aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_batch_chain.c
blob: abd0c171aaa8c9d6396e753b59d6fa558eb77b16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"

#include "genxml/gen8_pack.h"

#include "util/debug.h"

/** \file anv_batch_chain.c
 *
 * This file contains functions related to anv_cmd_buffer as a data
 * structure.  This involves everything required to create and destroy
 * the actual batch buffers as well as link them together and handle
 * relocations and surface state.  It specifically does *not* contain any
 * handling of actual vkCmd calls beyond vkCmdExecuteCommands.
 */

/*-----------------------------------------------------------------------*
 * Functions related to anv_reloc_list
 *-----------------------------------------------------------------------*/

static VkResult
anv_reloc_list_init_clone(struct anv_reloc_list *list,
                          const VkAllocationCallbacks *alloc,
                          const struct anv_reloc_list *other_list)
{
   if (other_list) {
      list->num_relocs = other_list->num_relocs;
      list->array_length = other_list->array_length;
   } else {
      list->num_relocs = 0;
      list->array_length = 256;
   }

   list->relocs =
      vk_alloc(alloc, list->array_length * sizeof(*list->relocs), 8,
                VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);

   if (list->relocs == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   list->reloc_bos =
      vk_alloc(alloc, list->array_length * sizeof(*list->reloc_bos), 8,
                VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);

   if (list->reloc_bos == NULL) {
      vk_free(alloc, list->relocs);
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   }

   if (other_list) {
      memcpy(list->relocs, other_list->relocs,
             list->array_length * sizeof(*list->relocs));
      memcpy(list->reloc_bos, other_list->reloc_bos,
             list->array_length * sizeof(*list->reloc_bos));
   }

   return VK_SUCCESS;
}

VkResult
anv_reloc_list_init(struct anv_reloc_list *list,
                    const VkAllocationCallbacks *alloc)
{
   return anv_reloc_list_init_clone(list, alloc, NULL);
}

void
anv_reloc_list_finish(struct anv_reloc_list *list,
                      const VkAllocationCallbacks *alloc)
{
   vk_free(alloc, list->relocs);
   vk_free(alloc, list->reloc_bos);
}

static VkResult
anv_reloc_list_grow(struct anv_reloc_list *list,
                    const VkAllocationCallbacks *alloc,
                    size_t num_additional_relocs)
{
   if (list->num_relocs + num_additional_relocs <= list->array_length)
      return VK_SUCCESS;

   size_t new_length = list->array_length * 2;
   while (new_length < list->num_relocs + num_additional_relocs)
      new_length *= 2;

   struct drm_i915_gem_relocation_entry *new_relocs =
      vk_alloc(alloc, new_length * sizeof(*list->relocs), 8,
                VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (new_relocs == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   struct anv_bo **new_reloc_bos =
      vk_alloc(alloc, new_length * sizeof(*list->reloc_bos), 8,
                VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (new_reloc_bos == NULL) {
      vk_free(alloc, new_relocs);
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   }

   memcpy(new_relocs, list->relocs, list->num_relocs * sizeof(*list->relocs));
   memcpy(new_reloc_bos, list->reloc_bos,
          list->num_relocs * sizeof(*list->reloc_bos));

   vk_free(alloc, list->relocs);
   vk_free(alloc, list->reloc_bos);

   list->array_length = new_length;
   list->relocs = new_relocs;
   list->reloc_bos = new_reloc_bos;

   return VK_SUCCESS;
}

VkResult
anv_reloc_list_add(struct anv_reloc_list *list,
                   const VkAllocationCallbacks *alloc,
                   uint32_t offset, struct anv_bo *target_bo, uint32_t delta)
{
   struct drm_i915_gem_relocation_entry *entry;
   int index;

   const uint32_t domain =
      target_bo->is_winsys_bo ? I915_GEM_DOMAIN_RENDER : 0;

   VkResult result = anv_reloc_list_grow(list, alloc, 1);
   if (result != VK_SUCCESS)
      return result;

   /* XXX: Can we use I915_EXEC_HANDLE_LUT? */
   index = list->num_relocs++;
   list->reloc_bos[index] = target_bo;
   entry = &list->relocs[index];
   entry->target_handle = target_bo->gem_handle;
   entry->delta = delta;
   entry->offset = offset;
   entry->presumed_offset = target_bo->offset;
   entry->read_domains = domain;
   entry->write_domain = domain;
   VG(VALGRIND_CHECK_MEM_IS_DEFINED(entry, sizeof(*entry)));

   return VK_SUCCESS;
}

static VkResult
anv_reloc_list_append(struct anv_reloc_list *list,
                      const VkAllocationCallbacks *alloc,
                      struct anv_reloc_list *other, uint32_t offset)
{
   VkResult result = anv_reloc_list_grow(list, alloc, other->num_relocs);
   if (result != VK_SUCCESS)
      return result;

   memcpy(&list->relocs[list->num_relocs], &other->relocs[0],
          other->num_relocs * sizeof(other->relocs[0]));
   memcpy(&list->reloc_bos[list->num_relocs], &other->reloc_bos[0],
          other->num_relocs * sizeof(other->reloc_bos[0]));

   for (uint32_t i = 0; i < other->num_relocs; i++)
      list->relocs[i + list->num_relocs].offset += offset;

   list->num_relocs += other->num_relocs;
   return VK_SUCCESS;
}

/*-----------------------------------------------------------------------*
 * Functions related to anv_batch
 *-----------------------------------------------------------------------*/

void *
anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords)
{
   if (batch->next + num_dwords * 4 > batch->end) {
      VkResult result = batch->extend_cb(batch, batch->user_data);
      if (result != VK_SUCCESS) {
         anv_batch_set_error(batch, result);
         return NULL;
      }
   }

   void *p = batch->next;

   batch->next += num_dwords * 4;
   assert(batch->next <= batch->end);

   return p;
}

uint64_t
anv_batch_emit_reloc(struct anv_batch *batch,
                     void *location, struct anv_bo *bo, uint32_t delta)
{
   VkResult result = anv_reloc_list_add(batch->relocs, batch->alloc,
                                        location - batch->start, bo, delta);
   if (result != VK_SUCCESS) {
      anv_batch_set_error(batch, result);
      return 0;
   }

   return bo->offset + delta;
}

void
anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other)
{
   uint32_t size, offset;

   size = other->next - other->start;
   assert(size % 4 == 0);

   if (batch->next + size > batch->end) {
      VkResult result = batch->extend_cb(batch, batch->user_data);
      if (result != VK_SUCCESS) {
         anv_batch_set_error(batch, result);
         return;
      }
   }

   assert(batch->next + size <= batch->end);

