1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
|
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_bank_conflicts.cpp
*
* This file contains a GRF bank conflict mitigation pass. The pass is
* intended to be run after register allocation and works by rearranging the
* layout of the GRF space (without altering the semantics of the program) in
* a way that minimizes the number of GRF bank conflicts incurred by ternary
* instructions.
*
* Unfortunately there is close to no information about bank conflicts in the
* hardware spec, but experimentally on Gen7-Gen9 ternary instructions seem to
* incur an average bank conflict penalty of one cycle per SIMD8 op whenever
* the second and third source are stored in the same GRF bank (\sa bank_of()
* for the exact bank layout) which cannot be fetched during the same cycle by
* the EU, unless the EU logic manages to optimize out the read cycle of a
* duplicate source register (\sa is_conflict_optimized_out()).
*
* The asymptotic run-time of the algorithm is dominated by the
* shader_conflict_weight_matrix() computation below, which is O(n) on the
* number of instructions in the program, however for small and medium-sized
* programs the run-time is likely to be dominated by
* optimize_reg_permutation() which is O(m^3) on the number of GRF atoms of
* the program (\sa partitioning), which is bounded (since the program uses a
* bounded number of registers post-regalloc) and of the order of 100. For
* that reason optimize_reg_permutation() is vectorized in order to keep the
* cubic term within reasonable bounds for m close to its theoretical maximum.
*/
#include "brw_fs.h"
#include "brw_cfg.h"
#ifdef __SSE2__
#include <emmintrin.h>
/**
* Thin layer around vector intrinsics so they can be easily replaced with
* e.g. the fall-back scalar path, an implementation with different vector
* width or using different SIMD architectures (AVX-512?!).
*
* This implementation operates on pairs of independent SSE2 integer vectors à
* la SIMD16 for somewhat improved throughput. SSE2 is supported by virtually
* all platforms that care about bank conflicts, so this path should almost
* always be available in practice.
*/
namespace {
/**
* SIMD integer vector data type.
*/
struct vector_type {
__m128i v[2];
};
/**
* Scalar data type matching the representation of a single component of \p
* vector_type.
*/
typedef int16_t scalar_type;
/**
* Maximum integer value representable as a \p scalar_type.
*/
const scalar_type max_scalar = INT16_MAX;
/**
* Number of components of a \p vector_type.
*/
const unsigned vector_width = 2 * sizeof(__m128i) / sizeof(scalar_type);
/**
* Set the i-th component of vector \p v to \p x.
*/
void
set(vector_type &v, unsigned i, scalar_type x)
{
assert(i < vector_width);
memcpy((char *)v.v + i * sizeof(x), &x, sizeof(x));
}
/**
* Get the i-th component of vector \p v.
*/
scalar_type
get(const vector_type &v, unsigned i)
{
assert(i < vector_width);
scalar_type x;
memcpy(&x, (char *)v.v + i * sizeof(x), sizeof(x));
return x;
}
/**
* Add two vectors with saturation.
*/
vector_type
adds(const vector_type &v, const vector_type &w)
{
const vector_type u = {{
_mm_adds_epi16(v.v[0], w.v[0]),
_mm_adds_epi16(v.v[1], w.v[1])
}};
return u;
}
/**
* Subtract two vectors with saturation.
*/
vector_type
subs(const vector_type &v, const vector_type &w)
{
const vector_type u = {{
_mm_subs_epi16(v.v[0], w.v[0]),
_mm_subs_epi16(v.v[1], w.v[1])
}};
return u;
}
/**
* Compute the bitwise conjunction of two vectors.
*/
vector_type
mask(const vector_type &v, const vector_type &w)
{
const vector_type u = {{
_mm_and_si128(v.v[0], w.v[0]),
_mm_and_si128(v.v[1], w.v[1])
}};
return u;
}
/**
* Reduce the components of a vector using saturating addition.
*/
scalar_type
sums(const vector_type &v)
{
const __m128i v8 = _mm_adds_epi16(v.v[0], v.v[1]);
const __m128i v4 = _mm_adds_epi16(v8, _mm_shuffle_epi32(v8, 0x4e));
const __m128i v2 = _mm_adds_epi16(v4, _mm_shuffle_epi32(v4, 0xb1));
const __m128i v1 = _mm_adds_epi16(v2, _mm_shufflelo_epi16(v2, 0xb1));
return _mm_extract_epi16(v1, 0);
}
}
#else
/**
* Thin layer around vector intrinsics so they can be easily replaced with
* e.g. the fall-back scalar path, an implementation with different vector
* width or using different SIMD architectures (AVX-512?!).
