aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/gen8_pipeline.c
blob: 857f97981117189dadeef6831c0ff16bab1f86a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"

#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"

#include "genX_pipeline_util.h"

static void
emit_ia_state(struct anv_pipeline *pipeline,
              const VkPipelineInputAssemblyStateCreateInfo *info,
              const struct anv_graphics_pipeline_create_info *extra)
{
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
      vft.PrimitiveTopologyType = pipeline->topology;
   }
}

static void
emit_rs_state(struct anv_pipeline *pipeline,
              const VkPipelineRasterizationStateCreateInfo *info,
              const VkPipelineMultisampleStateCreateInfo *ms_info,
              const struct anv_graphics_pipeline_create_info *extra)
{
   uint32_t samples = 1;

   if (ms_info)
      samples = ms_info->rasterizationSamples;

   struct GENX(3DSTATE_SF) sf = {
      GENX(3DSTATE_SF_header),
      .ViewportTransformEnable = !(extra && extra->use_rectlist),
      .TriangleStripListProvokingVertexSelect = 0,
      .LineStripListProvokingVertexSelect = 0,
      .TriangleFanProvokingVertexSelect = 1,
      .PointWidthSource = Vertex,
      .PointWidth = 1.0,
   };

   /* FINISHME: VkBool32 rasterizerDiscardEnable; */

   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);

   struct GENX(3DSTATE_RASTER) raster = {
      GENX(3DSTATE_RASTER_header),

      /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
       * "Multisample Modes State".
       */
      .DXMultisampleRasterizationEnable = samples > 1,
      .ForcedSampleCount = FSC_NUMRASTSAMPLES_0,
      .ForceMultisampling = false,

      .FrontWinding = vk_to_gen_front_face[info->frontFace],
      .CullMode = vk_to_gen_cullmode[info->cullMode],
      .FrontFaceFillMode = vk_to_gen_fillmode[info->polygonMode],
      .BackFaceFillMode = vk_to_gen_fillmode[info->polygonMode],
      .ScissorRectangleEnable = !(extra && extra->use_rectlist),
#if GEN_GEN == 8
      .ViewportZClipTestEnable = true,
#else
      /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
      .ViewportZFarClipTestEnable = true,
      .ViewportZNearClipTestEnable = true,
#endif
      .GlobalDepthOffsetEnableSolid = info->depthBiasEnable,
      .GlobalDepthOffsetEnableWireframe = info->depthBiasEnable,
      .GlobalDepthOffsetEnablePoint = info->depthBiasEnable,
   };

   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
}

static void
emit_cb_state(struct anv_pipeline *pipeline,
              const VkPipelineColorBlendStateCreateInfo *info,
              const VkPipelineMultisampleStateCreateInfo *ms_info)
{
   struct anv_device *device = pipeline->device;

   uint32_t num_dwords = GENX(BLEND_STATE_length);
   pipeline->blend_state =
      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);

   struct GENX(BLEND_STATE) blend_state = {
      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
   };

   /* Default everything to disabled */
   for (uint32_t i = 0; i < 8; i++) {
      blend_state.Entry[i].WriteDisableAlpha = true;
      blend_state.Entry[i].WriteDisableRed = true;
      blend_state.Entry[i].WriteDisableGreen = true;
      blend_state.Entry[i].WriteDisableBlue = true;
   }

   struct anv_pipeline_bind_map *map =
      &pipeline->bindings[MESA_SHADER_FRAGMENT];

   bool has_writeable_rt = false;
   for (unsigned i = 0; i < map->surface_count; i++) {
      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];

      /* All color attachments are at the beginning of the binding table */
      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
         break;

      /* We can have at most 8 attachments */
      assert(i < 8);

      if (binding->offset >= info->attachmentCount)
         continue;

      const VkPipelineColorBlendAttachmentState *a =
         &info->pAttachments[binding->offset];

      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
          a->colorBlendOp != a->alphaBlendOp) {
         blend_state.IndependentAlphaBlendEnable = true;
      }

      blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
         .LogicOpEnable = info->logicOpEnable,
         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
         .ColorBufferBlendEnable = a->blendEnable,
         .PreBlendSourceOnlyClampEnable = false,
         .ColorClampRange = COLORCLAMP_RTFORMAT,
         .PreBlendColorClampEnable = true,
         .PostBlendColorClampEnable = true,
         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
      };

      if (a->colorWriteMask != 0)
         has_writeable_rt = true;