   VG(VALGRIND_CHECK_MEM_IS_DEFINED(other->start, size));
   memcpy(batch->next, other->start, size);

   offset = batch->next - batch->start;
   VkResult result = anv_reloc_list_append(batch->relocs, batch->alloc,
                                           other->relocs, offset);
   if (result != VK_SUCCESS) {
      anv_batch_set_error(batch, result);
      return;
   }

   batch->next += size;
}

/*-----------------------------------------------------------------------*
 * Functions related to anv_batch_bo
 *-----------------------------------------------------------------------*/

static VkResult
anv_batch_bo_create(struct anv_cmd_buffer *cmd_buffer,
                    struct anv_batch_bo **bbo_out)
{
   VkResult result;

   struct anv_batch_bo *bbo = vk_alloc(&cmd_buffer->pool->alloc, sizeof(*bbo),
                                        8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (bbo == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
                              ANV_CMD_BUFFER_BATCH_SIZE);
   if (result != VK_SUCCESS)
      goto fail_alloc;

   result = anv_reloc_list_init(&bbo->relocs, &cmd_buffer->pool->alloc);
   if (result != VK_SUCCESS)
      goto fail_bo_alloc;

   *bbo_out = bbo;

   return VK_SUCCESS;

 fail_bo_alloc:
   anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
 fail_alloc:
   vk_free(&cmd_buffer->pool->alloc, bbo);

   return result;
}

static VkResult
anv_batch_bo_clone(struct anv_cmd_buffer *cmd_buffer,
                   const struct anv_batch_bo *other_bbo,
                   struct anv_batch_bo **bbo_out)
{
   VkResult result;

   struct anv_batch_bo *bbo = vk_alloc(&cmd_buffer->pool->alloc, sizeof(*bbo),
                                        8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (bbo == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
                              other_bbo->bo.size);
   if (result != VK_SUCCESS)
      goto fail_alloc;

   result = anv_reloc_list_init_clone(&bbo->relocs, &cmd_buffer->pool->alloc,
                                      &other_bbo->relocs);
   if (result != VK_SUCCESS)
      goto fail_bo_alloc;

   bbo->length = other_bbo->length;
   memcpy(bbo->bo.map, other_bbo->bo.map, other_bbo->length);

   *bbo_out = bbo;

   return VK_SUCCESS;

 fail_bo_alloc:
   anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
 fail_alloc:
   vk_free(&cmd_buffer->pool->alloc, bbo);

   return result;
}

static void
anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch,
                   size_t batch_padding)
{
   batch->next = batch->start = bbo->bo.map;
   batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
   batch->relocs = &bbo->relocs;
   bbo->relocs.num_relocs = 0;
}

static void
anv_batch_bo_continue(struct anv_batch_bo *bbo, struct anv_batch *batch,
                      size_t batch_padding)
{
   batch->start = bbo->bo.map;
   batch->next = bbo->bo.map + bbo->length;
   batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
   batch->relocs = &bbo->relocs;
}

static void
anv_batch_bo_finish(struct anv_batch_bo *bbo, struct anv_batch *batch)
{
   assert(batch->start == bbo->bo.map);
   bbo->length = batch->next - batch->start;
   VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->start, bbo->length));
}

static VkResult
anv_batch_bo_grow(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *bbo,
                  struct anv_batch *batch, size_t aditional,
                  size_t batch_padding)
{
   assert(batch->start == bbo->bo.map);
   bbo->length = batch->next - batch->start;

   size_t new_size = bbo->bo.size;
   while (new_size <= bbo->length + aditional + batch_padding)
      new_size *= 2;

   if (new_size == bbo->bo.size)
      return VK_SUCCESS;

   struct anv_bo new_bo;
   VkResult result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
                                       &new_bo, new_size);
   if (result != VK_SUCCESS)
      return result;

   memcpy(new_bo.map, bbo->bo.map, bbo->length);

   anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);

   bbo->bo = new_bo;
   anv_batch_bo_continue(bbo, batch, batch_padding);

   return VK_SUCCESS;
}

static void
anv_batch_bo_destroy(struct anv_batch_bo *bbo,
                     struct anv_cmd_buffer *cmd_buffer)
{
   anv_reloc_list_finish(&bbo->relocs, &cmd_buffer->pool->alloc);
   anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
   vk_free(&cmd_buffer->pool->alloc, bbo);
}

static VkResult
anv_batch_bo_list_clone(const struct list_head *list,
                        struct anv_cmd_buffer *cmd_buffer,
                        struct list_head *new_list)
{
   VkResult result = VK_SUCCESS;

   list_inithead(new_list);

   struct anv_batch_bo *prev_bbo = NULL;
   list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
      struct anv_batch_bo *new_bbo = NULL;
      result = anv_batch_bo_clone(cmd_buffer, bbo, &new_bbo);
      if (result != VK_SUCCESS)
         break;
      list_addtail(&new_bbo->link, new_list);

      if (prev_bbo) {
         /* As we clone this list of batch_bo's, they chain one to the
          * other using MI_BATCH_BUFFER_START commands.  We need to fix up
          * those relocations as we go.  Fortunately, this is pretty easy
          * as it will always be the last relocation in the list.
          */
         uint32_t last_idx = prev_bbo->relocs.num_relocs - 1;
         assert(prev_bbo->relocs.reloc_bos[last_idx] == &bbo->bo);
         prev_bbo->relocs.reloc_bos[last_idx] = &new_bbo->bo;
      }