*
* This implementation operates on scalar values and doesn't rely on
* any vector extensions. This is mainly intended for debugging and
* to keep this file building on exotic platforms.
*/
namespace {
/**
* SIMD integer vector data type.
*/
typedef int16_t vector_type;
/**
* Scalar data type matching the representation of a single component of \p
* vector_type.
*/
typedef int16_t scalar_type;
/**
* Maximum integer value representable as a \p scalar_type.
*/
const scalar_type max_scalar = INT16_MAX;
/**
* Number of components of a \p vector_type.
*/
const unsigned vector_width = 1;
/**
* Set the i-th component of vector \p v to \p x.
*/
void
set(vector_type &v, unsigned i, scalar_type x)
{
assert(i < vector_width);
v = x;
}
/**
* Get the i-th component of vector \p v.
*/
scalar_type
get(const vector_type &v, unsigned i)
{
assert(i < vector_width);
return v;
}
/**
* Add two vectors with saturation.
*/
vector_type
adds(vector_type v, vector_type w)
{
return MAX2(INT16_MIN, MIN2(INT16_MAX, int(v) + w));
}
/**
* Substract two vectors with saturation.
*/
vector_type
subs(vector_type v, vector_type w)
{
return MAX2(INT16_MIN, MIN2(INT16_MAX, int(v) - w));
}
/**
* Compute the bitwise conjunction of two vectors.
*/
vector_type
mask(vector_type v, vector_type w)
{
return v & w;
}
/**
* Reduce the components of a vector using saturating addition.
*/
scalar_type
sums(vector_type v)
{
return v;
}
}
#endif
/**
* Swap \p x and \p y.
*/
#define SWAP(x, y) do { \
__typeof(y) _swap_tmp = y; \
y = x; \
x = _swap_tmp; \
} while (0)
namespace {
/**
* Variable-length vector type intended to represent cycle-count costs for
* arbitrary atom-to-bank assignments. It's indexed by a pair of integers
* (i, p), where i is an atom index and p in {0, 1} indicates the parity of
* the conflict (respectively, whether the cost is incurred whenever the
* atoms are assigned the same bank b or opposite-parity banks b and b^1).
* \sa shader_conflict_weight_matrix()
*/
struct weight_vector_type {
weight_vector_type() : v(NULL), size(0) {}
weight_vector_type(unsigned n) : v(alloc(n)), size(n) {}
weight_vector_type(const weight_vector_type &u) :
v(alloc(u.size)), size(u.size)
{
memcpy(v, u.v,
DIV_ROUND_UP(u.size, vector_width) * sizeof(vector_type));
}
~weight_vector_type()
{
free(v);
}
weight_vector_type &
operator=(weight_vector_type u)
{
SWAP(v, u.v);
SWAP(size, u.size);
return *this;
}
vector_type *v;
unsigned size;
private:
static vector_type *
alloc(unsigned n)
{
const unsigned align = MAX2(sizeof(void *), __alignof__(vector_type));
const unsigned size = DIV_ROUND_UP(n, vector_width) * sizeof(vector_type);
void *p;
if (posix_memalign(&p, align, size))
return NULL;
memset(p, 0, size);
return reinterpret_cast<vector_type *>(p);
}
};
/**
* Set the (i, p)-th component of weight vector \p v to \p x.
*/
void
set(weight_vector_type &v, unsigned i, unsigned p, scalar_type x)
{
set(v.v[(2 * i + p) / vector_width], (2 * i + p) % vector_width, x);
}
/**
* Get the (i, p)-th component of weight vector \p v.
*/
scalar_type
get(const weight_vector_type &v, unsigned i, unsigned p)
{
return get(v.v[(2 * i + p) / vector_width], (2 * i + p) % vector_width);
}
/**
* Swap the (i, p)-th and (j, q)-th components of weight vector \p v.
*/
void
swap(weight_vector_type &v,
unsigned i, unsigned p,
unsigned j, unsigned q)
{
const scalar_type tmp = get(v, i, p);
set(v, i, p, get(v, j, q));
set(v, j, q, tmp);
}
}
namespace {
/**
* Object that represents the partitioning of an arbitrary register space
* into indivisible units (referred to as atoms below) that can potentially
* be rearranged independently from other registers. The partitioning is
* inferred from a number of contiguity requirements specified using
* require_contiguous(). This allows efficient look-up of the atom index a
* given register address belongs to, or conversely the range of register
* addresses that belong to a given atom.
