1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "compiler/nir/nir.h"
#include "util/u_dynarray.h"
/**
* \file brw_nir_analyze_ubo_ranges.c
*
* This pass decides which portions of UBOs to upload as push constants,
* so shaders can access them as part of the thread payload, rather than
* having to issue expensive memory reads to pull the data.
*
* The 3DSTATE_CONSTANT_* mechanism can push data from up to 4 different
* buffers, in GRF (256-bit/32-byte) units.
*
* To do this, we examine NIR load_ubo intrinsics, recording the number of
* loads at each offset. We track offsets at a 32-byte granularity, so even
* fields with a bit of padding between them tend to fall into contiguous
* ranges. We build a list of these ranges, tracking their "cost" (number
* of registers required) and "benefit" (number of pull loads eliminated
* by pushing the range). We then sort the list to obtain the four best
* ranges (most benefit for the least cost).
*/
struct ubo_range_entry
{
struct brw_ubo_range range;
int benefit;
};
static int
score(const struct ubo_range_entry *entry)
{
return 2 * entry->benefit - entry->range.length;
}
/**
* Compares score for two UBO range entries.
*
* For a descending qsort().
*/
static int
cmp_ubo_range_entry(const void *va, const void *vb)
{
const struct ubo_range_entry *a = va;
const struct ubo_range_entry *b = vb;
/* Rank based on scores */
int delta = score(b) - score(a);
/* Then use the UBO block index as a tie-breaker */
if (delta == 0)
delta = b->range.block - a->range.block;
/* Finally use the UBO offset as a second tie-breaker */
if (delta == 0)
delta = b->range.block - a->range.block;
return delta;
}
struct ubo_block_info
{
/* Each bit in the offsets bitfield represents a 32-byte section of data.
* If it's set to one, there is interesting UBO data at that offset. If
* not, there's a "hole" - padding between data - or just nothing at all.
*/
uint64_t offsets;
uint8_t uses[64];
};
struct ubo_analysis_state
{
struct hash_table *blocks;
bool uses_regular_uniforms;
};
static struct ubo_block_info *
get_block_info(struct ubo_analysis_state *state, int block)
{
uint32_t hash = block + 1;
void *key = (void *) (uintptr_t) hash;
struct hash_entry *entry =
_mesa_hash_table_search_pre_hashed(state->blocks, hash, key);
if (entry)
return (struct ubo_block_info *) entry->data;
struct ubo_block_info *info =
rzalloc(state->blocks, struct ubo_block_info);
_mesa_hash_table_insert_pre_hashed(state->blocks, hash, key, info);
return info;
}
static void
analyze_ubos_block(struct ubo_analysis_state *state, nir_block *block)
{
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_load_uniform)
state->uses_regular_uniforms = true;
if (intrin->intrinsic != nir_intrinsic_load_ubo)
continue;
nir_const_value *block_const = nir_src_as_const_value(intrin->src[0]);
nir_const_value *offset_const = nir_src_as_const_value(intrin->src[1]);
if (block_const && offset_const) {
const int block = block_const->u32[0];
const int offset = offset_const->u32[0] / 32;
/* Won't fit in our bitfield */
if (offset >= 64)
continue;
/* TODO: should we count uses in loops as higher benefit? */
struct ubo_block_info *info = get_block_info(state, block);
info->offsets |= 1ull << offset;
info->uses[offset]++;
}
}
}
static void
print_ubo_entry(FILE *file,
const struct ubo_range_entry *entry,
struct ubo_analysis_state *state)
{
struct ubo_block_info *info = get_block_info(state, entry->range.block);
fprintf(file,
"block %2d, start %2d, length %2d, bits = %zx, "
"benefit %2d, cost %2d, score = %2d\n",
entry->range.block, entry->range.start, entry->range.length,
info->offsets, entry->benefit, entry->range.length, score(entry));
}
void
brw_nir_analyze_ubo_ranges(const struct brw_compiler *compiler,
nir_shader *nir,
struct brw_ubo_range out_ranges[4])
{
const struct gen_device_info *devinfo = compiler->devinfo;
if ((devinfo->gen <= 7 && !devinfo->is_haswell) ||
!compiler->scalar_stage[nir->info.stage]) {
memset(out_ranges, 0, 4 * sizeof(struct brw_ubo_range));
return;
}
void *mem_ctx = ralloc_context(NULL);
struct ubo_analysis_state state = {
.uses_regular_uniforms = false,
.blocks =
_mesa_hash_table_create(mem_ctx, NULL, _mesa_key_pointer_equal),
};
/* Walk the IR, recording how many times each UBO block/offset is used. */
nir_foreach_function(function, nir) {
if (function->impl) {
nir_foreach_block(block, function->impl) {
analyze_ubos_block(&state, block);
}
}
}
/* Find ranges: a block, starting 32-byte offset, and length. */
struct util_dynarray ranges;
util_dynarray_init(&ranges, mem_ctx);
struct hash_entry *entry;
hash_table_foreach(state.blocks, entry) {
const int b = entry->hash - 1;
const struct ubo_block_info *info = entry->data;
uint64_t offsets = info->offsets;
/* Walk through the offsets bitfield, finding contiguous regions of
* set bits:
*
* 0000000001111111111111000000000000111111111111110000000011111100
* ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^ ^^^^^^
*
* Each of these will become a UBO range.