      prev_bbo = new_bbo;
   }

   if (result != VK_SUCCESS) {
      list_for_each_entry_safe(struct anv_batch_bo, bbo, new_list, link)
         anv_batch_bo_destroy(bbo, cmd_buffer);
   }

   return result;
}

/*-----------------------------------------------------------------------*
 * Functions related to anv_batch_bo
 *-----------------------------------------------------------------------*/

static inline struct anv_batch_bo *
anv_cmd_buffer_current_batch_bo(struct anv_cmd_buffer *cmd_buffer)
{
   return LIST_ENTRY(struct anv_batch_bo, cmd_buffer->batch_bos.prev, link);
}

struct anv_address
anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer)
{
   return (struct anv_address) {
      .bo = &cmd_buffer->device->surface_state_block_pool.bo,
      .offset = *(int32_t *)u_vector_head(&cmd_buffer->bt_blocks),
   };
}

static void
emit_batch_buffer_start(struct anv_cmd_buffer *cmd_buffer,
                        struct anv_bo *bo, uint32_t offset)
{
   /* In gen8+ the address field grew to two dwords to accomodate 48 bit
    * offsets. The high 16 bits are in the last dword, so we can use the gen8
    * version in either case, as long as we set the instruction length in the
    * header accordingly.  This means that we always emit three dwords here
    * and all the padding and adjustment we do in this file works for all
    * gens.
    */

#define GEN7_MI_BATCH_BUFFER_START_length      2
#define GEN7_MI_BATCH_BUFFER_START_length_bias      2

   const uint32_t gen7_length =
      GEN7_MI_BATCH_BUFFER_START_length - GEN7_MI_BATCH_BUFFER_START_length_bias;
   const uint32_t gen8_length =
      GEN8_MI_BATCH_BUFFER_START_length - GEN8_MI_BATCH_BUFFER_START_length_bias;

   anv_batch_emit(&cmd_buffer->batch, GEN8_MI_BATCH_BUFFER_START, bbs) {
      bbs.DWordLength               = cmd_buffer->device->info.gen < 8 ?
                                      gen7_length : gen8_length;
      bbs._2ndLevelBatchBuffer      = _1stlevelbatch;
      bbs.AddressSpaceIndicator     = ASI_PPGTT;
      bbs.BatchBufferStartAddress   = (struct anv_address) { bo, offset };
   }
}

static void
cmd_buffer_chain_to_batch_bo(struct anv_cmd_buffer *cmd_buffer,
                             struct anv_batch_bo *bbo)
{
   struct anv_batch *batch = &cmd_buffer->batch;
   struct anv_batch_bo *current_bbo =
      anv_cmd_buffer_current_batch_bo(cmd_buffer);

   /* We set the end of the batch a little short so we would be sure we
    * have room for the chaining command.  Since we're about to emit the
    * chaining command, let's set it back where it should go.
    */
   batch->end += GEN8_MI_BATCH_BUFFER_START_length * 4;
   assert(batch->end == current_bbo->bo.map + current_bbo->bo.size);

   emit_batch_buffer_start(cmd_buffer, &bbo->bo, 0);

   anv_batch_bo_finish(current_bbo, batch);
}

static VkResult
anv_cmd_buffer_chain_batch(struct anv_batch *batch, void *_data)
{
   struct anv_cmd_buffer *cmd_buffer = _data;
   struct anv_batch_bo *new_bbo;

   VkResult result = anv_batch_bo_create(cmd_buffer, &new_bbo);
   if (result != VK_SUCCESS)
      return result;

   struct anv_batch_bo **seen_bbo = u_vector_add(&cmd_buffer->seen_bbos);
   if (seen_bbo == NULL) {
      anv_batch_bo_destroy(new_bbo, cmd_buffer);
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   }
   *seen_bbo = new_bbo;

   cmd_buffer_chain_to_batch_bo(cmd_buffer, new_bbo);

   list_addtail(&new_bbo->link, &cmd_buffer->batch_bos);

   anv_batch_bo_start(new_bbo, batch, GEN8_MI_BATCH_BUFFER_START_length * 4);

   return VK_SUCCESS;
}

static VkResult
anv_cmd_buffer_grow_batch(struct anv_batch *batch, void *_data)
{
   struct anv_cmd_buffer *cmd_buffer = _data;
   struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);

   anv_batch_bo_grow(cmd_buffer, bbo, &cmd_buffer->batch, 4096,
                     GEN8_MI_BATCH_BUFFER_START_length * 4);