*/
struct partitioning {
/**
* Create a (for the moment unrestricted) partitioning of a register
* file of size \p n. The units are arbitrary.
*/
partitioning(unsigned n) :
max_reg(n),
offsets(new unsigned[n + num_terminator_atoms]),
atoms(new unsigned[n + num_terminator_atoms])
{
for (unsigned i = 0; i < n + num_terminator_atoms; i++) {
offsets[i] = i;
atoms[i] = i;
}
}
partitioning(const partitioning &p) :
max_reg(p.max_reg),
offsets(new unsigned[p.num_atoms() + num_terminator_atoms]),
atoms(new unsigned[p.max_reg + num_terminator_atoms])
{
memcpy(offsets, p.offsets,
sizeof(unsigned) * (p.num_atoms() + num_terminator_atoms));
memcpy(atoms, p.atoms,
sizeof(unsigned) * (p.max_reg + num_terminator_atoms));
}
~partitioning()
{
delete[] offsets;
delete[] atoms;
}
partitioning &
operator=(partitioning p)
{
SWAP(max_reg, p.max_reg);
SWAP(offsets, p.offsets);
SWAP(atoms, p.atoms);
return *this;
}
/**
* Require register range [reg, reg + n[ to be considered part of the
* same atom.
*/
void
require_contiguous(unsigned reg, unsigned n)
{
unsigned r = atoms[reg];
/* Renumber atoms[reg...] = { r... } and their offsets[r...] for the
* case that the specified contiguity requirement leads to the fusion
* (yay) of one or more existing atoms.
*/
for (unsigned reg1 = reg + 1; reg1 <= max_reg; reg1++) {
if (offsets[atoms[reg1]] < reg + n) {
atoms[reg1] = r;
} else {
if (offsets[atoms[reg1 - 1]] != offsets[atoms[reg1]])
r++;
offsets[r] = offsets[atoms[reg1]];
atoms[reg1] = r;
}
}
}
/**
* Get the atom index register address \p reg belongs to.
*/
unsigned
atom_of_reg(unsigned reg) const
{
return atoms[reg];
}
/**
* Get the base register address that belongs to atom \p r.
*/
unsigned
reg_of_atom(unsigned r) const
{
return offsets[r];
}
/**
* Get the size of atom \p r in register address units.
*/
unsigned
size_of_atom(unsigned r) const
{
assert(r < num_atoms());
return reg_of_atom(r + 1) - reg_of_atom(r);
}
/**
* Get the number of atoms the whole register space is partitioned into.
*/
unsigned
num_atoms() const
{
return atoms[max_reg];
}
private:
/**
* Number of trailing atoms inserted for convenience so among other
* things we don't need to special-case the last element in
* size_of_atom().
*/
static const unsigned num_terminator_atoms = 1;
unsigned max_reg;
unsigned *offsets;
unsigned *atoms;
};
/**
* Only GRF sources (whether they have been register-allocated or not) can
* possibly incur bank conflicts.
*/
bool
is_grf(const fs_reg &r)
{
return r.file == VGRF || r.file == FIXED_GRF;
}
/**
* Register offset of \p r in GRF units. Useful because the representation
* of GRFs post-register allocation is somewhat inconsistent and depends on
* whether the register already had a fixed GRF offset prior to register
* allocation or whether it was part of a VGRF allocation.
*/
unsigned
reg_of(const fs_reg &r)
{
assert(is_grf(r));
if (r.file == VGRF)
return r.nr + r.offset / REG_SIZE;
else
return reg_offset(r) / REG_SIZE;
}
/**
* Calculate the finest partitioning of the GRF space compatible with the
* register contiguity requirements derived from all instructions part of
* the program.
*/
partitioning
shader_reg_partitioning(const fs_visitor *v)
{
partitioning p(BRW_MAX_GRF);
foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
if (is_grf(inst->dst))
p.require_contiguous(reg_of(inst->dst), regs_written(inst));
for (int i = 0; i < inst->sources; i++) {
if (is_grf(inst->src[i]))
p.require_contiguous(reg_of(inst->src[i]), regs_read(inst, i));
}
}
return p;
}
/**
* Return the set of GRF atoms that should be left untouched at their
* original location to avoid violating hardware or software assumptions.
