1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_fs.h"
#include "brw_cfg.h"
#include "brw_fs_builder.h"
using namespace brw;
namespace {
/* From the SKL PRM Vol 2a, "Move":
*
* "A mov with the same source and destination type, no source modifier,
* and no saturation is a raw move. A packed byte destination region (B
* or UB type with HorzStride == 1 and ExecSize > 1) can only be written
* using raw move."
*/
bool
is_byte_raw_mov(const fs_inst *inst)
{
return type_sz(inst->dst.type) == 1 &&
inst->opcode == BRW_OPCODE_MOV &&
inst->src[0].type == inst->dst.type &&
!inst->saturate &&
!inst->src[0].negate &&
!inst->src[0].abs;
}
/*
* Return an acceptable byte stride for the destination of an instruction
* that requires it to have some particular alignment.
*/
unsigned
required_dst_byte_stride(const fs_inst *inst)
{
if (inst->dst.is_accumulator()) {
/* If the destination is an accumulator, insist that we leave the
* stride alone. We cannot "fix" accumulator destinations by writing
* to a temporary and emitting a MOV into the original destination.
* For multiply instructions (our one use of the accumulator), the
* MUL writes the full 66 bits of the accumulator whereas the MOV we
* would emit only writes 33 bits and leaves the top 33 bits
* undefined.
*
* It's safe to just require the original stride here because the
* lowering pass will detect the mismatch in has_invalid_src_region
* and fix the sources of the multiply instead of the destination.
*/
return inst->dst.stride * type_sz(inst->dst.type);
} else if (type_sz(inst->dst.type) < get_exec_type_size(inst) &&
!is_byte_raw_mov(inst)) {
return get_exec_type_size(inst);
} else {
/* Calculate the maximum byte stride and the minimum/maximum type
* size across all source and destination operands we are required to
* lower.
*/
unsigned max_stride = inst->dst.stride * type_sz(inst->dst.type);
unsigned min_size = type_sz(inst->dst.type);
unsigned max_size = type_sz(inst->dst.type);
for (unsigned i = 0; i < inst->sources; i++) {
if (!is_uniform(inst->src[i]) && !inst->is_control_source(i)) {
const unsigned size = type_sz(inst->src[i].type);
max_stride = MAX2(max_stride, inst->src[i].stride * size);
min_size = MIN2(min_size, size);
max_size = MAX2(max_size, size);
}
}
/* All operands involved in lowering need to fit in the calculated
* stride.
*/
assert(max_size <= 4 * min_size);
/* Attempt to use the largest byte stride among all present operands,
* but never exceed a stride of 4 since that would lead to illegal
* destination regions during lowering.
*/
return MIN2(max_stride, 4 * min_size);
}
}
/*
* Return an acceptable byte sub-register offset for the destination of an
* instruction that requires it to be aligned to the sub-register offset of
* the sources.
*/
unsigned
required_dst_byte_offset(const fs_inst *inst)
{
for (unsigned i = 0; i < inst->sources; i++) {
if (!is_uniform(inst->src[i]) && !inst->is_control_source(i))
if (reg_offset(inst->src[i]) % REG_SIZE !=
reg_offset(inst->dst) % REG_SIZE)
return 0;
}
return reg_offset(inst->dst) % REG_SIZE;
}
/*
* Return whether the instruction has an unsupported channel bit layout
* specified for the i-th source region.
*/
bool
has_invalid_src_region(const gen_device_info *devinfo, const fs_inst *inst,
unsigned i)
{
if (is_unordered(inst) || inst->is_control_source(i))
return false;
/* Empirical testing shows that Broadwell has a bug affecting half-float
* MAD instructions when any of its sources has a non-zero offset, such
* as:
*
* mad(8) g18<1>HF -g17<4,4,1>HF g14.8<4,4,1>HF g11<4,4,1>HF { align16 1Q };
*
* We used to generate code like this for SIMD8 executions where we
* used to pack components Y and W of a vector at offset 16B of a SIMD
* register. The problem doesn't occur if the stride of the source is 0.
*/
if (devinfo->gen == 8 &&
inst->opcode == BRW_OPCODE_MAD &&
inst->src[i].type == BRW_REGISTER_TYPE_HF &&
reg_offset(inst->src[i]) % REG_SIZE > 0 &&
inst->src[i].stride != 0) {
return true;
}
const unsigned dst_byte_stride = inst->dst.stride * type_sz(inst->dst.type);
const unsigned src_byte_stride = inst->src[i].stride *
type_sz(inst->src[i].type);
const unsigned dst_byte_offset = reg_offset(inst->dst) % REG_SIZE;
const unsigned src_byte_offset = reg_offset(inst->src[i]) % REG_SIZE;
return has_dst_aligned_region_restriction(devinfo, inst) &&
!is_uniform(inst->src[i]) &&
(src_byte_stride != dst_byte_stride ||
src_byte_offset != dst_byte_offset);
}
/*
* Return whether the instruction has an unsupported channel bit layout
* specified for the destination region.