   return VK_SUCCESS;
}

/** Allocate a binding table
 *
 * This function allocates a binding table.  This is a bit more complicated
 * than one would think due to a combination of Vulkan driver design and some
 * unfortunate hardware restrictions.
 *
 * The 3DSTATE_BINDING_TABLE_POINTERS_* packets only have a 16-bit field for
 * the binding table pointer which means that all binding tables need to live
 * in the bottom 64k of surface state base address.  The way the GL driver has
 * classically dealt with this restriction is to emit all surface states
 * on-the-fly into the batch and have a batch buffer smaller than 64k.  This
 * isn't really an option in Vulkan for a couple of reasons:
 *
 *  1) In Vulkan, we have growing (or chaining) batches so surface states have
 *     to live in their own buffer and we have to be able to re-emit
 *     STATE_BASE_ADDRESS as needed which requires a full pipeline stall.  In
 *     order to avoid emitting STATE_BASE_ADDRESS any more often than needed
 *     (it's not that hard to hit 64k of just binding tables), we allocate
 *     surface state objects up-front when VkImageView is created.  In order
 *     for this to work, surface state objects need to be allocated from a
 *     global buffer.
 *
 *  2) We tried to design the surface state system in such a way that it's
 *     already ready for bindless texturing.  The way bindless texturing works
 *     on our hardware is that you have a big pool of surface state objects
 *     (with its own state base address) and the bindless handles are simply
 *     offsets into that pool.  With the architecture we chose, we already
 *     have that pool and it's exactly the same pool that we use for regular
 *     surface states so we should already be ready for bindless.
 *
 *  3) For render targets, we need to be able to fill out the surface states
 *     later in vkBeginRenderPass so that we can assign clear colors
 *     correctly.  One way to do this would be to just create the surface
 *     state data and then repeatedly copy it into the surface state BO every
 *     time we have to re-emit STATE_BASE_ADDRESS.  While this works, it's
 *     rather annoying and just being able to allocate them up-front and
 *     re-use them for the entire render pass.
 *
 * While none of these are technically blockers for emitting state on the fly
 * like we do in GL, the ability to have a single surface state pool is
 * simplifies things greatly.  Unfortunately, it comes at a cost...
 *
 * Because of the 64k limitation of 3DSTATE_BINDING_TABLE_POINTERS_*, we can't
 * place the binding tables just anywhere in surface state base address.
 * Because 64k isn't a whole lot of space, we can't simply restrict the
 * surface state buffer to 64k, we have to be more clever.  The solution we've
 * chosen is to have a block pool with a maximum size of 2G that starts at
 * zero and grows in both directions.  All surface states are allocated from
 * the top of the pool (positive offsets) and we allocate blocks (< 64k) of
 * binding tables from the bottom of the pool (negative offsets).  Every time
 * we allocate a new binding table block, we set surface state base address to
 * point to the bottom of the binding table block.  This way all of the
 * binding tables in the block are in the bottom 64k of surface state base
 * address.  When we fill out the binding table, we add the distance between
 * the bottom of our binding table block and zero of the block pool to the
 * surface state offsets so that they are correct relative to out new surface
 * state base address at the bottom of the binding table block.
 *
 * \see adjust_relocations_from_block_pool()
 * \see adjust_relocations_too_block_pool()
 *
 * \param[in]  entries        The number of surface state entries the binding
 *                            table should be able to hold.
 *
 * \param[out] state_offset   The offset surface surface state base address
 *                            where the surface states live.  This must be
 *                            added to the surface state offset when it is
 *                            written into the binding table entry.
 *
 * \return                    An anv_state representing the binding table
 */
struct anv_state
anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
                                   uint32_t entries, uint32_t *state_offset)
{
   struct anv_block_pool *block_pool =
       &cmd_buffer->device->surface_state_block_pool;
   int32_t *bt_block = u_vector_head(&cmd_buffer->bt_blocks);
   struct anv_state state;

   state.alloc_size = align_u32(entries * 4, 32);

   if (cmd_buffer->bt_next + state.alloc_size > block_pool->block_size)
      return (struct anv_state) { 0 };

   state.offset = cmd_buffer->bt_next;
   state.map = block_pool->map + *bt_block + state.offset;

   cmd_buffer->bt_next += state.alloc_size;

   assert(*bt_block < 0);
   *state_offset = -(*bt_block);

   return state;
}

struct anv_state
anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer)
{
   struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
   return anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
                                 isl_dev->ss.size, isl_dev->ss.align);
}

struct anv_state
anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
                                   uint32_t size, uint32_t alignment)
{
   return anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream,
                                 size, alignment);
}

VkResult
anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_block_pool *block_pool =
       &cmd_buffer->device->surface_state_block_pool;

   int32_t *offset = u_vector_add(&cmd_buffer->bt_blocks);
   if (offset == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   *offset = anv_block_pool_alloc_back(block_pool);
   cmd_buffer->bt_next = 0;

   return VK_SUCCESS;
}

VkResult
anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_batch_bo *batch_bo;
   VkResult result;

   list_inithead(&cmd_buffer->batch_bos);

   result = anv_batch_bo_create(cmd_buffer, &batch_bo);
   if (result != VK_SUCCESS)
      return result;

   list_addtail(&batch_bo->link, &cmd_buffer->batch_bos);

   cmd_buffer->batch.alloc = &cmd_buffer->pool->alloc;
   cmd_buffer->batch.user_data = cmd_buffer;

   if (cmd_buffer->device->can_chain_batches) {
      cmd_buffer->batch.extend_cb = anv_cmd_buffer_chain_batch;
   } else {
      cmd_buffer->batch.extend_cb = anv_cmd_buffer_grow_batch;
   }

   anv_batch_bo_start(batch_bo, &cmd_buffer->batch,
                      GEN8_MI_BATCH_BUFFER_START_length * 4);

   int success = u_vector_init(&cmd_buffer->seen_bbos,
                                 sizeof(struct anv_bo *),
                                 8 * sizeof(struct anv_bo *));
   if (!success)
      goto fail_batch_bo;

   *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) = batch_bo;

   success = u_vector_init(&cmd_buffer->bt_blocks, sizeof(int32_t),
                             8 * sizeof(int32_t));
   if (!success)
      goto fail_seen_bbos;

   result = anv_reloc_list_init(&cmd_buffer->surface_relocs,
                                &cmd_buffer->pool->alloc);
   if (result != VK_SUCCESS)
      goto fail_bt_blocks;
   cmd_buffer->last_ss_pool_center = 0;

   anv_cmd_buffer_new_binding_table_block(cmd_buffer);

   return VK_SUCCESS;

 fail_bt_blocks:
   u_vector_finish(&cmd_buffer->bt_blocks);
 fail_seen_bbos:
   u_vector_finish(&cmd_buffer->seen_bbos);
 fail_batch_bo:
   anv_batch_bo_destroy(batch_bo, cmd_buffer);

   return result;
}

void
anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
{
   int32_t *bt_block;
   u_vector_foreach(bt_block, &cmd_buffer->bt_blocks) {
      anv_block_pool_free(&cmd_buffer->device->surface_state_block_pool,
                          *bt_block);
   }
   u_vector_finish(&cmd_buffer->bt_blocks);

   anv_reloc_list_finish(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc);

   u_vector_finish(&cmd_buffer->seen_bbos);

