp->predicate = BRW_PREDICATE_NORMAL;
      cmp->flag_subreg = 1;

      if (brw->gen >= 6) {
         /* For performance, after a discard, jump to the end of the shader.
         * Only jump if all relevant channels have been discarded.
         */
         fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
         discard_jump->flag_subreg = 1;

         discard_jump->predicate = (dispatch_width == 8)
                                 ? BRW_PREDICATE_ALIGN1_ANY8H
                                 : BRW_PREDICATE_ALIGN1_ANY16H;
         discard_jump->predicate_inverse = true;
      }

      break;
   }

   case nir_intrinsic_atomic_counter_inc:
   case nir_intrinsic_atomic_counter_dec:
   case nir_intrinsic_atomic_counter_read: {
      unsigned surf_index = prog_data->binding_table.abo_start +
                            (unsigned) instr->const_index[0];
      fs_reg offset = fs_reg(get_nir_src(instr->src[0]));

      switch (instr->intrinsic) {
         case nir_intrinsic_atomic_counter_inc:
            emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
                                fs_reg(), fs_reg());
            break;
         case nir_intrinsic_atomic_counter_dec:
            emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
                                fs_reg(), fs_reg());
            break;
         case nir_intrinsic_atomic_counter_read:
            emit_untyped_surface_read(surf_index, dest, offset);
            break;
         default:
            unreachable("Unreachable");
      }
      break;
   }

   case nir_intrinsic_load_front_face:
      assert(!"TODO");

   case nir_intrinsic_load_sample_mask_in: {
      fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
      assert(sample_mask_in.file != BAD_FILE);
      dest.type = sample_mask_in.type;
      emit(MOV(dest, sample_mask_in));
      break;
   }

   case nir_intrinsic_load_sample_pos: {
      fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
      assert(sample_pos.file != BAD_FILE);
      dest.type = sample_pos.type;
      emit(MOV(dest, sample_pos));
      emit(MOV(offset(dest, 1), offset(sample_pos, 1)));
      break;
   }

   case nir_intrinsic_load_sample_id: {
      fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
      assert(sample_id.file != BAD_FILE);
      dest.type = sample_id.type;
      emit(MOV(dest, sample_id));
      break;
   }

   case nir_intrinsic_load_uniform_indirect:
      has_indirect = true;
   case nir_intrinsic_load_uniform: {
      unsigned index = 0;
      for (int i = 0; i < instr->const_index[1]; i++) {
         for (unsigned j = 0; j < instr->num_components; j++) {
            fs_reg src = offset(retype(nir_uniforms, dest.type),
                                instr->const_index[0] + index);
            if (has_indirect)
               src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
            index++;

            emit(MOV(dest, src));
            dest = offset(dest, 1);
         }
      }
      break;
   }

   case nir_intrinsic_load_ubo_indirect:
      has_indirect = true;
   case nir_intrinsic_load_ubo: {
      nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
      fs_reg surf_index;

      if (const_index) {
         surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
                             const_index->u[0]);
      } else {
         /* The block index is not a constant. Evaluate the index expression
          * per-channel and add the base UBO index; the generator will select
          * a value from any live channel.
          */
         surf_index = vgrf(glsl_type::uint_type);
         emit(ADD(surf_index, get_nir_src(instr->src[0]),
                  fs_reg(stage_prog_data->binding_table.ubo_start)))
            ->force_writemask_all = true;

         /* Assume this may touch any UBO. It would be nice to provide
          * a tighter bound, but the array information is already lowered away.
          */
         brw_mark_surface_used(prog_data,
                               stage_prog_data->binding_table.ubo_start +
                               shader_prog->NumUniformBlocks - 1);
      }

      if (has_indirect) {
         /* Turn the byte offset into a dword offset. */
         fs_reg base_offset = vgrf(glsl_type::int_type);
         emit(SHR(base_offset, retype(get_nir_src(instr->src[1]),
                                 BRW_REGISTER_TYPE_D),
                  fs_reg(2)));

         unsigned vec4_offset = instr->const_index[0] / 4;
         for (int i = 0; i < instr->num_components; i++)
            emit(VARYING_PULL_CONSTANT_LOAD(offset(dest, i), surf_index,
                                            base_offset, vec4_offset + i));
      } else {
         fs_reg packed_consts = vgrf(glsl_type::float_type);
         packed_consts.type = dest.type;

         fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
         emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
              surf_index, const_offset_reg);

         for (unsigned i = 0; i < instr->num_components; i++) {
            packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);