      /* Our hardware applies the blend factor prior to the blend function
       * regardless of what function is used.  Technically, this means the
       * hardware can do MORE than GL or Vulkan specify.  However, it also
       * means that, for MIN and MAX, we have to stomp the blend factor to
       * ONE to make it a no-op.
       */
      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
          a->colorBlendOp == VK_BLEND_OP_MAX) {
         blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
         blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
      }
      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
          a->alphaBlendOp == VK_BLEND_OP_MAX) {
         blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
         blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
      }
   }

   struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0];

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
      blend.HasWriteableRT                = has_writeable_rt;
      blend.ColorBufferBlendEnable        = bs0->ColorBufferBlendEnable;
      blend.SourceAlphaBlendFactor        = bs0->SourceAlphaBlendFactor;
      blend.DestinationAlphaBlendFactor   = bs0->DestinationAlphaBlendFactor;
      blend.SourceBlendFactor             = bs0->SourceBlendFactor;
      blend.DestinationBlendFactor        = bs0->DestinationBlendFactor;
      blend.AlphaTestEnable               = false;
      blend.IndependentAlphaBlendEnable   =
         blend_state.IndependentAlphaBlendEnable;
   }

   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
   if (!device->info.has_llc)
      anv_state_clflush(pipeline->blend_state);

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
      bsp.BlendStatePointer      = pipeline->blend_state.offset;
      bsp.BlendStatePointerValid = true;
   }
}

static void
emit_ds_state(struct anv_pipeline *pipeline,
              const VkPipelineDepthStencilStateCreateInfo *info)
{
   uint32_t *dw = GEN_GEN == 8 ?
      pipeline->gen8.wm_depth_stencil : pipeline->gen9.wm_depth_stencil;

   if (info == NULL) {
      /* We're going to OR this together with the dynamic state.  We need
       * to make sure it's initialized to something useful.
       */
      memset(pipeline->gen8.wm_depth_stencil, 0,
             sizeof(pipeline->gen8.wm_depth_stencil));
      memset(pipeline->gen9.wm_depth_stencil, 0,
             sizeof(pipeline->gen9.wm_depth_stencil));
      return;
   }

   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */

   struct GENX(3DSTATE_WM_DEPTH_STENCIL) wm_depth_stencil = {
      .DepthTestEnable = info->depthTestEnable,
      .DepthBufferWriteEnable = info->depthWriteEnable,
      .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
      .DoubleSidedStencilEnable = true,

      .StencilTestEnable = info->stencilTestEnable,
      .StencilBufferWriteEnable = info->stencilTestEnable,
      .StencilFailOp = vk_to_gen_stencil_op[info->front.failOp],
      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.passOp],
      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.depthFailOp],
      .StencilTestFunction = vk_to_gen_compare_op[info->front.compareOp],
      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.failOp],
      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.passOp],
      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.depthFailOp],
      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.compareOp],
   };

   /* From the Broadwell PRM:
    *
    *    "If Depth_Test_Enable = 1 AND Depth_Test_func = EQUAL, the
    *    Depth_Write_Enable must be set to 0."
    */
   if (info->depthTestEnable && info->depthCompareOp == VK_COMPARE_OP_EQUAL)
      wm_depth_stencil.DepthBufferWriteEnable = false;

   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, dw, &wm_depth_stencil);
}

static void
emit_ms_state(struct anv_pipeline *pipeline,
              const VkPipelineMultisampleStateCreateInfo *info)
{
   uint32_t samples = 1;
   uint32_t log2_samples = 0;

   /* From the Vulkan 1.0 spec:
    *    If pSampleMask is NULL, it is treated as if the mask has all bits
    *    enabled, i.e. no coverage is removed from fragments.
    *
    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
    */
   uint32_t sample_mask = 0xffff;

   if (info) {
      samples = info->rasterizationSamples;
      log2_samples = __builtin_ffs(samples) - 1;
   }

   if (info && info->pSampleMask)
      sample_mask &= info->pSampleMask[0];

   if (info && info->sampleShadingEnable)
      anv_finishme("VkPipelineMultisampleStateCreateInfo::sampleShadingEnable");