   /* Destroy all of the batch buffers */
   list_for_each_entry_safe(struct anv_batch_bo, bbo,
                            &cmd_buffer->batch_bos, link) {
      anv_batch_bo_destroy(bbo, cmd_buffer);
   }
}

void
anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
{
   /* Delete all but the first batch bo */
   assert(!list_empty(&cmd_buffer->batch_bos));
   while (cmd_buffer->batch_bos.next != cmd_buffer->batch_bos.prev) {
      struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
      list_del(&bbo->link);
      anv_batch_bo_destroy(bbo, cmd_buffer);
   }
   assert(!list_empty(&cmd_buffer->batch_bos));

   anv_batch_bo_start(anv_cmd_buffer_current_batch_bo(cmd_buffer),
                      &cmd_buffer->batch,
                      GEN8_MI_BATCH_BUFFER_START_length * 4);

   while (u_vector_length(&cmd_buffer->bt_blocks) > 1) {
      int32_t *bt_block = u_vector_remove(&cmd_buffer->bt_blocks);
      anv_block_pool_free(&cmd_buffer->device->surface_state_block_pool,
                          *bt_block);
   }
   assert(u_vector_length(&cmd_buffer->bt_blocks) == 1);
   cmd_buffer->bt_next = 0;

   cmd_buffer->surface_relocs.num_relocs = 0;
   cmd_buffer->last_ss_pool_center = 0;

   /* Reset the list of seen buffers */
   cmd_buffer->seen_bbos.head = 0;
   cmd_buffer->seen_bbos.tail = 0;

   *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) =
      anv_cmd_buffer_current_batch_bo(cmd_buffer);
}

void
anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_batch_bo *batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer);

   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
      /* When we start a batch buffer, we subtract a certain amount of
       * padding from the end to ensure that we always have room to emit a
       * BATCH_BUFFER_START to chain to the next BO.  We need to remove
       * that padding before we end the batch; otherwise, we may end up
       * with our BATCH_BUFFER_END in another BO.
       */
      cmd_buffer->batch.end += GEN8_MI_BATCH_BUFFER_START_length * 4;
      assert(cmd_buffer->batch.end == batch_bo->bo.map + batch_bo->bo.size);

      anv_batch_emit(&cmd_buffer->batch, GEN8_MI_BATCH_BUFFER_END, bbe);

      /* Round batch up to an even number of dwords. */
      if ((cmd_buffer->batch.next - cmd_buffer->batch.start) & 4)
         anv_batch_emit(&cmd_buffer->batch, GEN8_MI_NOOP, noop);

      cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_PRIMARY;
   }

   anv_batch_bo_finish(batch_bo, &cmd_buffer->batch);

   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
      /* If this is a secondary command buffer, we need to determine the
       * mode in which it will be executed with vkExecuteCommands.  We
       * determine this statically here so that this stays in sync with the
       * actual ExecuteCommands implementation.
       */
      if (!cmd_buffer->device->can_chain_batches) {
         cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT;
      } else if ((cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) &&
          (batch_bo->length < ANV_CMD_BUFFER_BATCH_SIZE / 2)) {
         /* If the secondary has exactly one batch buffer in its list *and*
          * that batch buffer is less than half of the maximum size, we're
          * probably better of simply copying it into our batch.
          */
         cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_EMIT;
      } else if (!(cmd_buffer->usage_flags &
                   VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
         cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CHAIN;

         /* When we chain, we need to add an MI_BATCH_BUFFER_START command
          * with its relocation.  In order to handle this we'll increment here
          * so we can unconditionally decrement right before adding the
          * MI_BATCH_BUFFER_START command.
          */
         batch_bo->relocs.num_relocs++;
         cmd_buffer->batch.next += GEN8_MI_BATCH_BUFFER_START_length * 4;
      } else {
         cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN;
      }
   }
}

static inline VkResult
anv_cmd_buffer_add_seen_bbos(struct anv_cmd_buffer *cmd_buffer,
                             struct list_head *list)
{
   list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
      struct anv_batch_bo **bbo_ptr = u_vector_add(&cmd_buffer->seen_bbos);
      if (bbo_ptr == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      *bbo_ptr = bbo;
   }

   return VK_SUCCESS;
}

void
anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
                             struct anv_cmd_buffer *secondary)
{
   switch (secondary->exec_mode) {
   case ANV_CMD_BUFFER_EXEC_MODE_EMIT:
      anv_batch_emit_batch(&primary->batch, &secondary->batch);
      break;
   case ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT: {
      struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(primary);
      unsigned length = secondary->batch.end - secondary->batch.start;
      anv_batch_bo_grow(primary, bbo, &primary->batch, length,
                        GEN8_MI_BATCH_BUFFER_START_length * 4);
      anv_batch_emit_batch(&primary->batch, &secondary->batch);
      break;
   }
   case ANV_CMD_BUFFER_EXEC_MODE_CHAIN: {
      struct anv_batch_bo *first_bbo =
         list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link);
      struct anv_batch_bo *last_bbo =
         list_last_entry(&secondary->batch_bos, struct anv_batch_bo, link);

      emit_batch_buffer_start(primary, &first_bbo->bo, 0);

      struct anv_batch_bo *this_bbo = anv_cmd_buffer_current_batch_bo(primary);
      assert(primary->batch.start == this_bbo->bo.map);
      uint32_t offset = primary->batch.next - primary->batch.start;
      const uint32_t inst_size = GEN8_MI_BATCH_BUFFER_START_length * 4;

      /* Roll back the previous MI_BATCH_BUFFER_START and its relocation so we
       * can emit a new command and relocation for the current splice.  In
       * order to handle the initial-use case, we incremented next and
       * num_relocs in end_batch_buffer() so we can alyways just subtract
       * here.
       */
      last_bbo->relocs.num_relocs--;
      secondary->batch.next -= inst_size;
      emit_batch_buffer_start(secondary, &this_bbo->bo, offset);
      anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos);

