1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file brw_vue_map.c
*
* This file computes the "VUE map" for a (non-fragment) shader stage, which
* describes the layout of its output varyings. The VUE map is used to match
* outputs from one stage with the inputs of the next.
*
* Largely, varyings can be placed however we like - producers/consumers simply
* have to agree on the layout. However, there is also a "VUE Header" that
* prescribes a fixed-layout for items that interact with fixed function
* hardware, such as the clipper and rasterizer.
*
* Authors:
* Paul Berry <stereotype441@gmail.com>
* Chris Forbes <chrisf@ijw.co.nz>
* Eric Anholt <eric@anholt.net>
*/
#include "brw_compiler.h"
#include "common/gen_debug.h"
static inline void
assign_vue_slot(struct brw_vue_map *vue_map, int varying, int slot)
{
/* Make sure this varying hasn't been assigned a slot already */
assert (vue_map->varying_to_slot[varying] == -1);
vue_map->varying_to_slot[varying] = slot;
vue_map->slot_to_varying[slot] = varying;
}
/**
* Compute the VUE map for a shader stage.
*/
void
brw_compute_vue_map(const struct gen_device_info *devinfo,
struct brw_vue_map *vue_map,
uint64_t slots_valid,
bool separate)
{
/* Keep using the packed/contiguous layout on old hardware - we only need
* the SSO layout when using geometry/tessellation shaders or 32 FS input
* varyings, which only exist on Gen >= 6. It's also a bit more efficient.
*/
if (devinfo->gen < 6)
separate = false;
if (separate) {
/* In SSO mode, we don't know whether the adjacent stage will
* read/write gl_ClipDistance, which has a fixed slot location.
* We have to assume the worst and reserve a slot for it, or else
* the rest of our varyings will be off by a slot.
*
* Note that we don't have to worry about COL/BFC, as those built-in
* variables only exist in legacy GL, which only supports VS and FS.
*/
slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
}
vue_map->slots_valid = slots_valid;
vue_map->separate = separate;
/* gl_Layer and gl_ViewportIndex don't get their own varying slots -- they
* are stored in the first VUE slot (VARYING_SLOT_PSIZ).
*/
slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
/* Make sure that the values we store in vue_map->varying_to_slot and
* vue_map->slot_to_varying won't overflow the signed chars that are used
* to store them. Note that since vue_map->slot_to_varying sometimes holds
* values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
* BRW_VARYING_SLOT_COUNT is <= 127, not 128.
*/
STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
for (int i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
vue_map->varying_to_slot[i] = -1;
vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
}
int slot = 0;
/* VUE header: format depends on chip generation and whether clipping is
* enabled.
*
* See the Sandybridge PRM, Volume 2 Part 1, section 1.5.1 (page 30),
* "Vertex URB Entry (VUE) Formats" which describes the VUE header layout.
*/
if (devinfo->gen < 6) {
/* There are 8 dwords in VUE header pre-Ironlake:
* dword 0-3 is indices, point width, clip flags.
* dword 4-7 is ndc position
* dword 8-11 is the first vertex data.
*
* On Ironlake the VUE header is nominally 20 dwords, but the hardware
* will accept the same header layout as Gen4 [and should be a bit faster]
*/
assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC, slot++);
assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
} else {
/* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
* dword 0-3 of the header is indices, point width, clip flags.
* dword 4-7 is the 4D space position
* dword 8-15 of the vertex header is the user clip distance if
* enabled.
* dword 8-11 or 16-19 is the first vertex element data we fill.
*/
assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0))
assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1))
assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1, slot++);
/* front and back colors need to be consecutive so that we can use
* ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
* two-sided color.
*/
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
assign_vue_slot(vue_map, VARYING_SLOT_COL0, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
assign_vue_slot(vue_map, VARYING_SLOT_BFC0, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
assign_vue_slot(vue_map, VARYING_SLOT_COL1, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
assign_vue_slot(vue_map, VARYING_SLOT_BFC1, slot++);
}
/* The hardware doesn't care about the rest of the vertex outputs, so we
* can assign them however we like. For normal programs, we simply assign
* them contiguously.
*
* For separate shader pipelines, we first assign built-in varyings
* contiguous slots. This works because ARB_separate_shader_objects
* requires that all shaders have matching built-in varying interface
* blocks. Next, we assign generic varyings based on their location
* (either explicit or linker assigned). This guarantees a fixed layout.
*
* We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
* since it's encoded as the clip distances by emit_clip_distances().
* However, it may be output by transform feedback, and we'd rather not
* recompute state when TF changes, so we just always include it.