*/
bool *
shader_reg_constraints(const fs_visitor *v, const partitioning &p)
{
bool *constrained = new bool[p.num_atoms()]();
/* These are read implicitly by some send-message instructions without
* any indication at the IR level. Assume they are unsafe to move
* around.
*/
for (unsigned reg = 0; reg < 2; reg++)
constrained[p.atom_of_reg(reg)] = true;
/* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
* subsection "EUISA Instructions", Send Message (page 990):
*
* "r127 must not be used for return address when there is a src and
* dest overlap in send instruction."
*
* Register allocation ensures that, so don't move 127 around to avoid
* breaking that property.
*/
if (v->devinfo->gen >= 8)
constrained[p.atom_of_reg(127)] = true;
foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
/* Assume that anything referenced via fixed GRFs is baked into the
* hardware's fixed-function logic and may be unsafe to move around.
* Also take into account the source GRF restrictions of EOT
* send-message instructions.
*/
if (inst->dst.file == FIXED_GRF)
constrained[p.atom_of_reg(reg_of(inst->dst))] = true;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == FIXED_GRF ||
(is_grf(inst->src[i]) && inst->eot))
constrained[p.atom_of_reg(reg_of(inst->src[i]))] = true;
}
/* Preserve the original allocation of VGRFs used by the barycentric
* source of the LINTERP instruction on Gen6, since pair-aligned
* barycentrics allow the PLN instruction to be used.
*/
if (v->devinfo->has_pln && v->devinfo->gen <= 6 &&
inst->opcode == FS_OPCODE_LINTERP)
constrained[p.atom_of_reg(reg_of(inst->src[0]))] = true;
/* The location of the Gen7 MRF hack registers is hard-coded in the
* rest of the compiler back-end. Don't attempt to move them around.
*/
if (v->devinfo->gen >= 7) {
assert(inst->dst.file != MRF);
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
const unsigned reg = GEN7_MRF_HACK_START + inst->base_mrf + i;
constrained[p.atom_of_reg(reg)] = true;
}
}
}
return constrained;
}
/**
* Return whether the hardware will be able to prevent a bank conflict by
* optimizing out the read cycle of a source register. The formula was
* found experimentally.
*/
bool
is_conflict_optimized_out(const gen_device_info *devinfo, const fs_inst *inst)
{
return devinfo->gen >= 9 &&
((is_grf(inst->src[0]) && (reg_of(inst->src[0]) == reg_of(inst->src[1]) ||
reg_of(inst->src[0]) == reg_of(inst->src[2]))) ||
reg_of(inst->src[1]) == reg_of(inst->src[2]));
}
/**
* Return a matrix that allows reasonably efficient computation of the
* cycle-count cost of bank conflicts incurred throughout the whole program
* for any given atom-to-bank assignment.
*
* More precisely, if C_r_s_p is the result of this function, the total
* cost of all bank conflicts involving any given atom r can be readily
* recovered as follows:
*
* S(B) = Sum_s_p(d_(p^B_r)_(B_s) * C_r_s_p)
*
* where d_i_j is the Kronecker delta, and B_r indicates the bank
* assignment of r. \sa delta_conflicts() for a vectorized implementation
* of the expression above.
*
* FINISHME: Teach this about the Gen10+ bank conflict rules, which are
* somewhat more relaxed than on previous generations. In the
* meantime optimizing based on Gen9 weights is likely to be more
* helpful than not optimizing at all.
*/
weight_vector_type *
shader_conflict_weight_matrix(const fs_visitor *v, const partitioning &p)
{
weight_vector_type *conflicts = new weight_vector_type[p.num_atoms()];
for (unsigned r = 0; r < p.num_atoms(); r++)
conflicts[r] = weight_vector_type(2 * p.num_atoms());
/* Crude approximation of the number of times the current basic block
* will be executed at run-time.
*/
unsigned block_scale = 1;
foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
if (inst->opcode == BRW_OPCODE_DO) {
block_scale *= 10;
} else if (inst->opcode == BRW_OPCODE_WHILE) {
block_scale /= 10;
} else if (inst->is_3src(v->devinfo) &&
is_grf(inst->src[1]) && is_grf(inst->src[2])) {
const unsigned r = p.atom_of_reg(reg_of(inst->src[1]));
const unsigned s = p.atom_of_reg(reg_of(inst->src[2]));
/* Estimate of the cycle-count cost of incurring a bank conflict
* for this instruction. This is only true on the average, for a
* sequence of back-to-back ternary instructions, since the EU
* front-end only seems to be able to issue a new instruction at
* an even cycle. The cost of a bank conflict incurred by an
* isolated ternary instruction may be higher.