      /* After patching up the secondary buffer, we need to clflush the
       * modified instruction in case we're on a !llc platform. We use a
       * little loop to handle the case where the instruction crosses a cache
       * line boundary.
       */
      if (!primary->device->info.has_llc) {
         void *inst = secondary->batch.next - inst_size;
         void *p = (void *) (((uintptr_t) inst) & ~CACHELINE_MASK);
         __builtin_ia32_mfence();
         while (p < secondary->batch.next) {
            __builtin_ia32_clflush(p);
            p += CACHELINE_SIZE;
         }
      }
      break;
   }
   case ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN: {
      struct list_head copy_list;
      VkResult result = anv_batch_bo_list_clone(&secondary->batch_bos,
                                                secondary,
                                                &copy_list);
      if (result != VK_SUCCESS)
         return; /* FIXME */

      anv_cmd_buffer_add_seen_bbos(primary, &copy_list);

      struct anv_batch_bo *first_bbo =
         list_first_entry(&copy_list, struct anv_batch_bo, link);
      struct anv_batch_bo *last_bbo =
         list_last_entry(&copy_list, struct anv_batch_bo, link);

      cmd_buffer_chain_to_batch_bo(primary, first_bbo);

      list_splicetail(&copy_list, &primary->batch_bos);

      anv_batch_bo_continue(last_bbo, &primary->batch,
                            GEN8_MI_BATCH_BUFFER_START_length * 4);
      break;
   }
   default:
      assert(!"Invalid execution mode");
   }

   anv_reloc_list_append(&primary->surface_relocs, &primary->pool->alloc,
                         &secondary->surface_relocs, 0);
}

struct anv_execbuf {
   struct drm_i915_gem_execbuffer2           execbuf;

   struct drm_i915_gem_exec_object2 *        objects;
   uint32_t                                  bo_count;
   struct anv_bo **                          bos;

   /* Allocated length of the 'objects' and 'bos' arrays */
   uint32_t                                  array_length;
};

static void
anv_execbuf_init(struct anv_execbuf *exec)
{
   memset(exec, 0, sizeof(*exec));
}

static void
anv_execbuf_finish(struct anv_execbuf *exec,
                   const VkAllocationCallbacks *alloc)
{
   vk_free(alloc, exec->objects);
   vk_free(alloc, exec->bos);
}

static VkResult
anv_execbuf_add_bo(struct anv_execbuf *exec,
                   struct anv_bo *bo,
                   struct anv_reloc_list *relocs,
                   const VkAllocationCallbacks *alloc)
{
   struct drm_i915_gem_exec_object2 *obj = NULL;

   if (bo->index < exec->bo_count && exec->bos[bo->index] == bo)
      obj = &exec->objects[bo->index];

   if (obj == NULL) {
      /* We've never seen this one before.  Add it to the list and assign
       * an id that we can use later.
       */
      if (exec->bo_count >= exec->array_length) {
         uint32_t new_len = exec->objects ? exec->array_length * 2 : 64;

         struct drm_i915_gem_exec_object2 *new_objects =
            vk_alloc(alloc, new_len * sizeof(*new_objects),
                     8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
         if (new_objects == NULL)
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

         struct anv_bo **new_bos =
            vk_alloc(alloc, new_len * sizeof(*new_bos),
                      8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
         if (new_bos == NULL) {
            vk_free(alloc, new_objects);
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
         }

         if (exec->objects) {
            memcpy(new_objects, exec->objects,
                   exec->bo_count * sizeof(*new_objects));
            memcpy(new_bos, exec->bos,
                   exec->bo_count * sizeof(*new_bos));
         }

         vk_free(alloc, exec->objects);
         vk_free(alloc, exec->bos);

         exec->objects = new_objects;
         exec->bos = new_bos;
         exec->array_length = new_len;
      }

      assert(exec->bo_count < exec->array_length);

      bo->index = exec->bo_count++;
      obj = &exec->objects[bo->index];
      exec->bos[bo->index] = bo;

      obj->handle = bo->gem_handle;
      obj->relocation_count = 0;
      obj->relocs_ptr = 0;
      obj->alignment = 0;
      obj->offset = bo->offset;
      obj->flags = bo->is_winsys_bo ? EXEC_OBJECT_WRITE : 0;
      obj->rsvd1 = 0;
      obj->rsvd2 = 0;
   }

   if (relocs != NULL && obj->relocation_count == 0) {
      /* This is the first time we've ever seen a list of relocations for
       * this BO.  Go ahead and set the relocations and then walk the list
       * of relocations and add them all.
       */
      obj->relocation_count = relocs->num_relocs;
      obj->relocs_ptr = (uintptr_t) relocs->relocs;

      for (size_t i = 0; i < relocs->num_relocs; i++) {
         /* A quick sanity check on relocations */
         assert(relocs->relocs[i].offset < bo->size);
         anv_execbuf_add_bo(exec, relocs->reloc_bos[i], NULL, alloc);
      }
   }

   return VK_SUCCESS;
}

static void
anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
                              struct anv_reloc_list *list)
{
   for (size_t i = 0; i < list->num_relocs; i++)
      list->relocs[i].target_handle = list->reloc_bos[i]->index;
}

static void
write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
{
   unsigned reloc_size = 0;
   if (device->info.gen >= 8) {
      /* From the Broadwell PRM Vol. 2a, MI_LOAD_REGISTER_MEM::MemoryAddress:
       *
       *    "This field specifies the address of the memory location where the
       *    register value specified in the DWord above will read from. The
       *    address specifies the DWord location of the data. Range =
       *    GraphicsVirtualAddress[63:2] for a DWord register GraphicsAddress
       *    [63:48] are ignored by the HW and assumed to be in correct
       *    canonical form [63:48] == [47]."
       */
      const int shift = 63 - 47;
      reloc_size = sizeof(uint64_t);
      *(uint64_t *)p = (((int64_t)v) << shift) >> shift;
   } else {
      reloc_size = sizeof(uint32_t);
      *(uint32_t *)p = v;
   }

   if (flush && !device->info.has_llc)
      anv_flush_range(p, reloc_size);
}

static void
adjust_relocations_from_state_pool(struct anv_block_pool *pool,
                                   struct anv_reloc_list *relocs,
                                   uint32_t last_pool_center_bo_offset)
{
   assert(last_pool_center_bo_offset <= pool->center_bo_offset);
   uint32_t delta = pool->center_bo_offset - last_pool_center_bo_offset;

   for (size_t i = 0; i < relocs->num_relocs; i++) {
      /* All of the relocations from this block pool to other BO's should
       * have been emitted relative to the surface block pool center.  We
       * need to add the center offset to make them relative to the
       * beginning of the actual GEM bo.
       */
      relocs->relocs[i].offset += delta;
   }
}

static void
adjust_relocations_to_state_pool(struct anv_block_pool *pool,
                                 struct anv_bo *from_bo,
                                 struct anv_reloc_list *relocs,
                                 uint32_t last_pool_center_bo_offset)
{
   assert(last_pool_center_bo_offset <= pool->center_bo_offset);
   uint32_t delta = pool->center_bo_offset - last_pool_center_bo_offset;