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
      /* The PRM says that this bit is valid only for DX9:
       *
       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
       *    should not have any effect by setting or not setting this bit.
       */
      ms.PixelPositionOffsetEnable = false;

      ms.PixelLocation = CENTER;
      ms.NumberofMultisamples = log2_samples;
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
      sm.SampleMask = sample_mask;
   }
}

VkResult
genX(graphics_pipeline_create)(
    VkDevice                                    _device,
    struct anv_pipeline_cache *                 cache,
    const VkGraphicsPipelineCreateInfo*         pCreateInfo,
    const struct anv_graphics_pipeline_create_info *extra,
    const VkAllocationCallbacks*                pAllocator,
    VkPipeline*                                 pPipeline)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_pipeline *pipeline;
   VkResult result;
   uint32_t offset, length;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);

   pipeline = anv_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (pipeline == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   result = anv_pipeline_init(pipeline, device, cache,
                              pCreateInfo, extra, pAllocator);
   if (result != VK_SUCCESS) {
      anv_free2(&device->alloc, pAllocator, pipeline);
      return result;
   }

   assert(pCreateInfo->pVertexInputState);
   emit_vertex_input(pipeline, pCreateInfo->pVertexInputState, extra);
   assert(pCreateInfo->pInputAssemblyState);
   emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra);
   assert(pCreateInfo->pRasterizationState);
   emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
                 pCreateInfo->pMultisampleState, extra);
   emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
   emit_ds_state(pipeline, pCreateInfo->pDepthStencilState);
   emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
                           pCreateInfo->pMultisampleState);

   emit_urb_setup(pipeline);

   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
      clip.ClipEnable               = !(extra && extra->use_rectlist);
      clip.EarlyCullEnable          = true;
      clip.APIMode                  = 1; /* D3D */
      clip.ViewportXYClipTestEnable = true;

      clip.ClipMode =
         pCreateInfo->pRasterizationState->rasterizerDiscardEnable ?
         REJECT_ALL : NORMAL;

      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
         (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0;

      clip.TriangleStripListProvokingVertexSelect  = 0;
      clip.LineStripListProvokingVertexSelect      = 0;
      clip.TriangleFanProvokingVertexSelect        = 1;

      clip.MinimumPointWidth  = 0.125;
      clip.MaximumPointWidth  = 255.875;
      clip.MaximumVPIndex     = pCreateInfo->pViewportState->viewportCount - 1;
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
      wm.StatisticsEnable                    = true;
      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
      wm.LineAntialiasingRegionWidth         = _10pixels;
      wm.EarlyDepthStencilControl            = NORMAL;
      wm.ForceThreadDispatchEnable           = NORMAL;
      wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;

      wm.BarycentricInterpolationMode = pipeline->ps_ksp0 == NO_KERNEL ?
         0 : wm_prog_data->barycentric_interp_modes;
   }

   if (pipeline->gs_kernel == NO_KERNEL) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
   } else {
      const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
      offset = 1;
      length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;

      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
         gs.SingleProgramFlow       = false;
         gs.KernelStartPointer      = pipeline->gs_kernel;
         gs.VectorMaskEnable        = false;
         gs.SamplerCount            = 0;
         gs.BindingTableEntryCount  = 0;
         gs.ExpectedVertexCount     = gs_prog_data->vertices_in;

         gs.ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_GEOMETRY];
         gs.PerThreadScratchSpace   = scratch_space(&gs_prog_data->base.base);
         gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
         gs.OutputTopology          = gs_prog_data->output_topology;
         gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
         gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;

         gs.DispatchGRFStartRegisterForURBData =
            gs_prog_data->base.base.dispatch_grf_start_reg;

         gs.MaximumNumberofThreads  = device->info.max_gs_threads / 2 - 1;
         gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
         gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
         gs.StatisticsEnable        = true;
         gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
         gs.ReorderMode             = TRAILING;
         gs.Enable                  = true;

         gs.ControlDataFormat       = gs_prog_data->control_data_format;

         gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
         gs.StaticOutputVertexCount =
            gs_prog_data->static_vertex_count >= 0 ?
            gs_prog_data->static_vertex_count : 0;

         /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled:
          * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v)
          * UserClipDistanceCullTestEnableBitmask(v)
          */

         gs.VertexURBEntryOutputReadOffset = offset;
         gs.VertexURBEntryOutputLength = length;
      }
   }