*/
const unsigned exec_size = inst->dst.component_size(inst->exec_size);
const unsigned cycle_scale = block_scale * DIV_ROUND_UP(exec_size,
REG_SIZE);
/* Neglect same-atom conflicts (since they're either trivial or
* impossible to avoid without splitting the atom), and conflicts
* known to be optimized out by the hardware.
*/
if (r != s && !is_conflict_optimized_out(v->devinfo, inst)) {
/* Calculate the parity of the sources relative to the start of
* their respective atoms. If their parity is the same (and
* none of the atoms straddle the 2KB mark), the instruction
* will incur a conflict iff both atoms are assigned the same
* bank b. If their parity is opposite, the instruction will
* incur a conflict iff they are assigned opposite banks (b and
* b^1).
*/
const bool p_r = 1 & (reg_of(inst->src[1]) - p.reg_of_atom(r));
const bool p_s = 1 & (reg_of(inst->src[2]) - p.reg_of_atom(s));
const unsigned p = p_r ^ p_s;
/* Calculate the updated cost of a hypothetical conflict
* between atoms r and s. Note that the weight matrix is
* symmetric with respect to indices r and s by construction.
*/
const scalar_type w = MIN2(unsigned(max_scalar),
get(conflicts[r], s, p) + cycle_scale);
set(conflicts[r], s, p, w);
set(conflicts[s], r, p, w);
}
}
}
return conflicts;
}
/**
* Return the set of GRF atoms that could potentially lead to bank
* conflicts if laid out unfavorably in the GRF space according to
* the specified \p conflicts matrix (\sa
* shader_conflict_weight_matrix()).
*/
bool *
have_any_conflicts(const partitioning &p,
const weight_vector_type *conflicts)
{
bool *any_conflicts = new bool[p.num_atoms()]();
for (unsigned r = 0; r < p.num_atoms(); r++) {
const unsigned m = DIV_ROUND_UP(conflicts[r].size, vector_width);
for (unsigned s = 0; s < m; s++)
any_conflicts[r] |= sums(conflicts[r].v[s]);
}
return any_conflicts;
}
/**
* Calculate the difference between two S(B) cost estimates as defined
* above (\sa shader_conflict_weight_matrix()). This represents the
* (partial) cycle-count benefit from moving an atom r from bank p to n.
* The respective bank assignments Bp and Bn are encoded as the \p
* bank_mask_p and \p bank_mask_n bitmasks for efficient computation,
* according to the formula:
*
* bank_mask(B)_s_p = -d_(p^B_r)_(B_s)
*
* Notice the similarity with the delta function in the S(B) expression
* above, and how bank_mask(B) can be precomputed for every possible
* selection of r since bank_mask(B) only depends on it via B_r that may
* only assume one of four different values, so the caller can keep every
* possible bank_mask(B) vector in memory without much hassle (\sa
* bank_characteristics()).
*/
int
delta_conflicts(const weight_vector_type &bank_mask_p,
const weight_vector_type &bank_mask_n,
const weight_vector_type &conflicts)
{
const unsigned m = DIV_ROUND_UP(conflicts.size, vector_width);
vector_type s_p = {}, s_n = {};
for (unsigned r = 0; r < m; r++) {
s_p = adds(s_p, mask(bank_mask_p.v[r], conflicts.v[r]));
s_n = adds(s_n, mask(bank_mask_n.v[r], conflicts.v[r]));
}
return sums(subs(s_p, s_n));
}
/**
* Register atom permutation, represented as the start GRF offset each atom
* is mapped into.
*/
struct permutation {
permutation() : v(NULL), size(0) {}
permutation(unsigned n) :
v(new unsigned[n]()), size(n) {}
permutation(const permutation &p) :
v(new unsigned[p.size]), size(p.size)
{
memcpy(v, p.v, p.size * sizeof(unsigned));
}
~permutation()
{
delete[] v;
}
permutation &
operator=(permutation p)
{
SWAP(v, p.v);
SWAP(size, p.size);
return *this;
}
unsigned *v;
unsigned size;
};
/**
* Return an identity permutation of GRF atoms.