*/
bool
has_invalid_dst_region(const gen_device_info *devinfo,
const fs_inst *inst)
{
if (is_unordered(inst)) {
return false;
} else {
const brw_reg_type exec_type = get_exec_type(inst);
const unsigned dst_byte_offset = reg_offset(inst->dst) % REG_SIZE;
const unsigned dst_byte_stride = inst->dst.stride * type_sz(inst->dst.type);
const bool is_narrowing_conversion = !is_byte_raw_mov(inst) &&
type_sz(inst->dst.type) < type_sz(exec_type);
return (has_dst_aligned_region_restriction(devinfo, inst) &&
(required_dst_byte_stride(inst) != dst_byte_stride ||
required_dst_byte_offset(inst) != dst_byte_offset)) ||
(is_narrowing_conversion &&
required_dst_byte_stride(inst) != dst_byte_stride);
}
}
/*
* Return whether the instruction has unsupported source modifiers
* specified for the i-th source region.
*/
bool
has_invalid_src_modifiers(const gen_device_info *devinfo, const fs_inst *inst,
unsigned i)
{
return !inst->can_do_source_mods(devinfo) &&
(inst->src[i].negate || inst->src[i].abs);
}
/*
* Return whether the instruction has an unsupported type conversion
* specified for the destination.
*/
bool
has_invalid_conversion(const gen_device_info *devinfo, const fs_inst *inst)
{
switch (inst->opcode) {
case BRW_OPCODE_MOV:
return false;
case BRW_OPCODE_SEL:
return inst->dst.type != get_exec_type(inst);
case SHADER_OPCODE_BROADCAST:
case SHADER_OPCODE_MOV_INDIRECT:
/* The source and destination types of these may be hard-coded to
* integer at codegen time due to hardware limitations of 64-bit
* types.
*/
return ((devinfo->gen == 7 && !devinfo->is_haswell) ||
devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) &&
type_sz(inst->src[0].type) > 4 &&
inst->dst.type != inst->src[0].type;
default:
/* FIXME: We assume the opcodes don't explicitly mentioned before
* just work fine with arbitrary conversions.
*/
return false;
}
}
/**
* Return whether the instruction has non-standard semantics for the
* conditional mod which don't cause the flag register to be updated with
* the comparison result.
*/
bool
has_inconsistent_cmod(const fs_inst *inst)
{
return inst->opcode == BRW_OPCODE_SEL ||
inst->opcode == BRW_OPCODE_CSEL ||
inst->opcode == BRW_OPCODE_IF ||
inst->opcode == BRW_OPCODE_WHILE;
}
bool
lower_instruction(fs_visitor *v, bblock_t *block, fs_inst *inst);
}
namespace brw {
/**
* Remove any modifiers from the \p i-th source region of the instruction,
* including negate, abs and any implicit type conversion to the execution
* type. Instead any source modifiers will be implemented as a separate
* MOV instruction prior to the original instruction.
*/
bool
lower_src_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i)
{
assert(inst->components_read(i) == 1);
const fs_builder ibld(v, block, inst);
const fs_reg tmp = ibld.vgrf(get_exec_type(inst));
lower_instruction(v, block, ibld.MOV(tmp, inst->src[i]));
inst->src[i] = tmp;
return true;
}
}
namespace {
/**
* Remove any modifiers from the destination region of the instruction,
* including saturate, conditional mod and any implicit type conversion
* from the execution type. Instead any destination modifiers will be
* implemented as a separate MOV instruction after the original
* instruction.
*/
bool
lower_dst_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst)
{
const fs_builder ibld(v, block, inst);
const brw_reg_type type = get_exec_type(inst);
/* Not strictly necessary, but if possible use a temporary with the same
* channel alignment as the current destination in order to avoid
* violating the restrictions enforced later on by lower_src_region()
* and lower_dst_region(), which would introduce additional copy
* instructions into the program unnecessarily.
*/
const unsigned stride =
type_sz(inst->dst.type) * inst->dst.stride <= type_sz(type) ? 1 :
type_sz(inst->dst.type) * inst->dst.stride / type_sz(type);
fs_reg tmp = ibld.vgrf(type, stride);
ibld.UNDEF(tmp);
tmp = horiz_stride(tmp, stride);
/* Emit a MOV taking care of all the destination modifiers. */
fs_inst *mov = ibld.at(block, inst->next).MOV(inst->dst, tmp);
mov->saturate = inst->saturate;
if (!has_inconsistent_cmod(inst))
mov->conditional_mod = inst->conditional_mod;
if (inst->opcode != BRW_OPCODE_SEL) {
mov->predicate = inst->predicate;
mov->predicate_inverse = inst->predicate_inverse;
}
mov->flag_subreg = inst->flag_subreg;
lower_instruction(v, block, mov);
/* Point the original instruction at the temporary, and clean up any
* destination modifiers.