            /* The std140 packing rules don't allow vectors to cross 16-byte
             * boundaries, and a reg is 32 bytes.
             */
            assert(packed_consts.subreg_offset < 32);

            emit(MOV(dest, packed_consts));
            dest = offset(dest, 1);
         }
      }
      break;
   }

   case nir_intrinsic_load_input_indirect:
      has_indirect = true;
   case nir_intrinsic_load_input: {
      unsigned index = 0;
      for (int i = 0; i < instr->const_index[1]; i++) {
         for (unsigned j = 0; j < instr->num_components; j++) {
            fs_reg src = offset(retype(nir_inputs, dest.type),
                                instr->const_index[0] + index);
            if (has_indirect)
               src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
            index++;

            emit(MOV(dest, src));
            dest = offset(dest, 1);
         }
      }
      break;
   }

   /* Handle ARB_gpu_shader5 interpolation intrinsics
    *
    * It's worth a quick word of explanation as to why we handle the full
    * variable-based interpolation intrinsic rather than a lowered version
    * with like we do for other inputs.  We have to do that because the way
    * we set up inputs doesn't allow us to use the already setup inputs for
    * interpolation.  At the beginning of the shader, we go through all of
    * the input variables and do the initial interpolation and put it in
    * the nir_inputs array based on its location as determined in
    * nir_lower_io.  If the input isn't used, dead code cleans up and
    * everything works fine.  However, when we get to the ARB_gpu_shader5
    * interpolation intrinsics, we need to reinterpolate the input
    * differently.  If we used an intrinsic that just had an index it would
    * only give us the offset into the nir_inputs array.  However, this is
    * useless because that value is post-interpolation and we need
    * pre-interpolation.  In order to get the actual location of the bits
    * we get from the vertex fetching hardware, we need the variable.
    */
   case nir_intrinsic_interp_var_at_centroid:
   case nir_intrinsic_interp_var_at_sample:
   case nir_intrinsic_interp_var_at_offset: {
      /* in SIMD16 mode, the pixel interpolator returns coords interleaved
       * 8 channels at a time, same as the barycentric coords presented in
       * the FS payload. this requires a bit of extra work to support.
       */
      no16("interpolate_at_* not yet supported in SIMD16 mode.");

      fs_reg dst_x = vgrf(2);
      fs_reg dst_y = offset(dst_x, 1);

      /* For most messages, we need one reg of ignored data; the hardware
       * requires mlen==1 even when there is no payload. in the per-slot
       * offset case, we'll replace this with the proper source data.
       */
      fs_reg src = vgrf(glsl_type::float_type);
      int mlen = 1;     /* one reg unless overriden */
      fs_inst *inst;

      switch (instr->intrinsic) {
      case nir_intrinsic_interp_var_at_centroid:
         inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_x, src, fs_reg(0u));
         break;

      case nir_intrinsic_interp_var_at_sample: {
         /* XXX: We should probably handle non-constant sample id's */
         nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
         assert(const_sample);
         unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
         inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_x, src,
                     fs_reg(msg_data));
         break;
      }

      case nir_intrinsic_interp_var_at_offset: {
         nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);

         if (const_offset) {
            unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
            unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;

            inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_x, src,
                        fs_reg(off_x | (off_y << 4)));
         } else {
            src = vgrf(glsl_type::ivec2_type);
            fs_reg offset_src = retype(get_nir_src(instr->src[0]),
                                       BRW_REGISTER_TYPE_F);
            for (int i = 0; i < 2; i++) {
               fs_reg temp = vgrf(glsl_type::float_type);
               emit(MUL(temp, offset(offset_src, i), fs_reg(16.0f)));
               fs_reg itemp = vgrf(glsl_type::int_type);
               emit(MOV(itemp, temp));  /* float to int */