*/
while (offsets != 0) {
/* Find the first 1 in the offsets bitfield. This represents the
* start of a range of interesting UBO data. Make it zero-indexed.
*/
int first_bit = ffsll(offsets) - 1;
/* Find the first 0 bit in offsets beyond first_bit. To find the
* first zero bit, we find the first 1 bit in the complement. In
* order to ignore bits before first_bit, we mask off those bits.
*/
int first_hole = ffsll(~offsets & ~((1ull << first_bit) - 1)) - 1;
if (first_hole == -1) {
/* If we didn't find a hole, then set it to the end of the
* bitfield. There are no more ranges to process.
*/
first_hole = 64;
offsets = 0;
} else {
/* We've processed all bits before first_hole. Mask them off. */
offsets &= ~((1ull << first_hole) - 1);
}
struct ubo_range_entry *entry =
util_dynarray_grow(&ranges, sizeof(struct ubo_range_entry));
entry->range.block = b;
entry->range.start = first_bit;
/* first_hole is one beyond the end, so we don't need to add 1 */
entry->range.length = first_hole - first_bit;
entry->benefit = 0;
for (int i = 0; i < entry->range.length; i++)
entry->benefit += info->uses[first_bit + i];
}
}
int nr_entries = ranges.size / sizeof(struct ubo_range_entry);
if (0) {
util_dynarray_foreach(&ranges, struct ubo_range_entry, entry) {
print_ubo_entry(stderr, entry, &state);
}
}
/* TODO: Consider combining ranges.
*
* We can only push 3-4 ranges via 3DSTATE_CONSTANT_XS. If there are
* more ranges, and two are close by with only a small hole, it may be
* worth combining them. The holes will waste register space, but the
* benefit of removing pulls may outweigh that cost.
*/
/* Sort the list so the most beneficial ranges are at the front. */
qsort(ranges.data, nr_entries, sizeof(struct ubo_range_entry),
cmp_ubo_range_entry);
struct ubo_range_entry *entries = ranges.data;
/* Return the top 4 or so. We drop by one if regular uniforms are in
* use, assuming one push buffer will be dedicated to those. We may
* also only get 3 on Haswell if we can't write INSTPM.
*
* The backend may need to shrink these ranges to ensure that they
* don't exceed the maximum push constant limits. It can simply drop
* the tail of the list, as that's the least valuable portion. We
* unfortunately can't truncate it here, because we don't know what
* the backend is planning to do with regular uniforms.
*/
const int max_ubos = (compiler->constant_buffer_0_is_relative ? 3 : 4) -
state.uses_regular_uniforms;
nr_entries = MIN2(nr_entries, max_ubos);
for (int i = 0; i < nr_entries; i++) {
out_ranges[i] = entries[i].range;
}
for (int i = nr_entries; i < 4; i++) {
out_ranges[i].block = 0;
out_ranges[i].start = 0;
out_ranges[i].length = 0;
}
ralloc_free(ranges.mem_ctx);
}
|