*/
assert(inst->size_written == inst->dst.component_size(inst->exec_size));
inst->dst = tmp;
inst->size_written = inst->dst.component_size(inst->exec_size);
inst->saturate = false;
if (!has_inconsistent_cmod(inst))
inst->conditional_mod = BRW_CONDITIONAL_NONE;
assert(!inst->flags_written() || !mov->predicate);
return true;
}
/**
* Remove any non-trivial shuffling of data from the \p i-th source region
* of the instruction. Instead implement the region as a series of integer
* copies into a temporary with the same channel layout as the destination.
*/
bool
lower_src_region(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i)
{
assert(inst->components_read(i) == 1);
const fs_builder ibld(v, block, inst);
const unsigned stride = type_sz(inst->dst.type) * inst->dst.stride /
type_sz(inst->src[i].type);
assert(stride > 0);
fs_reg tmp = ibld.vgrf(inst->src[i].type, stride);
ibld.UNDEF(tmp);
tmp = horiz_stride(tmp, stride);
/* Emit a series of 32-bit integer copies with any source modifiers
* cleaned up (because their semantics are dependent on the type).
*/
const brw_reg_type raw_type = brw_int_type(MIN2(type_sz(tmp.type), 4),
false);
const unsigned n = type_sz(tmp.type) / type_sz(raw_type);
fs_reg raw_src = inst->src[i];
raw_src.negate = false;
raw_src.abs = false;
for (unsigned j = 0; j < n; j++)
ibld.MOV(subscript(tmp, raw_type, j), subscript(raw_src, raw_type, j));
/* Point the original instruction at the temporary, making sure to keep
* any source modifiers in the instruction.
*/
fs_reg lower_src = tmp;
lower_src.negate = inst->src[i].negate;
lower_src.abs = inst->src[i].abs;
inst->src[i] = lower_src;
return true;
}
/**
* Remove any non-trivial shuffling of data from the destination region of
* the instruction. Instead implement the region as a series of integer
* copies from a temporary with a channel layout compatible with the
* sources.
*/
bool
lower_dst_region(fs_visitor *v, bblock_t *block, fs_inst *inst)
{
/* We cannot replace the result of an integer multiply which writes the
* accumulator because MUL+MACH pairs act on the accumulator as a 66-bit
* value whereas the MOV will act on only 32 or 33 bits of the
* accumulator.
*/
assert(inst->opcode != BRW_OPCODE_MUL || !inst->dst.is_accumulator() ||
brw_reg_type_is_floating_point(inst->dst.type));
const fs_builder ibld(v, block, inst);
const unsigned stride = required_dst_byte_stride(inst) /
type_sz(inst->dst.type);
assert(stride > 0);
fs_reg tmp = ibld.vgrf(inst->dst.type, stride);
ibld.UNDEF(tmp);
tmp = horiz_stride(tmp, stride);
/* Emit a series of 32-bit integer copies from the temporary into the
* original destination.
*/
const brw_reg_type raw_type = brw_int_type(MIN2(type_sz(tmp.type), 4),
false);
const unsigned n = type_sz(tmp.type) / type_sz(raw_type);
if (inst->predicate && inst->opcode != BRW_OPCODE_SEL) {
/* Note that in general we cannot simply predicate the copies on the
* same flag register as the original instruction, since it may have
* been overwritten by the instruction itself. Instead initialize
* the temporary with the previous contents of the destination
* register.
*/
for (unsigned j = 0; j < n; j++)
ibld.MOV(subscript(tmp, raw_type, j),
subscript(inst->dst, raw_type, j));
}
for (unsigned j = 0; j < n; j++)
ibld.at(block, inst->next).MOV(subscript(inst->dst, raw_type, j),
subscript(tmp, raw_type, j));
/* Point the original instruction at the temporary, making sure to keep
* any destination modifiers in the instruction.
*/
assert(inst->size_written == inst->dst.component_size(inst->exec_size));
inst->dst = tmp;
inst->size_written = inst->dst.component_size(inst->exec_size);
return true;
}
/**
* Legalize the source and destination regioning controls of the specified
* instruction.
*/
bool
lower_instruction(fs_visitor *v, bblock_t *block, fs_inst *inst)
{
const gen_device_info *devinfo = v->devinfo;
bool progress = false;
if (has_invalid_conversion(devinfo, inst))
progress |= lower_dst_modifiers(v, block, inst);
if (has_invalid_dst_region(devinfo, inst))
progress |= lower_dst_region(v, block, inst);
for (unsigned i = 0; i < inst->sources; i++) {
if (has_invalid_src_modifiers(devinfo, inst, i))
progress |= lower_src_modifiers(v, block, inst, i);
if (has_invalid_src_region(devinfo, inst, i))
progress |= lower_src_region(v, block, inst, i);
}
return progress;
}
}
bool
fs_visitor::lower_regioning()
{
bool progress = false;
foreach_block_and_inst_safe(block, fs_inst, inst, cfg)
progress |= lower_instruction(this, block, inst);
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
|