*/
permutation
identity_reg_permutation(const partitioning &p)
{
permutation map(p.num_atoms());
for (unsigned r = 0; r < map.size; r++)
map.v[r] = p.reg_of_atom(r);
return map;
}
/**
* Return the bank index of GRF address \p reg, numbered according to the
* table:
* Even Odd
* Lo 0 1
* Hi 2 3
*/
unsigned
bank_of(unsigned reg)
{
return (reg & 0x40) >> 5 | (reg & 1);
}
/**
* Return bitmasks suitable for use as bank mask arguments for the
* delta_conflicts() computation. Note that this is just the (negative)
* characteristic function of each bank, if you regard it as a set
* containing all atoms assigned to it according to the \p map array.
*/
weight_vector_type *
bank_characteristics(const permutation &map)
{
weight_vector_type *banks = new weight_vector_type[4];
for (unsigned b = 0; b < 4; b++) {
banks[b] = weight_vector_type(2 * map.size);
for (unsigned j = 0; j < map.size; j++) {
for (unsigned p = 0; p < 2; p++)
set(banks[b], j, p,
(b ^ p) == bank_of(map.v[j]) ? -1 : 0);
}
}
return banks;
}
/**
* Return an improved permutation of GRF atoms based on \p map attempting
* to reduce the total cycle-count cost of bank conflicts greedily.
*
* Note that this doesn't attempt to merge multiple atoms into one, which
* may allow it to do a better job in some cases -- It simply reorders
* existing atoms in the GRF space without affecting their identity.
*/
permutation
optimize_reg_permutation(const partitioning &p,
const bool *constrained,
const weight_vector_type *conflicts,
permutation map)
{
const bool *any_conflicts = have_any_conflicts(p, conflicts);
weight_vector_type *banks = bank_characteristics(map);
for (unsigned r = 0; r < map.size; r++) {
const unsigned bank_r = bank_of(map.v[r]);
if (!constrained[r]) {
unsigned best_s = r;
int best_benefit = 0;
for (unsigned s = 0; s < map.size; s++) {
const unsigned bank_s = bank_of(map.v[s]);
if (bank_r != bank_s && !constrained[s] &&
p.size_of_atom(r) == p.size_of_atom(s) &&
(any_conflicts[r] || any_conflicts[s])) {
const int benefit =
delta_conflicts(banks[bank_r], banks[bank_s], conflicts[r]) +
delta_conflicts(banks[bank_s], banks[bank_r], conflicts[s]);
if (benefit > best_benefit) {
best_s = s;
best_benefit = benefit;
}
}
}
if (best_s != r) {
for (unsigned b = 0; b < 4; b++) {
for (unsigned p = 0; p < 2; p++)
swap(banks[b], r, p, best_s, p);
}
SWAP(map.v[r], map.v[best_s]);
}
}
}
delete[] banks;
delete[] any_conflicts;
return map;
}
/**
* Apply the GRF atom permutation given by \p map to register \p r and
* return the result.
*/
fs_reg
transform(const partitioning &p, const permutation &map, fs_reg r)
{
if (r.file == VGRF) {
const unsigned reg = reg_of(r);
const unsigned s = p.atom_of_reg(reg);
r.nr = map.v[s] + reg - p.reg_of_atom(s);
r.offset = r.offset % REG_SIZE;
}
return r;
}
}
bool
fs_visitor::opt_bank_conflicts()
{
assert(grf_used || !"Must be called after register allocation");
/* No ternary instructions -- No bank conflicts. */
if (devinfo->gen < 6)
return false;
const partitioning p = shader_reg_partitioning(this);
const bool *constrained = shader_reg_constraints(this, p);
const weight_vector_type *conflicts =
shader_conflict_weight_matrix(this, p);
const permutation map =
optimize_reg_permutation(p, constrained, conflicts,
identity_reg_permutation(p));
foreach_block_and_inst(block, fs_inst, inst, cfg) {
inst->dst = transform(p, map, inst->dst);
for (int i = 0; i < inst->sources; i++)
inst->src[i] = transform(p, map, inst->src[i]);
}
delete[] conflicts;
delete[] constrained;
return true;
}
/**
* Return whether the instruction incurs GRF bank conflict cycles.
*
* Note that this is only accurate after register allocation because otherwise
* we don't know which bank each VGRF is going to end up aligned to.
*/
bool
has_bank_conflict(const gen_device_info *devinfo, const fs_inst *inst)
{
return inst->is_3src(devinfo) &&
is_grf(inst->src[1]) && is_grf(inst->src[2]) &&
bank_of(reg_of(inst->src[1])) == bank_of(reg_of(inst->src[2])) &&
!is_conflict_optimized_out(devinfo, inst);
}
|