1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file brw_vec4_tes.cpp
*
* Tessellaton evaluation shader specific code derived from the vec4_visitor class.
*/
#include "brw_vec4_tes.h"
#include "brw_cfg.h"
#include "dev/gen_debug.h"
namespace brw {
vec4_tes_visitor::vec4_tes_visitor(const struct brw_compiler *compiler,
void *log_data,
const struct brw_tes_prog_key *key,
struct brw_tes_prog_data *prog_data,
const nir_shader *shader,
void *mem_ctx,
int shader_time_index)
: vec4_visitor(compiler, log_data, &key->base.tex, &prog_data->base,
shader, mem_ctx, false, shader_time_index)
{
}
void
vec4_tes_visitor::setup_payload()
{
int reg = 0;
/* The payload always contains important data in r0 and r1, which contains
* the URB handles that are passed on to the URB write at the end
* of the thread.
*/
reg += 2;
reg = setup_uniforms(reg);
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
for (int i = 0; i < 3; i++) {
if (inst->src[i].file != ATTR)
continue;
bool is_64bit = type_sz(inst->src[i].type) == 8;
unsigned slot = inst->src[i].nr + inst->src[i].offset / 16;
struct brw_reg grf = brw_vec4_grf(reg + slot / 2, 4 * (slot % 2));
grf = stride(grf, 0, is_64bit ? 2 : 4, 1);
grf.swizzle = inst->src[i].swizzle;
grf.type = inst->src[i].type;
grf.abs = inst->src[i].abs;
grf.negate = inst->src[i].negate;
/* For 64-bit attributes we can end up with components XY in the
* second half of a register and components ZW in the first half
* of the next. Fix it up here.
*/
if (is_64bit && grf.subnr > 0) {
/* We can't do swizzles that mix XY and ZW channels in this case.
* Such cases should have been handled by the scalarization pass.
*/
assert((brw_mask_for_swizzle(grf.swizzle) & 0x3) ^
(brw_mask_for_swizzle(grf.swizzle) & 0xc));
if (brw_mask_for_swizzle(grf.swizzle) & 0xc) {
grf.subnr = 0;
grf.nr++;
grf.swizzle -= BRW_SWIZZLE_ZZZZ;
}
}
inst->src[i] = grf;
}
}
reg += 8 * prog_data->urb_read_length;
this->first_non_payload_grf = reg;
}
void
vec4_tes_visitor::emit_prolog()
{
input_read_header = src_reg(this, glsl_type::uvec4_type);
emit(TES_OPCODE_CREATE_INPUT_READ_HEADER, dst_reg(input_read_header));
this->current_annotation = NULL;
}
void
vec4_tes_visitor::emit_urb_write_header(int mrf)
{
/* No need to do anything for DS; an implied write to this MRF will be
* performed by VS_OPCODE_URB_WRITE.
*/
(void) mrf;
}
vec4_instruction *
vec4_tes_visitor::emit_urb_write_opcode(bool complete)
{
/* For DS, the URB writes end the thread. */
if (complete) {
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
}
vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
inst->urb_write_flags = complete ?