*/
uint64_t builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0);
while (builtins != 0) {
const int varying = ffsll(builtins) - 1;
if (vue_map->varying_to_slot[varying] == -1) {
assign_vue_slot(vue_map, varying, slot++);
}
builtins &= ~BITFIELD64_BIT(varying);
}
const int first_generic_slot = slot;
uint64_t generics = slots_valid & ~BITFIELD64_MASK(VARYING_SLOT_VAR0);
while (generics != 0) {
const int varying = ffsll(generics) - 1;
if (separate) {
slot = first_generic_slot + varying - VARYING_SLOT_VAR0;
}
assign_vue_slot(vue_map, varying, slot++);
generics &= ~BITFIELD64_BIT(varying);
}
vue_map->num_slots = slot;
vue_map->num_per_vertex_slots = 0;
vue_map->num_per_patch_slots = 0;
}
/**
* Compute the VUE map for tessellation control shader outputs and
* tessellation evaluation shader inputs.
*/
void
brw_compute_tess_vue_map(struct brw_vue_map *vue_map,
uint64_t vertex_slots,
uint32_t patch_slots)
{
/* I don't think anything actually uses this... */
vue_map->slots_valid = vertex_slots;
/* separate isn't really meaningful, but make sure it's initialized */
vue_map->separate = false;
vertex_slots &= ~(VARYING_BIT_TESS_LEVEL_OUTER |
VARYING_BIT_TESS_LEVEL_INNER);
/* Make sure that the values we store in vue_map->varying_to_slot and
* vue_map->slot_to_varying won't overflow the signed chars that are used
* to store them. Note that since vue_map->slot_to_varying sometimes holds
* values equal to VARYING_SLOT_TESS_MAX , we need to ensure that
* VARYING_SLOT_TESS_MAX is <= 127, not 128.
*/
STATIC_ASSERT(VARYING_SLOT_TESS_MAX <= 127);
for (int i = 0; i < VARYING_SLOT_TESS_MAX ; ++i) {
vue_map->varying_to_slot[i] = -1;
vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
}
int slot = 0;
/* The first 8 DWords are reserved for the "Patch Header".
*
* VARYING_SLOT_TESS_LEVEL_OUTER / INNER live here, but the exact layout
* depends on the domain type. They might not be in slots 0 and 1 as
* described here, but pretending they're separate allows us to uniquely
* identify them by distinct slot locations.
*/
assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_INNER, slot++);
assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_OUTER, slot++);
/* first assign per-patch varyings */
while (patch_slots != 0) {
const int varying = ffsll(patch_slots) - 1;
if (vue_map->varying_to_slot[varying + VARYING_SLOT_PATCH0] == -1) {
assign_vue_slot(vue_map, varying + VARYING_SLOT_PATCH0, slot++);
}
patch_slots &= ~BITFIELD64_BIT(varying);
}
/* apparently, including the patch header... */
vue_map->num_per_patch_slots = slot;
/* then assign per-vertex varyings for each vertex in our patch */
while (vertex_slots != 0) {
const int varying = ffsll(vertex_slots) - 1;
if (vue_map->varying_to_slot[varying] == -1) {
assign_vue_slot(vue_map, varying, slot++);
}
vertex_slots &= ~BITFIELD64_BIT(varying);
}
vue_map->num_per_vertex_slots = slot - vue_map->num_per_patch_slots;
vue_map->num_slots = slot;
}
static const char *
varying_name(brw_varying_slot slot)
{
assume(slot < BRW_VARYING_SLOT_COUNT);
if (slot < VARYING_SLOT_MAX)
return gl_varying_slot_name(slot);
static const char *brw_names[] = {
[BRW_VARYING_SLOT_NDC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_NDC",
[BRW_VARYING_SLOT_PAD - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PAD",
[BRW_VARYING_SLOT_PNTC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PNTC",
};
return brw_names[slot - VARYING_SLOT_MAX];
}
void
brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map)
{
if (vue_map->num_per_vertex_slots > 0 || vue_map->num_per_patch_slots > 0) {
fprintf(fp, "PUE map (%d slots, %d/patch, %d/vertex, %s)\n",
vue_map->num_slots,
vue_map->num_per_patch_slots,
vue_map->num_per_vertex_slots,
vue_map->separate ? "SSO" : "non-SSO");
for (int i = 0; i < vue_map->num_slots; i++) {
if (vue_map->slot_to_varying[i] >= VARYING_SLOT_PATCH0) {
fprintf(fp, " [%d] VARYING_SLOT_PATCH%d\n", i,
vue_map->slot_to_varying[i] - VARYING_SLOT_PATCH0);
} else {
fprintf(fp, " [%d] %s\n", i,
varying_name(vue_map->slot_to_varying[i]));
}
}
} else {
fprintf(fp, "VUE map (%d slots, %s)\n",
vue_map->num_slots, vue_map->separate ? "SSO" : "non-SSO");
for (int i = 0; i < vue_map->num_slots; i++) {
fprintf(fp, " [%d] %s\n", i,
varying_name(vue_map->slot_to_varying[i]));
}
}
fprintf(fp, "\n");
}
|