   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   /* Skip the VUE header and position slots */
   offset = 1;
   length = (vs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;

   uint32_t vs_start = pipeline->vs_simd8 != NO_KERNEL ? pipeline->vs_simd8 :
                                                         pipeline->vs_vec4;

   if (vs_start == NO_KERNEL || (extra && extra->disable_vs)) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
         vs.FunctionEnable = false;
         /* Even if VS is disabled, SBE still gets the amount of
          * vertex data to read from this field. */
         vs.VertexURBEntryOutputReadOffset = offset;
         vs.VertexURBEntryOutputLength = length;
      }
   } else {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
         vs.KernelStartPointer            = vs_start;
         vs.SingleVertexDispatch          = false;
         vs.VectorMaskEnable              = false;
         vs.SamplerCount                  = 0;

         vs.BindingTableEntryCount =
            vs_prog_data->base.base.binding_table.size_bytes / 4,

         vs.ThreadDispatchPriority        = false;
         vs.FloatingPointMode             = IEEE754;
         vs.IllegalOpcodeExceptionEnable  = false;
         vs.AccessesUAV                   = false;
         vs.SoftwareExceptionEnable       = false;

         vs.ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_VERTEX],
         vs.PerThreadScratchSpace   = scratch_space(&vs_prog_data->base.base);

         vs.DispatchGRFStartRegisterForURBData =
            vs_prog_data->base.base.dispatch_grf_start_reg;

         vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
         vs.VertexURBEntryReadOffset      = 0;

         vs.MaximumNumberofThreads        = device->info.max_vs_threads - 1;
         vs.StatisticsEnable              = false;
         vs.SIMD8DispatchEnable           = pipeline->vs_simd8 != NO_KERNEL;
         vs.VertexCacheDisable            = false;
         vs.FunctionEnable                = true;

         vs.VertexURBEntryOutputReadOffset = offset;
         vs.VertexURBEntryOutputLength    = length;

         /* TODO */
         vs.UserClipDistanceClipTestEnableBitmask = 0;
         vs.UserClipDistanceCullTestEnableBitmask = 0;
      }
   }

   const int num_thread_bias = GEN_GEN == 8 ? 2 : 1;
   if (pipeline->ps_ksp0 == NO_KERNEL) {
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps);
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), extra) {
         extra.PixelShaderValid = false;
      }
   } else {
      emit_3dstate_sbe(pipeline);

      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
         ps.KernelStartPointer0     = pipeline->ps_ksp0;
         ps.KernelStartPointer1     = 0;
         ps.KernelStartPointer2     = pipeline->ps_ksp2;
         ps._8PixelDispatchEnable   = pipeline->ps_simd8 != NO_KERNEL;
         ps._16PixelDispatchEnable  = pipeline->ps_simd16 != NO_KERNEL;
         ps._32PixelDispatchEnable  = false;
         ps.SingleProgramFlow       = false;
         ps.VectorMaskEnable        = true;
         ps.SamplerCount            = 1;
         ps.PushConstantEnable      = wm_prog_data->base.nr_params > 0;
         ps.PositionXYOffsetSelect  = wm_prog_data->uses_pos_offset ?
            POSOFFSET_SAMPLE: POSOFFSET_NONE;

         ps.MaximumNumberofThreadsPerPSD = 64 - num_thread_bias;

         ps.ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_FRAGMENT];
         ps.PerThreadScratchSpace   = scratch_space(&wm_prog_data->base);

         ps.DispatchGRFStartRegisterForConstantSetupData0 = pipeline->ps_grf_start0;
         ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
         ps.DispatchGRFStartRegisterForConstantSetupData2 = pipeline->ps_grf_start2;
      }

      bool per_sample_ps = pCreateInfo->pMultisampleState &&
                           pCreateInfo->pMultisampleState->sampleShadingEnable;

      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
         ps.PixelShaderValid              = true;
         ps.PixelShaderKillsPixel         = wm_prog_data->uses_kill;
         ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
         ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
         ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
         ps.PixelShaderIsPerSample        = per_sample_ps;
         ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
         ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
#if GEN_GEN >= 9
         ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
         ps.InputCoverageMaskState  = wm_prog_data->uses_sample_mask ?
            ICMS_INNER_CONSERVATIVE : ICMS_NONE;
#else
         ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
#endif
      }
   }

   *pPipeline = anv_pipeline_to_handle(pipeline);

   return VK_SUCCESS;
}