               /* Clamp the upper end of the range to +7/16.
                * ARB_gpu_shader5 requires that we support a maximum offset
                * of +0.5, which isn't representable in a S0.4 value -- if
                * we didn't clamp it, we'd end up with -8/16, which is the
                * opposite of what the shader author wanted.
                *
                * This is legal due to ARB_gpu_shader5's quantization
                * rules:
                *
                * "Not all values of <offset> may be supported; x and y
                * offsets may be rounded to fixed-point values with the
                * number of fraction bits given by the
                * implementation-dependent constant
                * FRAGMENT_INTERPOLATION_OFFSET_BITS"
                */

               emit(BRW_OPCODE_SEL, offset(src, i), itemp, fs_reg(7))
                   ->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
            }

            mlen = 2;
            inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_x, src,
                        fs_reg(0u));
         }
         break;
      }

      default:
         unreachable("Invalid intrinsic");
      }

      inst->mlen = mlen;
      inst->regs_written = 2; /* 2 floats per slot returned */
      inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
                               INTERP_QUALIFIER_NOPERSPECTIVE;

      for (unsigned j = 0; j < instr->num_components; j++) {
         fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
         src.type = dest.type;

         emit(FS_OPCODE_LINTERP, dest, dst_x, dst_y, src);
         dest = offset(dest, 1);
      }
      break;
   }

   case nir_intrinsic_store_output_indirect:
      has_indirect = true;
   case nir_intrinsic_store_output: {
      fs_reg src = get_nir_src(instr->src[0]);
      unsigned index = 0;
      for (int i = 0; i < instr->const_index[1]; i++) {
         for (unsigned j = 0; j < instr->num_components; j++) {
            fs_reg new_dest = offset(retype(nir_outputs, src.type),
                                     instr->const_index[0] + index);
            if (has_indirect)
               src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
            index++;
            emit(MOV(new_dest, src));
            src = offset(src, 1);
         }
      }
      break;
   }

   default:
      unreachable("unknown intrinsic");
   }
}

void
fs_visitor::nir_emit_texture(nir_tex_instr *instr)
{
   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
   unsigned sampler = instr->sampler_index;
   fs_reg sampler_reg(sampler);

   /* FINISHME: We're failing to recompile our programs when the sampler is
    * updated.  This only matters for the texture rectangle scale parameters
    * (pre-gen6, or gen6+ with GL_CLAMP).
    */
   int texunit = prog->SamplerUnits[sampler];

   int gather_component = instr->component;

   bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;

   bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
                        instr->is_array;

   int lod_components = 0, offset_components = 0;

   fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, offset;

   for (unsigned i = 0; i < instr->num_srcs; i++) {
      fs_reg src = get_nir_src(instr->src[i].src);
      switch (instr->src[i].src_type) {
      case nir_tex_src_bias:
         lod = retype(src, BRW_REGISTER_TYPE_F);
         break;
      case nir_tex_src_comparitor:
         shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
         break;
      case nir_tex_src_coord:
         switch (instr->op) {
         case nir_texop_txf:
         case nir_texop_txf_ms:
            coordinate = retype(src, BRW_REGISTER_TYPE_D);
            break;
         default:
            coordinate = retype(src, BRW_REGISTER_TYPE_F);
            break;
         }
         break;
      case nir_tex_src_ddx:
         lod = retype(src, BRW_REGISTER_TYPE_F);
         lod_components = nir_tex_instr_src_size(instr, i);
         break;
      case nir_tex_src_ddy:
         lod2 = retype(src, BRW_REGISTER_TYPE_F);
         break;
      case nir_tex_src_lod:
         switch (instr->op) {
         case nir_texop_txs:
            lod = retype(src, BRW_REGISTER_TYPE_UD);
            break;
         case nir_texop_txf:
            lod = retype(src, BRW_REGISTER_TYPE_D);
            break;
         default:
            lod = retype(src, BRW_REGISTER_TYPE_F);
            break;
         }
         break;
      case nir_tex_src_ms_index:
         sample_index = retype(src, BRW_REGISTER_TYPE_UD);
         break;
      case nir_tex_src_offset:
         offset = retype(src, BRW_REGISTER_TYPE_D);
         if (instr->is_array)
            offset_components = instr->coord_components - 1;
         else
            offset_components = instr->coord_components;
         break;
      case nir_tex_src_projector:
         unreachable("should be lowered");