   /* When we initially emit relocations into a block pool, we don't
    * actually know what the final center_bo_offset will be so we just emit
    * it as if center_bo_offset == 0.  Now that we know what the center
    * offset is, we need to walk the list of relocations and adjust any
    * relocations that point to the pool bo with the correct offset.
    */
   for (size_t i = 0; i < relocs->num_relocs; i++) {
      if (relocs->reloc_bos[i] == &pool->bo) {
         /* Adjust the delta value in the relocation to correctly
          * correspond to the new delta.  Initially, this value may have
          * been negative (if treated as unsigned), but we trust in
          * uint32_t roll-over to fix that for us at this point.
          */
         relocs->relocs[i].delta += delta;

         /* Since the delta has changed, we need to update the actual
          * relocated value with the new presumed value.  This function
          * should only be called on batch buffers, so we know it isn't in
          * use by the GPU at the moment.
          */
         assert(relocs->relocs[i].offset < from_bo->size);
         write_reloc(pool->device, from_bo->map + relocs->relocs[i].offset,
                     relocs->relocs[i].presumed_offset +
                     relocs->relocs[i].delta, false);
      }
   }
}

static void
anv_reloc_list_apply(struct anv_device *device,
                     struct anv_reloc_list *list,
                     struct anv_bo *bo,
                     bool always_relocate)
{
   for (size_t i = 0; i < list->num_relocs; i++) {
      struct anv_bo *target_bo = list->reloc_bos[i];
      if (list->relocs[i].presumed_offset == target_bo->offset &&
          !always_relocate)
         continue;

      void *p = bo->map + list->relocs[i].offset;
      write_reloc(device, p, target_bo->offset + list->relocs[i].delta, true);
      list->relocs[i].presumed_offset = target_bo->offset;
   }
}

/**
 * This function applies the relocation for a command buffer and writes the
 * actual addresses into the buffers as per what we were told by the kernel on
 * the previous execbuf2 call.  This should be safe to do because, for each
 * relocated address, we have two cases:
 *
 *  1) The target BO is inactive (as seen by the kernel).  In this case, it is
 *     not in use by the GPU so updating the address is 100% ok.  It won't be
 *     in-use by the GPU (from our context) again until the next execbuf2
 *     happens.  If the kernel decides to move it in the next execbuf2, it
 *     will have to do the relocations itself, but that's ok because it should
 *     have all of the information needed to do so.
 *
 *  2) The target BO is active (as seen by the kernel).  In this case, it
 *     hasn't moved since the last execbuffer2 call because GTT shuffling
 *     *only* happens when the BO is idle. (From our perspective, it only
 *     happens inside the execbuffer2 ioctl, but the shuffling may be
 *     triggered by another ioctl, with full-ppgtt this is limited to only
 *     execbuffer2 ioctls on the same context, or memory pressure.)  Since the
 *     target BO hasn't moved, our anv_bo::offset exactly matches the BO's GTT
 *     address and the relocated value we are writing into the BO will be the
 *     same as the value that is already there.
 *
 *     There is also a possibility that the target BO is active but the exact
 *     RENDER_SURFACE_STATE object we are writing the relocation into isn't in
 *     use.  In this case, the address currently in the RENDER_SURFACE_STATE
 *     may be stale but it's still safe to write the relocation because that
 *     particular RENDER_SURFACE_STATE object isn't in-use by the GPU and
 *     won't be until the next execbuf2 call.
 *
 * By doing relocations on the CPU, we can tell the kernel that it doesn't
 * need to bother.  We want to do this because the surface state buffer is
 * used by every command buffer so, if the kernel does the relocations, it
 * will always be busy and the kernel will always stall.  This is also
 * probably the fastest mechanism for doing relocations since the kernel would
 * have to make a full copy of all the relocations lists.
 */
static bool
relocate_cmd_buffer(struct anv_cmd_buffer *cmd_buffer,
                    struct anv_execbuf *exec)
{
   static int userspace_relocs = -1;
   if (userspace_relocs < 0)
      userspace_relocs = env_var_as_boolean("ANV_USERSPACE_RELOCS", true);
   if (!userspace_relocs)
      return false;

   /* First, we have to check to see whether or not we can even do the
    * relocation.  New buffers which have never been submitted to the kernel
    * don't have a valid offset so we need to let the kernel do relocations so
    * that we can get offsets for them.  On future execbuf2 calls, those
    * buffers will have offsets and we will be able to skip relocating.
    * Invalid offsets are indicated by anv_bo::offset == (uint64_t)-1.
    */
   for (uint32_t i = 0; i < exec->bo_count; i++) {
      if (exec->bos[i]->offset == (uint64_t)-1)
         return false;
   }

   /* Since surface states are shared between command buffers and we don't
    * know what order they will be submitted to the kernel, we don't know
    * what address is actually written in the surface state object at any
    * given time.  The only option is to always relocate them.
    */
   anv_reloc_list_apply(cmd_buffer->device, &cmd_buffer->surface_relocs,
                        &cmd_buffer->device->surface_state_block_pool.bo,
                        true /* always relocate surface states */);