BRW_URB_WRITE_EOT_COMPLETE : BRW_URB_WRITE_NO_FLAGS;
return inst;
}
void
vec4_tes_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
const struct brw_tes_prog_data *tes_prog_data =
(const struct brw_tes_prog_data *) prog_data;
switch (instr->intrinsic) {
case nir_intrinsic_load_tess_coord:
/* gl_TessCoord is part of the payload in g1 channels 0-2 and 4-6. */
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
src_reg(brw_vec8_grf(1, 0))));
break;
case nir_intrinsic_load_tess_level_outer:
if (tes_prog_data->domain == BRW_TESS_DOMAIN_ISOLINE) {
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
swizzle(src_reg(ATTR, 1, glsl_type::vec4_type),
BRW_SWIZZLE_ZWZW)));
} else {
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
swizzle(src_reg(ATTR, 1, glsl_type::vec4_type),
BRW_SWIZZLE_WZYX)));
}
break;
case nir_intrinsic_load_tess_level_inner:
if (tes_prog_data->domain == BRW_TESS_DOMAIN_QUAD) {
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
swizzle(src_reg(ATTR, 0, glsl_type::vec4_type),
BRW_SWIZZLE_WZYX)));
} else {
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
src_reg(ATTR, 1, glsl_type::float_type)));
}
break;
case nir_intrinsic_load_primitive_id:
emit(TES_OPCODE_GET_PRIMITIVE_ID,
get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD));
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_per_vertex_input: {
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
src_reg header = input_read_header;
bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
unsigned first_component = nir_intrinsic_component(instr);
if (is_64bit)
first_component /= 2;
if (indirect_offset.file != BAD_FILE) {
src_reg clamped_indirect_offset = src_reg(this, glsl_type::uvec4_type);
/* Page 190 of "Volume 7: 3D Media GPGPU Engine (Haswell)" says the
* valid range of the offset is [0, 0FFFFFFFh].
*/
emit_minmax(BRW_CONDITIONAL_L,
dst_reg(clamped_indirect_offset),
retype(indirect_offset, BRW_REGISTER_TYPE_UD),
brw_imm_ud(0x0fffffffu));
header = src_reg(this, glsl_type::uvec4_type);
emit(TES_OPCODE_ADD_INDIRECT_URB_OFFSET, dst_reg(header),
input_read_header, clamped_indirect_offset);
} else {
/* Arbitrarily only push up to 24 vec4 slots worth of data,
* which is 12 registers (since each holds 2 vec4 slots).
*/
const unsigned max_push_slots = 24;
if (imm_offset < max_push_slots) {
const glsl_type *src_glsl_type =
is_64bit ? glsl_type::dvec4_type : glsl_type::ivec4_type;
src_reg src = src_reg(ATTR, imm_offset, src_glsl_type);
src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
const brw_reg_type dst_reg_type =
is_64bit ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_D;
emit(MOV(get_nir_dest(instr->dest, dst_reg_type), src));
prog_data->urb_read_length =
MAX2(prog_data->urb_read_length,
DIV_ROUND_UP(imm_offset + (is_64bit ? 2 : 1), 2));
break;
}
}
if (!is_64bit) {
dst_reg temp(this, glsl_type::ivec4_type);
vec4_instruction *read =
emit(VEC4_OPCODE_URB_READ, temp, src_reg(header));
read->offset = imm_offset;
read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
src_reg src = src_reg(temp);
src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
/* Copy to target. We might end up with some funky writemasks landing
* in here, but we really don't want them in the above pseudo-ops.
*/
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit(MOV(dst, src));
} else {
/* For 64-bit we need to load twice as many 32-bit components, and for
* dvec3/4 we need to emit 2 URB Read messages
*/
dst_reg temp(this, glsl_type::dvec4_type);
dst_reg temp_d = retype(temp, BRW_REGISTER_TYPE_D);
vec4_instruction *read =
emit(VEC4_OPCODE_URB_READ, temp_d, src_reg(header));
read->offset = imm_offset;
read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
if (instr->num_components > 2) {
read = emit(VEC4_OPCODE_URB_READ, byte_offset(temp_d, REG_SIZE),
src_reg(header));
read->offset = imm_offset + 1;
read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
}
src_reg temp_as_src = src_reg(temp);
temp_as_src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
dst_reg shuffled(this, glsl_type::dvec4_type);
shuffle_64bit_data(shuffled, temp_as_src, false);
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit(MOV(dst, src_reg(shuffled)));
}
break;
}
default:
vec4_visitor::nir_emit_intrinsic(instr);
}
}
void
vec4_tes_visitor::emit_thread_end()
{
/* For DS, we always end the thread by emitting a single vertex.
* emit_urb_write_opcode() will take care of setting the eot flag on the
* SEND instruction.
*/
emit_vertex();
}
} /* namespace brw */
|