      case nir_tex_src_sampler_offset: {
         /* Figure out the highest possible sampler index and mark it as used */
         uint32_t max_used = sampler + instr->sampler_array_size - 1;
         if (instr->op == nir_texop_tg4 && brw->gen < 8) {
            max_used += stage_prog_data->binding_table.gather_texture_start;
         } else {
            max_used += stage_prog_data->binding_table.texture_start;
         }
         brw_mark_surface_used(prog_data, max_used);

         /* Emit code to evaluate the actual indexing expression */
         sampler_reg = vgrf(glsl_type::uint_type);
         emit(ADD(sampler_reg, src, fs_reg(sampler)))
             ->force_writemask_all = true;
         break;
      }

      default:
         unreachable("unknown texture source");
      }
   }

   if (instr->op == nir_texop_txf_ms) {
      if (brw->gen >= 7 && key->tex.compressed_multisample_layout_mask & (1<<sampler))
         mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
      else
         mcs = fs_reg(0u);
   }

   for (unsigned i = 0; i < 3; i++) {
      if (instr->const_offset[i] != 0) {
         assert(offset_components == 0);
         offset = fs_reg(brw_texture_offset(ctx, instr->const_offset, 3));
         break;
      }
   }

   enum glsl_base_type dest_base_type;
   switch (instr->dest_type) {
   case nir_type_float:
      dest_base_type = GLSL_TYPE_FLOAT;
      break;
   case nir_type_int:
      dest_base_type = GLSL_TYPE_INT;
      break;
   case nir_type_unsigned:
      dest_base_type = GLSL_TYPE_UINT;
      break;
   default:
      unreachable("bad type");
   }

   const glsl_type *dest_type =
      glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
                              1);

   ir_texture_opcode op;
   switch (instr->op) {
   case nir_texop_lod: op = ir_lod; break;
   case nir_texop_query_levels: op = ir_query_levels; break;
   case nir_texop_tex: op = ir_tex; break;
   case nir_texop_tg4: op = ir_tg4; break;
   case nir_texop_txb: op = ir_txb; break;
   case nir_texop_txd: op = ir_txd; break;
   case nir_texop_txf: op = ir_txf; break;
   case nir_texop_txf_ms: op = ir_txf_ms; break;
   case nir_texop_txl: op = ir_txl; break;
   case nir_texop_txs: op = ir_txs; break;
   default:
      unreachable("unknown texture opcode");
   }

   emit_texture(op, dest_type, coordinate, instr->coord_components,
                shadow_comparitor, lod, lod2, lod_components, sample_index,
                offset, offset_components, mcs, gather_component,
                is_cube_array, is_rect, sampler, sampler_reg, texunit);

   fs_reg dest = get_nir_dest(instr->dest);
   dest.type = this->result.type;
   unsigned num_components = nir_tex_instr_dest_size(instr);
   emit_percomp(MOV(dest, this->result), (1 << num_components) - 1);
}

void
fs_visitor::nir_emit_jump(nir_jump_instr *instr)
{
   switch (instr->type) {
   case nir_jump_break:
      emit(BRW_OPCODE_BREAK);
      break;
   case nir_jump_continue:
      emit(BRW_OPCODE_CONTINUE);
      break;
   case nir_jump_return:
   default:
      unreachable("unknown jump");
   }
}