   /* Since we own all of the batch buffers, we know what values are stored
    * in the relocated addresses and only have to update them if the offsets
    * have changed.
    */
   struct anv_batch_bo **bbo;
   u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
      anv_reloc_list_apply(cmd_buffer->device,
                           &(*bbo)->relocs, &(*bbo)->bo, false);
   }

   for (uint32_t i = 0; i < exec->bo_count; i++)
      exec->objects[i].offset = exec->bos[i]->offset;

   return true;
}

VkResult
anv_cmd_buffer_execbuf(struct anv_device *device,
                       struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_batch *batch = &cmd_buffer->batch;
   struct anv_block_pool *ss_pool =
      &cmd_buffer->device->surface_state_block_pool;

   struct anv_execbuf execbuf;
   anv_execbuf_init(&execbuf);

   adjust_relocations_from_state_pool(ss_pool, &cmd_buffer->surface_relocs,
                                      cmd_buffer->last_ss_pool_center);
   anv_execbuf_add_bo(&execbuf, &ss_pool->bo, &cmd_buffer->surface_relocs,
                      &cmd_buffer->pool->alloc);

   /* First, we walk over all of the bos we've seen and add them and their
    * relocations to the validate list.
    */
   struct anv_batch_bo **bbo;
   u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
      adjust_relocations_to_state_pool(ss_pool, &(*bbo)->bo, &(*bbo)->relocs,
                                       cmd_buffer->last_ss_pool_center);

      anv_execbuf_add_bo(&execbuf, &(*bbo)->bo, &(*bbo)->relocs,
                         &cmd_buffer->pool->alloc);
   }

   /* Now that we've adjusted all of the surface state relocations, we need to
    * record the surface state pool center so future executions of the command
    * buffer can adjust correctly.
    */
   cmd_buffer->last_ss_pool_center = ss_pool->center_bo_offset;

   struct anv_batch_bo *first_batch_bo =
      list_first_entry(&cmd_buffer->batch_bos, struct anv_batch_bo, link);

   /* The kernel requires that the last entry in the validation list be the
    * batch buffer to execute.  We can simply swap the element
    * corresponding to the first batch_bo in the chain with the last
    * element in the list.
    */
   if (first_batch_bo->bo.index != execbuf.bo_count - 1) {
      uint32_t idx = first_batch_bo->bo.index;
      uint32_t last_idx = execbuf.bo_count - 1;

      struct drm_i915_gem_exec_object2 tmp_obj = execbuf.objects[idx];
      assert(execbuf.bos[idx] == &first_batch_bo->bo);

      execbuf.objects[idx] = execbuf.objects[last_idx];
      execbuf.bos[idx] = execbuf.bos[last_idx];
      execbuf.bos[idx]->index = idx;

      execbuf.objects[last_idx] = tmp_obj;
      execbuf.bos[last_idx] = &first_batch_bo->bo;
      first_batch_bo->bo.index = last_idx;
   }

   /* Now we go through and fixup all of the relocation lists to point to
    * the correct indices in the object array.  We have to do this after we
    * reorder the list above as some of the indices may have changed.
    */
   u_vector_foreach(bbo, &cmd_buffer->seen_bbos)
      anv_cmd_buffer_process_relocs(cmd_buffer, &(*bbo)->relocs);

   anv_cmd_buffer_process_relocs(cmd_buffer, &cmd_buffer->surface_relocs);

   if (!cmd_buffer->device->info.has_llc) {
      __builtin_ia32_mfence();
      u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
         for (uint32_t i = 0; i < (*bbo)->length; i += CACHELINE_SIZE)
            __builtin_ia32_clflush((*bbo)->bo.map + i);
      }
   }

   execbuf.execbuf = (struct drm_i915_gem_execbuffer2) {
      .buffers_ptr = (uintptr_t) execbuf.objects,
      .buffer_count = execbuf.bo_count,
      .batch_start_offset = 0,
      .batch_len = batch->next - batch->start,
      .cliprects_ptr = 0,
      .num_cliprects = 0,
      .DR1 = 0,
      .DR4 = 0,
      .flags = I915_EXEC_HANDLE_LUT | I915_EXEC_RENDER |
               I915_EXEC_CONSTANTS_REL_GENERAL,
      .rsvd1 = cmd_buffer->device->context_id,
      .rsvd2 = 0,
   };

   if (relocate_cmd_buffer(cmd_buffer, &execbuf)) {
      /* If we were able to successfully relocate everything, tell the kernel
       * that it can skip doing relocations. The requirement for using
       * NO_RELOC is:
       *
       *  1) The addresses written in the objects must match the corresponding
       *     reloc.presumed_offset which in turn must match the corresponding
       *     execobject.offset.
       *
       *  2) To avoid stalling, execobject.offset should match the current
       *     address of that object within the active context.
       *
       * In order to satisfy all of the invariants that make userspace
       * relocations to be safe (see relocate_cmd_buffer()), we need to
       * further ensure that the addresses we use match those used by the
       * kernel for the most recent execbuf2.
       *
       * The kernel may still choose to do relocations anyway if something has
       * moved in the GTT. In this case, the relocation list still needs to be
       * valid.  All relocations on the batch buffers are already valid and
       * kept up-to-date.  For surface state relocations, by applying the
       * relocations in relocate_cmd_buffer, we ensured that the address in
       * the RENDER_SURFACE_STATE matches presumed_offset, so it should be
       * safe for the kernel to relocate them as needed.
       */
      execbuf.execbuf.flags |= I915_EXEC_NO_RELOC;
   } else {
      /* In the case where we fall back to doing kernel relocations, we need
       * to ensure that the relocation list is valid.  All relocations on the
       * batch buffers are already valid and kept up-to-date.  Since surface
       * states are shared between command buffers and we don't know what
       * order they will be submitted to the kernel, we don't know what
       * address is actually written in the surface state object at any given
       * time.  The only option is to set a bogus presumed offset and let the
       * kernel relocate them.
       */
      for (size_t i = 0; i < cmd_buffer->surface_relocs.num_relocs; i++)
         cmd_buffer->surface_relocs.relocs[i].presumed_offset = -1;
   }

   VkResult result = anv_device_execbuf(device, &execbuf.execbuf, execbuf.bos);

   anv_execbuf_finish(&execbuf, &cmd_buffer->pool->alloc);

   return result;
}